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Rate this course!

Please log in to

https://evaluate.uwaterloo.ca/

Today is the last day to provide us (and the school) with your evaluation
and feedback on the course!

This would really help me figuring out what worked and what didn’t
for the course

And let the school (and santa) know if I was a good boy this term!

Teaching this course is also a learning experience for me :)
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How can I learn more?

Consider taking more advanced courses next term!
See graduate course openings at:

Current graduate course offerings for next term!

https://cs.uwaterloo.ca/current-graduate-students/courses/

current-course-offerings/fall-2019-course-offerings/

tentative-winter-2021-course-offerings

Classes by:

1 Eric Blais (sublinear time algorithms)
2 Shalev Ben-David (quantum query and communication)
3 Gautam Kamath (intro to machine learning)
4 Trevor Brown (multicore programming)
5 Jeff Shallit (formal languages and parsing)
6 Myself (intro to symbolic computation & advanced topics in algebra,

complexity and optimization)!

Or, try out some of the research opportunities at UW!
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What are Distributed Algorithms?

Algorithms which run on a network, or multiprocessors within a
computer which share memory

Problems they solve:
Resource Management
Data Management and Transmission
Synchronization
Consensus
many more

Challenges in this setting:
Concurrent Activity
Uncertainty of order of events
Failure and recovery of processors or channels

Many models
Memory & Communication: shared memory, message-passing
Timing: synchronous (rounds), asynchronous, partially synchronous
(bounds on message delay, processor speeds, clock rates)
Failures: processor (stop, Byzantine), communication (message
loss/altered), system state corruption
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Synchronous Model

Processes are vertices of directed graph

Memory: each processor has its own memory
Communication: each processor can send messages to its outgoing
neighbours
Timing: processors communicate in synchronous rounds
Failures: may or may not have failures (different settings today)

Σ is the message alphabet, plus special symbol ⊥
For each vertex i ∈ [n], a process consists of:

Si = non-empty set of states
σi = a start state
µi : Si × outi → Σ ∪ {⊥} Message function
τi : Si × (Σ ∪ {⊥})ini → Si Transition function

Complexity Measure: number of rounds needed to solve problem

Processes have unlimited internal resources (i.e., can compute
anything)
For today, will assume each process deterministic
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Example: Leader Election (i.e. breaking symmetry)

Input: network of processes

Output: want to distinguish exactly one process, as the leader

Motivation: leader can take charge of

communication
coordination
allocating resources
other tasks

Simple case: ring network, bi-directional communication

Processes numbered clockwise (but they don’t know their numbers)

Theorem: all processes identical (same set of states and transition
functions) and deterministic then it is impossible to elect a leader!

To show this, simply look at execution and check that all processes
will always be at identical states.

13 / 77



Example: Leader Election (i.e. breaking symmetry)

Input: network of processes

Output: want to distinguish exactly one process, as the leader

Motivation: leader can take charge of

communication
coordination
allocating resources
other tasks

Simple case: ring network, bi-directional communication

Processes numbered clockwise (but they don’t know their numbers)

Theorem: all processes identical (same set of states and transition
functions) and deterministic then it is impossible to elect a leader!

To show this, simply look at execution and check that all processes
will always be at identical states.

14 / 77



Example: Leader Election (i.e. breaking symmetry)

Input: network of processes

Output: want to distinguish exactly one process, as the leader

Motivation: leader can take charge of

communication
coordination
allocating resources
other tasks

Simple case: ring network, bi-directional communication

Processes numbered clockwise (but they don’t know their numbers)

Theorem: all processes identical (same set of states and transition
functions) and deterministic then it is impossible to elect a leader!

To show this, simply look at execution and check that all processes
will always be at identical states.

15 / 77

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Example: Leader Election (i.e. breaking symmetry)

Input: network of processes

Output: want to distinguish exactly one process, as the leader

Motivation: leader can take charge of

communication
coordination
allocating resources
other tasks

Simple case: ring network, bi-directional communication

Processes numbered clockwise (but they don’t know their numbers)

Theorem: all processes identical (same set of states and transition
functions) and deterministic then it is impossible to elect a leader!

To show this, simply look at execution and check that all processes
will always be at identical states.

16 / 77



Example: Leader Election (i.e. breaking symmetry)

Input: network of processes

Output: want to distinguish exactly one process, as the leader

Motivation: leader can take charge of

communication
coordination
allocating resources
other tasks

Simple case: ring network, bi-directional communication

Processes numbered clockwise (but they don’t know their numbers)

Theorem: all processes identical (same set of states and transition
functions) and deterministic then it is impossible to elect a leader!

To show this, simply look at execution and check that all processes
will always be at identical states.

17 / 77



Leader Election: Algorithm

Let’s assume that each process also has a unique ID (UID)

But they don’t know size of the network (i.e. n)

Idea: each process sends its UID in a message, to be relayed
step-by-step around the ring.
When process receives UID, compares it with its own

if it is bigger, pass it on
if smaller, discard
equal ⇒ process declares itself leader
leader then notifies everyone else (by message relaying in network)

Algorithm terminates, and elects leader with largest UID

After n rounds, element with maximum UID will declare itself the
leader (and no other process will)

Complexity:
Number of rounds: O(n)
Communication: O(n2)

Can reduce communication to O(n log n) by successively doubling
(see reference)
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Consensus Problem - Setup
Several generals and their armies surround an enemy city

Generals want to plan a coordinated attack to an enemy
Some generals may not have their armies ready...
Generals can communicate by sending messengers to others’ bases

Unreliable, as messenger can get lost or captured
Routes between bases are undirected graph, known to all generals
Generals know bound on time it takes for message to be delivered
successfully

For them to attack, all generals must agree to attack
Model: synchronous model, arbitrary number of message failures.
Input: Each process has one bit of input. 1 (attack) or 0 (don’t
attack)
Output: all should have same decision bit b satisfying weak validity.1

if all processes start with bit 0, then 0 is only allowed decision
if all start with 1 and all messages successfully delivered, then 1 is the
only allowed decision.

1Strong validity happens if at least one general has bit 0, then 0 is only allowed
decision
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Consensus Problem - Byzantine Failures

Unbounded message failures ⇒ impossible, even for 2 generals

In the end → have to make a decision without communicating

Not very illuminating.

What if we allow only a finite number of failures?
Two types of failures:

Stopping Failures: all generals honest, but some may not be able to
communicate at all (node crash in network)
Byzantine Failures: some generals dishonest. Similar to malicious
attacker in a network.

Input: Each process has one bit of input. 1 (attack) or 0 (don’t
attack). Faulty processes can behave arbitrarily.
Output: all non-faulty processes should terminate and have

1 Agreement: same decision bit b
2 Weak Validity: if all non-faulty processes processes start with bit a,

then b must be equal to a.

Complexity measures: number of rounds & communication (#
messages exchanged in bit-size).
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Byzantine Consensus - Complete Graph

Assume all vertices can talk to any other vertex (“broadcast” setting)

First attempt: simply send our value to other nodes (if non-faulty),
then take majority.

Well, that didn’t work - violated the agreement property!

New Idea: make all nodes gossip!

Each node now will keep track of what each node has told another
and so on...

At each round, each vertex broadcasts its knowledge

After a number of rounds, everyone must make a decision

Does this work?

How many rounds do we need?

How many Byzantine failures can it tolerate?
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Byzantine Consensus - Complete Graph

Assume all vertices can talk to any other vertex (“broadcast” setting)

First attempt: simply send our value to other nodes (if non-faulty),
then take majority.

Well, that didn’t work - violated the agreement property!

New Idea: make all nodes gossip!

Each node now will keep track of what each node has told another
and so on...

At each round, each vertex broadcasts its knowledge

After a number of rounds, everyone must make a decision

Does this work?

How many rounds do we need?

How many Byzantine failures can it tolerate?
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Byzantine Consensus - Bad Example

3 vertices {v1, v2, v3}, 1 bad vertex

Scenario 1: v1, v2 good with value 1, v3 faulty with value 0
1 Round 1: all vertices truthful
2 Round 2: v3 lies to v1, saying that v2 said 0, all other communications

truthful
3 Validity ⇒ v1, v2 must decide 1

Scenario 2: v2, v3 good with value 0, v1 faulty with value 1
1 Round 1: all vertices truthful
2 Round 2: v1 lies to v3, saying that v2 said 1, all other communications

truthful
3 Validity ⇒ v2, v3 must decide 0

Scenario 3: v1, v3 good with values 1, 0 (resp.), v2 faulty with value 0
1 Round 1: v2 tells v1 its value is 1, tells v3 its value is 0
2 Round 2: all truthful

Scenarios 1 and 3 identical to v1, so it must return 1 (validity)

Scenarios 2 and 3 identical to v3, so it must return 0 (validity)

Contradicts agreement in Scenario 3!
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Byzantine Consensus - Algorithm

Assumption:2 n > 3f (number of bad vertices < third total vertices)

How to perfectly gossip?

Data structure: Exponential Information Gathering (EIG) tree

Depth: f + 1 (so f + 2 node levels)
Each tree node at level k labeled by string i1i2 · · · ik (ia 6= ib)

2It turns out that n ≤ 3f ⇒ no algorithm can reach consensus!
51 / 77



Byzantine Consensus - Algorithm

Assumption:2 n > 3f (number of bad vertices < third total vertices)

How to perfectly gossip?

Data structure: Exponential Information Gathering (EIG) tree

Depth: f + 1 (so f + 2 node levels)
Each tree node at level k labeled by string i1i2 · · · ik (ia 6= ib)

2It turns out that n ≤ 3f ⇒ no algorithm can reach consensus!
52 / 77



Byzantine Consensus - Algorithm

Assumption:2 n > 3f (number of bad vertices < third total vertices)

How to perfectly gossip?

Data structure: Exponential Information Gathering (EIG) tree

Depth: f + 1 (so f + 2 node levels)
Each tree node at level k labeled by string i1i2 · · · ik (ia 6= ib)

2It turns out that n ≤ 3f ⇒ no algorithm can reach consensus!
53 / 77

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Byzantine Consensus - EIG Tree
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Byzantine Consensus - EIG Algorithm

1 Each vertex has own EIG tree Tn,f , with root labeled by its own value

2 Relay messages for f + 1 rounds

At round r , each vertex sends the values of level r of its EIG tree
Each vertex decorates values of its (r + 1)th level with values from
messages

3 After f + 1 rounds, redecorate tree bottom-up, taking strict majority
of children (otherwise set value of tree node to ⊥)
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3 After f + 1 rounds, redecorate tree bottom-up, taking strict majority
of children (otherwise set value of tree node to ⊥)
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EIG Algorithm - Example
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EIG Algorithm - Analysis

Lemma (Consistency of Non-Faulty Messages)

If i , j , k are non-faulty, then Ti (x) = Tj(x) whenever label x ends with k .
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EIG Algorithm - Analysis

Lemma (Consistency of Upwards Relabeling)

If label x ends with non-faulty process, then for any two non-faulty
processes i , j the new values of Ti (x) and Tj(x) are the same.

Base case: if x is the label of leaf, previous lemma handles it.

Inductive step: |x | = k ≤ f

By induction, if ` is a non-faulty element the new value of Ti (x ◦ `) is
the same for any i ∈ [n].

So label x has same labeled children across trees
Number of children of x :

= n − k > 3f − f = 2f

At most f are faulty. By taking majority, we get that new values
Ti (x) = Tj(x)
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EIG Algorithm - Analysis

So far we have managed to prove:
1 Termination: after f + 1 rounds, all of them will decide.

every label x which has no faulty process is able to update its value

2 Validity: if all nodes start with b, then each label x with no faulty
process will be updated to b

proof analogous to the proof of previous lemma
just note that all values will be b, as it is value being propagated by
non-faulty nodes

3 Agreement: all nodes must agree on same value

By first lemma, all values in the leaves x are consistent across
processes so long as x ends on a non-faulty process
By second lemma, majority will cause all values in nodes from level r
ending in non-faulty nodes to be the same across processes
Induction and n > 3f ensures that labels in level 1 will look the same
on non-faulty nodes ⇒ agreement
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Conclusion

Today we learned about distributed computation

Widely used in practice

Cryptocurrencies - all of them need to solve Byzantine Agreement!

Happening at UW: Sergey Gorbunov (involved with Algorand)

Other peer-to-peer systems
Multi-core programming

Happening at UW: Trevor Brown (teaching advanced class next term)

Biology (social insect colony algorithms)
many more...
It is cool

Learned an (inefficient) algorithm for Byzantine Agreement (check
out the more efficient one in [Attiya and Welch 2004])
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