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Balls and Bins Questions

Setup: we have m balls and we want to put them in n bins.

As it is NBA playoff season, we will do this by throwing each ball into a
uniformly random bin independently.

We are interested in the following questions:

What is the expected number of balls in a bin?

What is the expected number of empty bins?

What is “typically” the maximum number of balls in any bin?

What is the expected number of bins with k balls in them?

For what values of m do we expect to have no empty bins? (coupon
collector)
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Why Learn About Balls and Bins?

In next lectures, we are going to learn about and analyse randomized
algorithms. While we will usually analyse the expected running times of
the algorithms, we would also like to know if the algorithm runs in time
close to its expected running time most of the time.

Running time small with high probability better than small expected
running time.

In this lecture, we will analyse random processes (balls & bins) which
underlie several randomized algorithms! (ranging from data structures to
routing in parallel computers and beyond!)

After we learn about these basic processes, in lecture 7 (concentration
inequalities) we will be concerned with statements of the first kind (what
is the probability of deviating far from its expectation).
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Expected Number of Balls in a Bin
Let us label the m balls 1, . . . ,m, and the n bins 1, 2, . . . , n.
Let Bij be the indicator variable that ball i was thrown into bin j .

E[# balls in bin j ] = E

[
m∑
i=1

Bi ,j

]

=
m∑
i=1

E [Bi ,j ] (linearity of expectation)

=
m∑
i=1

Pr [ball i in bin j ]

=
m∑
i=1

1

n
=

m

n
(uniformly at random)

When m = n, expectation of one ball per bin. How often will this actually
happen?
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Expected number of empty bins

Let Ni be the indicator variable that bin i is empty.

E[# empty bins] = E

[
n∑

i=1

Ni

]

=
n∑

i=1

E [Ni ] (linearity of expectation)

=
n∑

i=1

Pr [bin i is empty j ]

=
n∑

i=1

(1− 1/n)m

= n · (1− 1/n)m ≈ n · e−m/n

When m = n, expected fraction of empty bins is 1
e .
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Head Scratching Moment

When m = n, first calculation had expectation of one ball per bin.

When m = n, second calculation had expectation of 1/e fraction of empty
bins.

Which expectation should I actually “expect”?

As we mentioned earlier, this is where concentration of probability measure
tries to address. It turns out that the second random variable (and thus
second calculation) is concentrated around the mean (i.e., expectation).

So we “expect” (or it is “typical”) to see around 1/e-fraction of empty
bins when m = n
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Maximum load in a bin

What is the “typical” maximum number of balls in a bin?

As we saw in the previous slide, “typical” is related to concentration of
probability measure.

Let us first see a simpler problem, which is known as the birthday paradox:
for what value of m do we expect to see two balls in one bin?
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Birthday Paradox

The probability that there are no collisions after we have thrown m balls is:

1 ·
(

1− 1

n

)
·
(

1− 2

n

)
· · · ·

(
1− m − 1

n

)
≤ e−1/n · · · e−

m−1
n ≈ e

−m2

2n

This is ≤ 1/2 when m =
√

2n ln(n). For n = 365, this is m ≈ 22.4 for the
probability that two people (balls) have birthday on the same date (bins)
to become ≥ 1/2.

Thus, we expect to see a collision (two balls in the same bin) when
m = Θ(

√
n). This appears in several places, such as hashing, factoring,

etc.
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Maximum load in a bin when m = n
What is the probability that a particular bin (say bin 1) has ≥ k balls in it?

Pr[bin 1 has ≥ k balls] ≤
∑

S subset[n]
|S |=k

∏
i∈S

Pr[ball i in bin 1]

=
∑

S subset[n]
|S |=k

∏
i∈S

1

n

=

(
n

k

)
· 1

nk
≤
(ne
k

)k
· 1

nk
=

ek

kk

By union bound

Pr[some bin has ≥ k balls] ≤
n∑

i=1

Pr[bin i has ≥ k balls] ≤ n · e
k

kk
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Maximum load in a bin when m = n

Pr[some bin has ≥ k balls] ≤ n · e
k

kk
= e ln n+k−k ln k

Pr[max load is ≤ k] = 1− Pr[some bin has ≥ k balls] ≥ 1− e ln n+k−k ln k

When will the above probability be large (say >> 1/2)?

When k ln k > ln n. Setting k = 3
ln n

ln ln n
does it.

With high probability, max load is O

(
ln n

ln ln n

)
.

This comes up in hashing and in analysis of approximation algorithms (for
instance, best known approximation ratio for congestion minimization).
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Coupon Collector

For what value of m do we expect to have no empty bins?

Why is this problem called the coupon collector problem?

Because we can formulate it in the following way:

suppose each bin is a different coupon

we buy one coupon at random (like kinder eggs/pack action cards)

what is the number of coupons that we need to buy to collect all of
them?

Let Xi be the number of balls thrown to get from i + 1 empty bins to i
empty bins. Let X be the number of balls thrown until we have no empty
bins.

X =
n−1∑
i=0

Xi
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Coupon Collector

Xi ← # balls thrown to get from i empty bins to i − 1 empty bins

X ← # balls thrown until we have no empty bins

E[X ] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi ]

What is E[Xi ]?

Xi geometric random variable with parameter p = i
n .

Number of trials until the first success, where success probability p.

Pr[Xi = k] = (1− p)k−1 · p
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Coupon Collector - Computing E[X ]

This n ln n bound shows up in cover time of random walks in complete
graph, number of edges needed in graph sparsification, etc.
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Power of Two Choices

We now know that when n balls are thrown into n bins, the maximum load
is Θ(ln n/ ln ln n) with high probability (we’ll maybe see lower bound later).

Consider following variant: what if when throwing a ball in a bin, before
we throw the ball we choose two bins uniformly at random and put the
ball in the bin with fewer balls?

This simple modification reduces maximum load to O(ln ln n)!

Intuition/idea: let the height of a bin be the # balls in that bin. This
process tells us that to get one bin with height h + 1 we must have at
least two bins of height h.

We can bound # bins with height at least h (because this will tell us how
likely it is to get to height h + 1).
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least two bins of height h.

We can bound # bins with height at least h (because this will tell us how
likely it is to get to height h + 1).
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A bit more intuition

Nh := number of bins with height at least h

Pr[at least one bin of height h + 1] ≤
(
Nh

n

)2

Say we have only n/4 bins with 4 items (i.e. height 4)

Probability of selecting two such bins is 1/16

So we should expect only n/16 bins with height 5

And only n/256 = n/162 = n/22
3

bins with height 6

Repeating this, we should expect
n

22h−3 bins of height h

So expect log log n maximum height after throwing n balls.

How do we turn this into a proof?
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Proof Sketch (proof [Mitzenmacher & Upfal, Chapter 14])

Use following Chernoff bound1 on binomial random variable B(n, p) with n
trials and success probability p.2

Pr[B(n, p) ≥ 2np] ≤ e−np/3

β4 := n/4 and βi+1 = 2β2i /n.

E (h, t) := event that after all t balls are thrown, Nh ≤ βh
Pr[E (4, n)] = 1

(why?)

We will prove that if E (h, n) holds with high probability then so does
E (h + 1, n) (so long as h is “small enough”)

1we will see Chernoff in lecture 7
2That is, Pr[B(n, p) = k] =

(
n
k

)
· pk · (1 − p)n−k .
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Proof Sketch (proof [Mitzenmacher & Upfal, Chapter 14])
Yt(h) be the indicator variable that tth ball has height ≥ h + 1 (i.e.,
was placed in a bin that had height h)

Pr[Yt(h) = 1 | E (h, t)] ≤
(
Nh

n

)2

≤
β2h
n2

If pi :=
β2h
n2

then

Pr

[
n∑

t=1

Yt(h) > k | E (h, n)

]
≤ Pr

[
n∑

t=1

B(n, pi ) > k | E (h, n)

]

Pr[Nh+1 > k | E (h, n)] = Pr

[
n∑

t=1

Yt(h) > k | E (h, n)

]

≤ Pr

[
n∑

t=1

B(n, pi ) > k | E (h, n)

]
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Proof Sketch (proof [Mitzenmacher & Upfal, Chapter 14])

Pr[Nh+1 > k | E (h, n)] ≤ Pr

[
n∑

t=1

B(n, pi ) > k | E (h, n)

]

Setting k = βh+1 = 2nph above, we get

Pr[Nh+1 > βh+1 | E (h, n)] ≤ Pr

[
n∑

t=1

B(n, pi ) > βh+1 | E (h, n)

]

≤
Pr [
∑n

t=1 B(n, pi ) > βh+1]

Pr[E (h, n)]

≤ 1

Pr[E (h, n)] · enph/3
(Chernoff)

Thus, setting ph · n ≥ 6 ln n we get

Pr[not E (h+ 1, n) | E (h, n)] = Pr[Nh+1 > βh+1 | E (h, n)] ≤ 1

n2 Pr[E (h, n)]
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Proof Sketch (proof [Mitzenmacher & Upfal, Chapter 14])

Pr[not E (h+ 1, n) | E (h, n)] = Pr[Nh+1 > βh+1 | E (h, n)] ≤ 1

n2 Pr[E (h, n)]

Now, to bound the final probability, we have:

Pr[not E (h + 1, n)] = Pr[not E (h + 1, n) | E (h, n)] · Pr[E (h, n)]

+ Pr[not E (h + 1, n) | E (h, n)] · Pr[not E (h, n)]

≤ 1

n2
+ Pr[not E (h, n)] (so long as phn ≥ 6 ln n)

To finish the proof, need to show:

ph · n ≥ 6 ln n for h = O(ln ln n) (easy calculation - we did it)

Handle the case where ph · n < 6 ln n. (another Chernoff bound - see
Lap Chi’s notes)
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