Lecture 20: Online Algorithms \& k-server

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

November 23, 2020

Overview

- Administrivia
- Online Algorithms: Randomized Lower Bounds
- k-server on a line
- Conclusion
- Acknowledgements

Rate this course!

Please log in to

> https://evaluate.uwaterloo.ca/
from November 24th until December 7th and provide us with your evaluation and feedback on the course!

- This would really help me figuring out what worked and what didn't for the course
- And whether I should put memes or gifs into my slides...
- Teaching this course is also a learning experience for me:)

Competitive Analysis

- Input is given as a sequence $s=s_{1}, s_{2}, \ldots, s_{n}$ of events.

Competitive Analysis

- Input is given as a sequence $s=s_{1}, s_{2}, \ldots, s_{n}$ of events.
- Let $C_{\text {opt }}(s)$ be the minimum cost that any algorithm (even one that could look at the entire input beforehand) could achieve for input s

Competitive Analysis

- Input is given as a sequence $s=s_{1}, s_{2}, \ldots, s_{n}$ of events.
- Let $C_{\text {opt }}(s)$ be the minimum cost that any algorithm (even one that could look at the entire input beforehand) could achieve for input s
- Let $C_{A}(s)$ be the cost of your online algorithm on input s

Competitive Analysis

- Input is given as a sequence $s=s_{1}, s_{2}, \ldots, s_{n}$ of events.
- Let $C_{\text {opt }}(s)$ be the minimum cost that any algorithm (even one that could look at the entire input beforehand) could achieve for input s
- Let $C_{A}(s)$ be the cost of your online algorithm on input s

Definition (Deterministic Competitive Ratio)

A deterministic online algorithm A has competitive ratio k (aka k-competitive) if for all inputs s, we have:

$$
C_{A}(s) \leq k \cdot C_{o p t}(s)+O(1)
$$

Competitive Analysis

- Input is given as a sequence $s=s_{1}, s_{2}, \ldots, s_{n}$ of events.
- Let $C_{\text {opt }}(s)$ be the minimum cost that any algorithm (even one that could look at the entire input beforehand) could achieve for input s
- Let $C_{A}(s)$ be the cost of your online algorithm on input s

Definition (Deterministic Competitive Ratio)

A deterministic online algorithm A has competitive ratio k (aka k-competitive) if for all inputs s, we have:

$$
C_{A}(s) \leq k \cdot C_{o p t}(s)+O(1)
$$

Definition (Randomized Competitive Ratio)

A randomized online algorithm A has competitive ratio k (aka k-competitive) if for all inputs s, we have:

$$
\begin{aligned}
& \text { nuts s, we have: } \\
& \underset{\sim}{\rightarrow} \text { expectation over condom bits used } \\
& \mathbb{E}\left[C_{A}(s)\right] \leq k \cdot C_{\text {opt }}(s) \text {. by } A
\end{aligned}
$$

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory
- When we get a request, we first look up in cache, then L1, then L2, then main memory

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory
- When we get a request, we first look up in cache, then L1, then L2, then main memory
- If request is in cache, we have a hit \leftrightarrow request takes negligible time

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory
- When we get a request, we first look up in cache, then L1, then L2, then main memory
- If request is in cache, we have a hit \leftrightarrow request takes negligible time
- Otherwise we have miss \leftrightarrow need to fetch data from slower memory
- Have to also copy new data \& location to cache

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory
- When we get a request, we first look up in cache, then L1, then L2, then main memory
- If request is in cache, we have a hit \leftrightarrow request takes negligible time
- Otherwise we have miss \leftrightarrow need to fetch data from slower memory
- Have to also copy new data \& location to cache
- If cache full, must delete an old entry before copying new data

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory
- When we get a request, we first look up in cache, then L1, then L2, then main memory
- If request is in cache, we have a hit \leftrightarrow request takes negligible time
- Otherwise we have miss \leftrightarrow need to fetch data from slower memory
- Have to also copy new data \& location to cache
- If cache full, must delete an old entry before copying new data
- Main question: which entry of the cache to delete?
evict

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory
- When we get a request, we first look up in cache, then L1, then L2, then main memory
- If request is in cache, we have a hit \leftrightarrow request takes negligible time
- Otherwise we have miss \leftrightarrow need to fetch data from slower memory
- Have to also copy new data \& location to cache
- If cache full, must delete an old entry before copying new data
- Main question: which entry of the cache to delete?
- Cost function: number of cache misses

Online Paging Problem

- Computer memory is hierarchical: cache $\rightarrow \mathrm{L} 1 \rightarrow \mathrm{~L} 2 \rightarrow$ main memory
- Memory can be modelled in the following way:
- Each layer of memory is an array with certain number of pages (hence the name)
- Page stores the content of the item and its location in main memory
- When we get a request, we first look up in cache, then L1, then L2, then main memory
- If request is in cache, we have a hit \leftrightarrow request takes negligible time
- Otherwise we have miss \leftrightarrow need to fetch data from slower memory
- Have to also copy new data \& location to cache
- If cache full, must delete an old entry before copying new data
- Main question: which entry of the cache to delete?
- Cost function: number of cache misses
- Simplification: assume we only have cache and main memory.

Lower Bound - Deterministic Paging Algorithms

Theorem
Any deterministic algorithm for paging with k pages is at least k-competitive!

- Proof by trolling. ${ }^{1}$ Let's use $k+1$ pages, and let A be our paging algorithm.
${ }^{1}$ Common lower bound technique for online algorithms, also commonly used online as well :)

Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least k-competitive!

- Proof by trolling. ${ }^{1}$ Let's use $k+1$ pages, and let A be our paging algorithm. \rightarrow adaptive adversay
- Input sequence: at each step, request page that A doesn't have.
${ }^{1}$ Common lower bound technique for online algorithms, also commonly used online as well :)

Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least k-competitive!

- Proof by trolling. ${ }^{1}$ Let's use $k+1$ pages, and let A be our paging algorithm.
- Input sequence: at each step, request page that A doesn't have.
- A faults every single time.
${ }^{1}$ Common lower bound technique for online algorithms, also commonly used online as well :)

Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least k-competitive!

- Proof by trolling. ${ }^{1}$ Let's use $k+1$ pages, and let A be our paging algorithm.
- Input sequence: at each step, request page that A doesn't have.
- A faults every single time.
- Offline Algorithm: on cache miss, delete page which is requested furthest in the future.

[^0]
Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least k-competitive!

- Proof by trolling. ${ }^{1}$ Let's use $k+1$ pages, and let A be our paging algorithm.
- Input sequence: at each step, request page that A doesn't have.
- A faults every single time.
- Offline Algorithm: on cache miss, delete page which is requested furthest in the future.
- When offline algorithm deletes a page, it's next delete happens after at least k steps.

[^1]
Randomized Online Algorithms \& Game Theory

- Think of online algorithms as being a zero-sum, two-player game between you (the algorithm) and an adversary (the entity choosing the sequence of requests).

Randomized Online Algorithms \& Game Theory

- Think of online algorithms as being a zero-sum, two-player game between you (the algorithm) and an adversary (the entity choosing the sequence of requests).
- Each of your strategies is a different deterministic algorithm

Randomized Online Algorithms \& Game Theory

- Think of online algorithms as being a zero-sum, two-player game between you (the algorithm) and an adversary (the entity choosing the sequence of requests).
- Each of your strategies is a different deterministic algorithm
- Each of adversary's strategies is a sequence of requests

Randomized Online Algorithms \& Game Theory

- Think of online algorithms as being a zero-sum, two-player game between you (the algorithm) and an adversary (the entity choosing the sequence of requests).
- Each of your strategies is a different deterministic algorithm
- Each of adversary's strategies is a sequence of requests
- Entry (A, s) of payoff matrix: $C_{A}(s)$
set of requests
(deterministic)

Randomized Online Algorithms \& Game Theory

- Think of online algorithms as being a zero-sum, two-player game between you (the algorithm) and an adversary (the entity choosing the sequence of requests).
- Each of your strategies is a different deterministic algorithm
- Each of adversary's strategies is a sequence of requests
- Entry (A, s) of payoff matrix: $C_{A}(s)$
- Algorithm wants to minimize cost
- Adversary wants to maximize it

Randomized Online Algorithms \& Game Theory

- Think of online algorithms as being a zero-sum, two-player game between you (the algorithm) and an adversary (the entity choosing the sequence of requests).
- Each of your strategies is a different deterministic algorithm
- Each of adversary's strategies is a sequence of requests
- Entry (A, s) of payoff matrix: $C_{A}(s)$

$$
\rightarrow A(r, R)
$$

- Algorithm wants to minimize cost
- Adversary wants to maximize it deterministic $\binom{$ fixed $A}{$ and $R}$
- Randomized algorithm \Leftrightarrow mixed strategies!

Randomized Online Algorithms \& Game Theory

- Think of online algorithms as being a zero-sum, two-player game between you (the algorithm) and an adversary (the entity choosing the sequence of requests).
- Each of your strategies is a different deterministic algorithm
- Each of adversary's strategies is a sequence of requests
- Entry (A, s) of payoff matrix: $C_{A}(s)$
- Algorithm wants to minimize cost
- Adversary wants to maximize it
- Randomized algorithm \Leftrightarrow mixed strategies!
- As we showed in lecture 12, if one player is using mixed strategy, the other player has as best response a pure strategy

Randomized Online Algorithms \& Game Theory

- Think of online algorithms as being a zero-sum, two-player game between you (the algorithm) and an adversary (the entity choosing the sequence of requests).
- Each of your strategies is a different deterministic algorithm
- Each of adversary's strategies is a sequence of requests
- Entry (A, s) of payoff matrix: $C_{A}(s)$
- Algorithm wants to minimize cost
- Adversary wants to maximize it
- Randomized algorithm \Leftrightarrow mixed strategies!
- As we showed in lecture 12, if one player is using mixed strategy, the other player has as best response a pure strategy

Theorem (Yao's minimax principle)

If for some input distribution, no deterministic algorithm is k-competitive, then no randomized algorithm is k-competitive!

Lower Bound - Randomized Paging Algorithms

(1) Setting: $k+1$ distinct pages, cache of size k, n requests

[^2]Lower Bound - Randomized Paging Algorithms
(1) Setting: $k+1$ distinct pages, cache of size k, n requests
(2) Distribution of inputs: uniform distribution

$$
\begin{aligned}
& C s=\left(s_{1}, s_{2}, \ldots, s_{n}\right) \\
& \Lambda_{1} \in\{1,2, \ldots, h, h+1\}
\end{aligned}
$$

${ }^{2}$ Here expectation is over the choice of input.

Lower Bound - Randomized Paging Algorithms

(1) Setting: $k+1$ distinct pages, cache of size k, n requests
(2) Distribution of inputs: uniform distribution
(3) Equivalently: each page has probability $\frac{1}{k+1}$ of being chosen

[^3]
Lower Bound - Randomized Paging Algorithms

(1) Setting: $k+1$ distinct pages, cache of size k, n requests
(2) Distribution of inputs: uniform distribution
(3) Equivalently: each page has probability $\frac{1}{k+1}$ of being chosen
(9) Online Algorithm

- No matter what our (fixed) deterministic algorithm A does, only k pages in cache, with probability $\frac{1}{k+1}$ requested page not in memory

[^4]
Lower Bound - Randomized Paging Algorithms

(1) Setting: $k+1$ distinct pages, cache of size k, n requests
(2) Distribution of inputs: uniform distribution
(3) Equivalently: each page has probability $\frac{1}{k+1}$ of being chosen
(9) Online Algorithm

- No matter what our (fixed) deterministic algorithm A does, only k pages in cache, with probability $\frac{1}{k+1}$ requested page not in memory
- Expected number of requests per fault: $k+1$ (which is $O(k)$)

[^5]
Lower Bound - Randomized Paging Algorithms

(1) Setting: $k+1$ distinct pages, cache of size k, n requests
(2) Distribution of inputs: uniform distribution
(3) Equivalently: each page has probability $\frac{1}{k+1}$ of being chosen
(9) Online Algorithm

- No matter what our (fixed) deterministic algorithm A does, only k pages in cache, with probability $\frac{1}{k+1}$ requested page not in memory
- Expected number of requests per fault: $k+1$ (which is $O(k)$)
(5) Offline Algorithm (OPT)
- OPT can see the whole input beforehand (still use Farthest in Future)

[^6]
Lower Bound - Randomized Paging Algorithms

(1) Setting: $k+1$ distinct pages, cache of size k, n requests
(2) Distribution of inputs: uniform distribution
(3) Equivalently: each page has probability $\frac{1}{k+1}$ of being chosen
(9) Online Algorithm

- No matter what our (fixed) deterministic algorithm A does, only k pages in cache, with probability $\frac{1}{k+1}$ requested page not in memory
- Expected number of requests per fault: $k+1$ (which is $O(k)$)
(5) Offline Algorithm (OPT)
- OPT can see the whole input beforehand (still use Farthest in Future)
- Farthest in Future faults only after $k+1$ distinct pages seen

[^7]
Lower Bound - Randomized Paging Algorithms

(1) Setting: $k+1$ distinct pages, cache of size k, n requests
(2) Distribution of inputs: uniform distribution
(3) Equivalently: each page has probability $\frac{1}{k+1}$ of being chosen
(9) Online Algorithm

- No matter what our (fixed) deterministic algorithm A does, only k pages in cache, with probability $\frac{1}{k+1}$ requested page not in memory
- Expected number of requests per fault: $k+1$ (which is $O(k)$)
(3) Offline Algorithm (OPT)
- OPT can see the whole input beforehand (still use Farthest in Future)
- Farthest in Future faults only after $k+1$ distinct pages seen
- Expected number of requests per fault: ${ }^{2} \Theta(k \log k) \quad$ (see reference)

${ }^{2}$ Here expectation is over the choice of input.

Lower Bound - Randomized Paging Algorithms $\frac{n}{k} \leq \log k \cdot \frac{n}{\log n}$

(0) Setting: $k+1$ distinct pages, cache of size k, n requests
(2) Distribution of inputs: uniform distribution

- Equivalently: each page has probability $\frac{1}{k+1}$ of being chosen
- Online Algorithm
- No matter what our (fixed) deterministic algorithm A does, only k pages in cache, with probability $\frac{1}{k+1}$ requested page not in memory
- Expected number of requests per fault: $k+1$ (which is $O(k)$)
(6) Offline Algorithm (OPT)
- OPT can see the whole input beforehand (still use Farthest in Future)
- Farthest in Future faults only after $k+1$ distinct pages seen
- Expected number of requests per fault: ${ }^{2} \Theta(k \log k) \quad$ (see reference)

Theorem

Any randomized algorithm for paging with k pages is $\Omega(\log k)$-competitive!

[^8]- Administrivia
- Online Algorithms: Randomized Lower Bounds
- k-server on a line
- Conclusion
- Acknowledgements

k-server Problem

- Setup: we are given a metric space (X, d).

k-server Problem

- Setup: we are given a metric space (X, d).
- Online algorithm manages k mobile servers, each server is located at a point in X

k-server Problem

- Setup: we are given a metric space (X, d).
- Online algorithm manages k mobile servers, each server is located at a point in X
- A request specifies a point in X, to which a server must be moved, unless we already have a server there.

k-server Problem

- Setup: we are given a metric space (X, d).
- Online algorithm manages k mobile servers, each server is located at a point in X
- A request specifies a point in X, to which a server must be moved, unless we already have a server there.
- Main question: which server to move?

k-server Problem

- Setup: we are given a metric space (X, d).
- Online algorithm manages k mobile servers, each server is located at a point in X
- A request specifies a point in X, to which a server must be moved, unless we already have a server there.
- Main question: which server to move?
- Cost function: total distance travelled

k-server Problem

- Setup: we are given a metric space (X, d).
- Online algorithm manages k mobile servers, each server is located at a point in X
- A request specifies a point in X, to which a server must be moved, unless we already have a server there.
- Main question: which server to move?
- Cost function: total distance travelled
- Goal: minimize distance travelled
k-server Problem
Paging problem cache site 2
- Setup: we are given a metric space (X, d).
- Online algorithm manages k mobile servers, each server is located at a point in X
- A request specifies a point in X, to which a server must be moved, unless we already have a server there.
- Main question: which server to move?
- Cost function: total distance travelled
- Goal: minimize distance travelled
- Paging is special case of this problem (points of simplex)

2-server problem (size of cache)
3 equidistant requests

k-server Problem

- Setup: we are given a metric space (X, d).
- Online algorithm manages k mobile servers, each server is located at a point in X
- A request specifies a point in X, to which a server must be moved, unless we already have a server there.
- Main question: which server to move?
- Cost function: total distance travelled
- Goal: minimize distance travelled
- Paging is special case of this problem (points of simplex)
- Today's Simplification: assume X is a line. Think $X=\mathbb{R}$

Attempt 1: Greedy

(1) Strategy: just move the server which is closest to the request to it

Attempt 1: Greedy

(1) Strategy: just move the server which is closest to the request to it
(2) Not competitive.

Attempt 1: Greedy

(1) Strategy: just move the server which is closest to the request to it
(2) Not competitive.
(3) Scenario: two servers A and B, initially located at 0 and 1 respectively

Attempt 1: Greedy

(1) Strategy: just move the server which is closest to the request to it
(2) Not competitive.
(3) Scenario: two servers A and B, initially located at 0 and 1 respectively
(9) Requests: sequence given by $s_{2 k-1}=3 / 4, s_{2 k}=5 / 4$, for $k \geq 1$

$$
s_{1}=\frac{3}{4} \quad s_{2}=\frac{5}{4} \quad s_{3}=\frac{3}{4} \quad s_{4}=\frac{5}{4}
$$

Attempt 1: Greedy

(1) Strategy: just move the server which is closest to the request to it
(2) Not competitive.
(3) Scenario: two servers A and B, initially located at 0 and 1 respectively
(9) Requests: sequence given by $s_{2 k-1}=3 / 4, s_{2 k}=5 / 4$, for $k \geq 1$
(5) Only server B will move

Attempt 1: Greedy

(1) Strategy: just move the server which is closest to the request to it
(2) Not competitive.
(0) Scenario: two servers A and B, initially located at 0 and 1 respectively

- Requests: sequence given by $s_{2 k-1}=3 / 4, s_{2 k}=5 / 4$, for $k \geq 1$
- Only server B will move
- Best strategy: put A on $3 / 4, B$ on $5 / 4$

$$
\frac{3}{4}
$$

$\frac{5}{4}$

$$
\left.\begin{array}{l}
\operatorname{cost}_{\text {OPT }}(s)=1 \\
\operatorname{cost}_{\text {Gneory }}(s)=\Omega(n)
\end{array}\right\}
$$

Attempt 2: Double Coverage (DC)

- If request falls between two servers, move both towards request at same rate until one reaches it
(simplification: never query exactly at hell)

Attempt 2: Double Coverage (DC)

- If request falls between two servers, move both towards request at same rate until one reaches it
- Else, just move the closest server to the request.

Attempt 2: Double Coverage (DC)

- If request falls between two servers, move both towards request at same rate until one reaches it
- Else, just move the closest server to the request.

Theorem

For k servers, Double Coverage is k-competitive.

Attempt 2: Double Coverage (DC)

- If request falls between two servers, move both towards request at same rate until one reaches it
- Else, just move the closest server to the request.

Theorem

For k servers, Double Coverage is k-competitive.
(1) How to model OPT (offline algorithm)?

Attempt 2: Double Coverage (DC)

- If request falls between two servers, move both towards request at same rate until one reaches it
- Else, just move the closest server to the request.

Theorem

For k servers, Double Coverage is k-competitive.
(1) How to model OPT (offline algorithm)?
(2) Will assume that OPT algorithm moves exactly one server at a time.

Attempt 2: Double Coverage (DC)

- If request falls between two servers, move both towards request at same rate until one reaches it
- Else, just move the closest server to the request.

Theorem

For k servers, Double Coverage is k-competitive.
(1) How to model OPT (offline algorithm)?
(2) Will assume that OPT algorithm moves exactly one server at a time.
(3) This is w.l.o.g., because can convert any offline strategy into a strategy that moves one server per request, by deferring moves to the future

Practice problem: prove thil!

Attempt 2: Double Coverage (DC)

- If request falls between two servers, move both towards request at same rate until one reaches it
- Else, just move the closest server to the request.

Theorem

For k servers, Double Coverage is k-competitive.
(1) How to model OPT (offline algorithm)?
(2) Will assume that OPT algorithm moves exactly one server at a time.
(3) This is w.l.o.g., because can convert any offline strategy into a strategy that moves one server per request, by deferring moves to the future
(9) How to analyze competitiveness?

Attempt 2: Double Coverage (DC)

- If request falls between two servers, move both towards request at same rate until one reaches it
- Else, just move the closest server to the request.

Theorem

For k servers, Double Coverage is k-competitive.
(1) How to model OPT (offline algorithm)?
(2) Will assume that OPT algorithm moves exactly one server at a time.
(3) This is w.l.o.g., because can convert any offline strategy into a strategy that moves one server per request, by deferring moves to the future
(9) How to analyze competitiveness?
(6) Potential Function:

- match each server from DC to a server of OPT
- track changes as requests come

Potential Method - Recap

- In potential method, we have a potential function Φ_{t} for each time t

Potential Method - Recap

- In potential method, we have a potential function Φ_{t} for each time t
- Real cost of operation: c_{t}

Potential Method - Recap

- In potential method, we have a potential function Φ_{t} for each time t
- Real cost of operation: c_{t}
- Ammortized cost at time t :

$$
\gamma_{t}=c_{t}+\frac{\Phi_{t}-\Phi_{t-1}}{\Delta 1}
$$

Potential Method - Recap

- In potential method, we have a potential function Φ_{t} for each time t
- Real cost of operation: c_{t}
- Ammortized cost at time t :

$$
\gamma_{t}=c_{t}+\Phi_{t}-\Phi_{t-1}
$$

- Total ammortized cost:

$$
\begin{aligned}
& \sum_{t=1}^{n} \gamma_{t}=\sum_{t=1}^{n} c_{t}+\Phi_{t}-\Phi_{t-1} \\
&=\Phi_{n}-\Phi_{0}+\sum_{t=1}^{n} c_{t} \\
& \text { find intlial actual } \\
& \text { total } \\
& \text { cost }
\end{aligned}
$$

Potential Method - Recap

- In potential method, we have a potential function Φ_{t} for each time t
- Real cost of operation: c_{t}
- Ammortized cost at time t :

$$
\gamma_{t}=c_{t}+\Phi_{t}-\Phi_{t-1}
$$

- Total ammortized cost:

$$
\begin{aligned}
\sum_{t=1}^{n} \gamma_{t} & =\sum_{t=1}^{n} c_{t}+\Phi_{t}-\Phi_{t-1} \\
& =\Phi_{n}-\Phi_{0}+\sum_{t=1}^{n} c_{t} \geq-\Phi_{0}+\sum c_{t}
\end{aligned}
$$

- If potential function is always non-negative

$$
\begin{aligned}
& C_{A}^{(n)} c+{ }_{n} \cdot C_{\text {opp }}(1) \pm t \\
& \sum_{t=1}^{n} c_{t} \leq \underbrace{\sum_{t=1}^{n} \gamma_{t}}_{\text {const. } \Phi_{0}} \underbrace{n}_{\text {anvint }} \text {, } \sum_{\text {cod }}^{n} \text { coot }
\end{aligned}
$$

DC Analysis - Potential Function

Main idea: have the ammortized cost per request be (a multiple of) the cost of OPT, while the actual cost is the cost of DC.

DC Analysis - Potential Function

Main idea: have the ammortized cost per request be (a multiple of) the cost of OPT, while the actual cost is the cost of DC.

- Consider the state of DC and of OPT at time t

DC Analysis - Potential Function

Main idea: have the ammortized cost per request be (a multiple of) the cost of OPT, while the actual cost is the cost of DC.

- Consider the state of DC and of OPT at time t
- Let M_{t} be cost of minimum cost matching between DC's servers and OPT servers
- Let S_{t} be sum of pairwise distances of DC's servers

$$
\begin{aligned}
& 01 / 2,3 / 2 \\
& S_{0}=1+2+1=4 \\
& M_{0}=3 / 2
\end{aligned}
$$

DC Analysis - Potential Function

Main idea: have the ammortized cost per request be (a multiple of) the cost of OPT, while the actual cost is the cost of DC.

- Consider the state of DC and of OPT at time t
- Let M_{t} be cost of minimum cost matching between DC's servers and OPT servers
- Let S_{t} be sum of pairwise distances of DC's servers
- Our potential function will be

$$
\Phi_{t}=k \cdot M_{t}+S_{t}
$$

DC Analysis - Potential Function

Main idea: have the ammortized cost per request be (a multiple of) the cost of OPT, while the actual cost is the cost of DC.

- Consider the state of DC and of OPT at time t
- Let M_{t} be cost of minimum cost matching between DC's servers and OPT servers
- Let S_{t} be sum of pairwise distances of DC's servers
- Our potential function will be

$$
\Phi_{t}=k \cdot M_{t}+S_{t}
$$

- Note that $\Phi_{t} \geq 0$ at all times

DC Analysis - Potential Function

Main idea: have the ammortized cost per request be (a multiple of) the cost of OPT, while the actual cost is the cost of DC.

- Consider the state of DC and of OPT at time t
- Let M_{t} be cost of minimum cost matching between DC's servers and OPT servers
- Let S_{t} be sum of pairwise distances of DC's servers
- Our potential function will be

$$
\Phi_{t}=k \cdot M_{t}+S_{t}
$$

- Note that $\Phi_{t} \geq 0$ at all times
- Use Amortized Analysis to compute amortized cost of DC

DC Analysis - Potential Function

Main idea: have the ammortized cost per request be (a multiple of) the cost of OPT, while the actual cost is the cost of DC.

- Consider the state of DC and of OPT at time t
- Let M_{t} be cost of minimum cost matching between DC's servers and OPT servers
- Let S_{t} be sum of pairwise distances of DC's servers
- Our potential function will be

$$
\Phi_{t}=k \cdot M_{t}+S_{t}
$$

- Note that $\Phi_{t} \geq 0$ at all times
- Use Amortized Analysis to compute amortized cost of DC
- Break requests into two parts:
- First account for OPT move
- Then account for DC move

DC Analysis - Potential Function
(1) OPT moves

DC Analysis - Potential Function
OPT moves

- If OPT moves a distance d, the distance from the moved server to the matched DC's server increases by d

$$
\begin{aligned}
& o\left(\left(A_{1}^{(+)}, B_{1}^{(1)}\right)=1\right. \\
& o l\left(A_{1}^{(+1)}, B_{1}^{(2+1)}\right)=2
\end{aligned}
$$

DC Analysis - Potential Function
(1) OPT moves If OPT moves a distance d, the distance from the moved server to the matched DC's server increases by d - $0 M_{t+1} \leq M_{t}+d$
have matching $D \subset$ OPT of $\cos t M_{t}+d$

$$
\Rightarrow M_{t+1} \leq M_{t}+d
$$

DC Analysis - Potential Function
(1) OPT moves

- If OPT moves a distance d, the distance from the moved server to the matched DC's server increases by d
\longrightarrow - So $M_{t+1} \leq M_{t}+d$
- Thus potential increased (so far) by $\Phi_{t+1}-\phi_{t} \leq k \cdot d$

$$
\begin{aligned}
& \underbrace{\Phi_{t-1}}_{t+1} \Phi_{t} \\
& k \cdot \mu_{t+1}+S_{t+1}-k \cdot \mu_{t}-S_{t} \\
& k \underbrace{\left(\mu_{t+1}-\mu_{t}\right)}_{\leq d} \leq k \cdot d
\end{aligned}
$$

$$
k x \text { distonex }
$$

the OPT truvele.ed

DC Analysis - Potential Function

(1) OPT moves

- If OPT moves a distance d, the distance from the moved server to the matched DC's server increases by d
- So $M_{t+1} \leq M_{t}+d$
- Thus potential increased (so far) by $\Phi_{t+1}-\Phi_{t} \leq k \cdot d$
- Real cost incurred by DC: $c_{t+1}=0$

DC Analysis - Potential Function

(1) OPT moves

- If OPT moves a distance d, the distance from the moved server to the matched DC's server increases by d
- So $M_{t+1} \leq M_{t}+d$
- Thus potential increased (so far) by $\Phi_{t+1}-\Phi_{t} \leq k \cdot d$
- Real cost incurred by DC: $c_{t+1}=0$
- Ammortized cost of DC: $\gamma_{t+1} \leq k \cdot d$

DC Analysis - Potential Function

(1) OPT moves

- If OPT moves a distance d, the distance from the moved server to the matched DC's server increases by d
- So $M_{t+1} \leq M_{t}+d$
- Thus potential increased (so far) by $\Phi_{t+1}-\Phi_{t} \leq k \cdot d$
- Real cost incurred by DC: $c_{t+1}=0$
- Ammortized cost of DC: $\gamma_{t+1} \leq k \cdot d$
(2) DC moves

DC Analysis - Potential Function

(2) DC moves
(1) The request falls between two servers A and B. Say that B is taken to the location requested.

DC Analysis - Potential Function

(2) DC moves
(1) The request falls between two servers A and B. Say that B is taken to the location requested.

- Both servers move a distance δ.

DC Analysis - Potential Function

$$
\begin{aligned}
d\left(A^{\prime}, C\right)+d\left(B^{\prime}, C\right) & =d(A, C)-\delta+d(B, C)+\delta \\
& =d(A, C)+d(B, C)
\end{aligned}
$$

- DC moves
- The request falls between two servers A and B. Say that B is taken to the location requested.
- Both servers move a distance δ.
- Thus pairwise distances decrease by 2δ
(because they are in a line)

$$
\begin{aligned}
d\left(A^{\prime}, B^{\prime}\right) & =d(A, B)-2 \delta \\
S_{t+1} & =S_{t}-2 \delta
\end{aligned}
$$

DC Analysis - Potential Function

(2) DC moves
(1) The request falls between two servers A and B. Say that B is taken to the location requested.

- Both servers move a distance δ.
- Thus pairwise distances decrease by 2δ (because they are in a line)
- Changes in other pairwise distances cancel out
(because line)

DC Analysis - Potential Function

(2) DC moves
(1) The request falls between two servers A and B. Say that B is taken to the location requested.

- Both servers move a distance δ.
- Thus pairwise distances decrease by $2 \delta \quad$ (because they are in a line)
- Changes in other pairwise distances cancel out
(because line)
- Thus S decreases by 2δ

DC Analysis - Potential Function

(2) DC moves
(1) The request falls between two servers A and B. Say that B is taken to the location requested.

- Both servers move a distance δ.
- Thus pairwise distances decrease by $2 \delta \quad$ (because they are in a line)
- Changes in other pairwise distances cancel out (because line)
- Thus S decreases by 2δ
- B has match at destination
(problem constraint)

DC Analysis - Potential Function

(2) DC moves
(1) The request falls between two servers A and B. Say that B is taken to the location requested.

- Both servers move a distance δ.
- Thus pairwise distances decrease by $2 \delta \quad$ (because they are in a line)
- Changes in other pairwise distances cancel out (because line)
- Thus S decreases by 2δ
- B has match at destination
(problem constraint)
- A may be further from its match, but balanced by B 's move

DC Analysis - Potential Function

if (A, \hat{A}) matched in $\left.\mu_{t}\right\} \begin{aligned} & d\left(A^{\prime}, \hat{A}\right)=d(A, \hat{A})+\delta \\ & d\left(B^{\prime}, \hat{B}\right)=d(B, \hat{B})-\delta\end{aligned}$
DC moves
(1) The request falls between two servers A and B. Say that B is taken to the location requested.

- Both servers move a distance δ.
- Thus pairwise distances decrease by 2δ (because they are in a line)
- Changes in other pairwise distances cancel out
(because line)
- Thus S decreases by 2δ
- B has match at destination
- A may be further from its match, but balanced by B 's move
- $M_{t+1} \leq M_{t}$
here ans then matching of cost M_{t}

$$
M_{t+1} \leqslant M_{t}
$$

DC Analysis - Potential Function

$$
\begin{gathered}
\mu_{t+1}-\mu_{t} \leq 0 \\
\Phi_{t+1}-\Phi_{t}=k(\underbrace{\left(\mu_{t+1}-\mu_{t}\right.}_{\leq 0})+\underbrace{\left(S_{t+1}-S_{t}\right)}_{=-2 \delta}
\end{gathered}
$$

(2) DC moves
(1) The request falls between two servers A and B. Say that B is taken to the location requested.

- Both servers move a distance δ.
- Thus pairwise distances decrease by $2 \delta \quad$ (because they are in a line)
- Changes in other pairwise distances cancel out
(because line)
- Thus S decreases by 2δ
- B has match at destination
(problem constraint)
- A may be further from its match, but balanced by B 's move
- $M_{t+1} \leq M_{t}$
- Potential Change: $\Phi_{t+1}-\Phi_{t} \leq k \cdot 0-2 \cdot \delta=-2 \cdot \delta$

DC Analysis - Potential Function

(2) DC moves
(1) The request falls between two servers A and B. Say that B is taken to the location requested.

- Both servers move a distance δ.
- Thus pairwise distances decrease by $2 \delta \quad$ (because they are in a line)
- Changes in other pairwise distances cancel out
(because line)
- Thus S decreases by 2δ
- B has match at destination
(problem constraint)
- A may be further from its match, but balanced by B 's move
- $M_{t+1} \leq M_{t}$
- Potential Change: $\Phi_{t+1}-\Phi_{+}<k \cdot 0-2 \cdot \delta=-2 \cdot \delta$
- Real cost incurred by DC: $c_{t+1}=2 \delta$

DC Analysis - Potential Function

(2) DC moves
(1) The request falls between two servers A and B. Say that B is taken to the location requested.

- Both servers move a distance δ.
- Thus pairwise distances decrease by $2 \delta \quad$ (because they are in a line)
- Changes in other pairwise distances cancel out
- Thus S decreases by 2δ
- B has match at destination
(problem constraint)
- A may be further from its match, but balanced by B 's move
- $M_{t+1} \leq M_{t}$
- Potential Change: $\Phi_{t+1}-\Phi_{t}(\leq k \cdot 0-2 \cdot \delta=-2 \cdot \delta$
- Real cost incurred by DC: $c_{t+1}=2 \delta$
- Ammortized cost of DC: $\gamma_{t+1} \leq 2 \delta-2 \delta=0$

DC Analysis - Potential Function

(2) DC moves
(1) The request falls between two servers A and B. Say that B is taken to the location requested.

- Both servers move a distance δ.
- Thus pairwise distances decrease by $2 \delta \quad$ (because they are in a line)
- Changes in other pairwise distances cancel out
- Thus S decreases by 2δ
- B has match at destination
(problem constraint)
- A may be further from its match, but balanced by B 's move
- $M_{t+1} \leq M_{t}$
- Potential Change: $\Phi_{t+1}-\Phi_{t} \leq k \cdot 0-2 \cdot \delta=-2 \cdot \delta$
- Real cost incurred by DC: $c_{t+1}=2 \delta$
- Ammortized cost of DC: $\gamma_{t+1} \leq 2 \delta-2 \delta=0$
(2) Only one server moves (request outside the border)

DC Analysis - Potential Function

(1) OPT moves distance d

- Ammortized cost of DC: $\gamma_{t} \leq k \cdot d$
(2) DC moves
(1) The request falls between two servers.
- Ammortized cost of DC: $\gamma_{t} \leq 0$
(2) Only one server, say A, moves (request outside the border)

DC Analysis - Potential Function

(1) OPT moves distance d

- Ammortized cost of DC: $\gamma_{t} \leq k \cdot d$
(2) DC moves
(1) The request falls between two servers.
- Ammortized cost of DC: $\gamma_{t} \leq 0$
(2) Only one server, say A, moves (request outside the border)
- Suppose A moved δ

DC Analysis - Potential Function

(1) OPT moves distance d

- Ammortized cost of DC: $\gamma_{t} \leq k \cdot d$
(2) DC moves
(1) The request falls between two servers.
- Ammortized cost of DC: $\gamma_{t} \leq 0$
(2) Only one server, say A, moves (request outside the border)
- Suppose A moved δ
- A has its match (from OPT's server) at destination

DC Analysis - Potential Function

(1) OPT moves distance d

- Ammortized cost of DC: $\gamma_{t} \leq k \cdot d$
(2) DC moves
(1) The request falls between two servers.
- Ammortized cost of DC: $\gamma_{t} \leq 0$
(2) Only one server, say A, moves (request outside the border)
- Suppose A moved δ
- A has its match (from OPT's server) at destination
- $M_{t+1} \leq M_{t}-\delta$

DC Analysis - Potential Function

(1) OPT moves distance d

- Ammortized cost of DC: $\gamma_{t} \leq k \cdot d$
(2) DC moves
(1) The request falls between two servers.
- Ammortized cost of DC: $\gamma_{t} \leq 0$
(2) Only one server, say A, moves (request outside the border)
- Suppose A moved δ
- A has its match (from OPT's server) at destination
- $M_{t+1} \leq M_{t}-\delta$
- Each pairwise distance (A, B) (where B is another of DC's servers) increases by δ

DC Analysis - Potential Function

(1) OPT moves distance d

- Ammortized cost of DC: $\gamma_{t} \leq k \cdot d$
(2) DC moves
(1) The request falls between two servers.
- Ammortized cost of DC: $\gamma_{t} \leq 0$
(2) Only one server, say A, moves (request outside the border)
- Suppose A moved δ
- A has its match (from OPT's server) at destination
- $M_{t+1} \leq M_{t}-\delta$
- Each pairwise distance (A, B) (where B is another of DC's servers) increases by δ
- Total distance increased: $S_{t+1}-S_{t} \leq(k-1) \cdot \delta$

DC Analysis - Potential Function

(1) OPT moves distance d

- Ammortized cost of DC: $\gamma_{t} \leq k \cdot d$
(2) DC moves
(1) The request falls between two servers.
- Ammortized cost of DC: $\gamma_{t} \leq 0$
(2) Only one server, say A, moves (request outside the border)
- Suppose A moved δ
- A has its match (from OPT's server) at destination
- $M_{t+1} \leq M_{t}-\delta$
- Each pairwise distance (A, B) (where B is another of DC's servers) increases by δ
- Total distance increased: $S_{t+1}-S_{t} \leq(k-1) \cdot \delta$
- Change in potential:

$$
u\left(M_{t+1}-\mu_{t}\right) \stackrel{-k \cdot \delta+(k-1) \cdot \delta=-\delta}{\zeta}=\left(S_{t+1}-S_{t}\right)
$$

DC Analysis - Potential Function

(1) OPT moves distance d

- Ammortized cost of DC: $\gamma_{t} \leq k \cdot d$
(2) DC moves
(1) The request falls between two servers.
- Ammortized cost of DC: $\gamma_{t} \leq 0$
(2) Only one server, say A, moves (request outside the border)
- Suppose A moved δ
- A has its match (from OPT's server) at destination
- $M_{t+1} \leq M_{t}-\delta$
- Each pairwise distance (A, B) (where B is another of DC's servers) increases by δ
- Total distance increased: $S_{t+1}-S_{t} \leq(k-1) \cdot \delta$
- Change in potential:

$$
\Delta \Phi \leq-k \cdot \delta+(k-1) \cdot \delta=-\delta
$$

- Real cost incurred by DC: $c_{t+1}=\delta$

DC Analysis - Potential Function

(1) OPT moves distance d

- Ammortized cost of DC: $\gamma_{t} \leq k \cdot d$
(2) DC moves
(1) The request falls between two servers.
- Ammortized cost of DC: $\gamma_{t} \leq 0$
(2) Only one server, say A, moves (request outside the border)
- Suppose A moved δ
- A has its match (from OPT's server) at destination
- $M_{t+1} \leq M_{t}-\delta$
- Each pairwise distance (A, B) (where B is another of DC's servers) increases by δ
- Total distance increased: $S_{t+1}-S_{t} \leq(k-1) \cdot \delta$
- Change in potential:

$$
\Delta \Phi \leq-k \cdot \delta+(k-1) \cdot \delta=-\delta
$$

- Real cost incurred by DC: $c_{t+1}=\delta$
- Ammortized cost at this step: $\gamma_{t+1} \leq \delta-\delta=0$

DC Analysis - Wrapping Up

(1) OPT moves distance d

- Ammortized cost of DC: $\gamma_{t} \leq k \cdot d$
(2) DC moves
(1) The request falls between two servers.
- Ammortized cost of DC: $\gamma_{t} \leq 0$
(2) Only one server moves (request outside the border)
- Ammortized cost at this step: $\gamma_{t} \leq \delta-\delta=0$

DC Analysis - Wrapping Up

(1) OPT moves distance d

- Ammortized cost of DC: $\gamma_{t} \leq k \cdot d$
(2) DC moves
(1) The request falls between two servers.
- Ammortized cost of DC: $\gamma_{t} \leq 0$
(2) Only one server moves (request outside the border)
- Ammortized cost at this step: $\gamma_{t}=\leq \delta-\delta=0$
- By our potential function inequality, we have:

DC Analysis - Wrapping Up

(1) OPT moves distance d

- Ammortized cost of DC: $\gamma_{t} \leq k \cdot d$
(2) DC moves
(1) The request falls between two servers.
- Ammortized cost of DC: $\gamma_{t} \leq 0$
(2) Only one server moves (request outside the border)
- Ammortized cost at this step: $\gamma_{t}=\leq \delta-\delta=0$
- By our potential function inequality, we have:

$$
\sum_{t=1}^{n} c_{t} \leq \Phi_{0}+\sum_{t=1}^{n} \gamma_{t}
$$

- Since $\gamma_{t} \leq k \cdot d$ whenever OPT moves d, and $\gamma_{t} \leq 0$ when OPT doesn't move, we have that $\sum_{t} \gamma_{t} \leq k \cdot C_{o p t}$

DC Analysis - Wrapping Up

(1) OPT moves distance d

- Ammortized cost of DC: $\gamma_{t} \leq k \cdot d$
(2) DC moves
(1) The request falls between two servers.
- Ammortized cost of DC: $\gamma_{t} \leq 0$
(2) Only one server moves (request outside the border)
- Ammortized cost at this step: $\gamma_{t}=\leq \delta-\delta=0$
- By our potential function inequality, we have:

$$
\sum_{t=1}^{n} c_{t} \leq \Phi_{0}+\sum_{t=1}^{n} \gamma_{t}
$$

- Since $\gamma_{t} \leq k \cdot d$ whenever OPT moves d, and $\gamma_{t} \leq 0$ when OPT doesn't move, we have that $\sum_{t} \gamma_{t} \leq k \cdot C_{o p t}$
- Since Φ_{0} is the initial state, we can regard it as constant (even 0 , if require that servers start at a certain place)

Conclusion

- Online algorithms are important for many applications, when we need to make decisions right when we receive the information.

Conclusion

- Online algorithms are important for many applications, when we need to make decisions right when we receive the information.
- Applications in
- Stock Market
- Dating
- Skiing
- Caching
- Machine Learning (regret minimization)
- many more...

Conclusion

- Online algorithms are important for many applications, when we need to make decisions right when we receive the information.
- Applications in
- Stock Market
- Dating
- Skiing
- Caching
- Machine Learning (regret minimization)
- many more...
- Competitive Analysis: measures performance of our algorithm against best algorithm that could see into the future

Conclusion

- Online algorithms are important for many applications, when we need to make decisions right when we receive the information.
- Applications in
- Stock Market
- Dating
- Skiing
- Caching
- Machine Learning (regret minimization)
- many more...
- Competitive Analysis: measures performance of our algorithm against best algorithm that could see into the future
- Saw how to use minimax theorem in Yao's principle to prove lower bounds for randomized online algorithms.

Acknowledgement

- Lecture based largely on:
- Lectures 18 \& 20 of Karger's 6.854 Fall 2004 algorithms course
- [Motwani \& Raghavan 2007, Chapter 13]
- See Karger's Lecture 18 notes at http://courses.csail.mit.edu/6.854/06/scribe/s23-onlineRandomLb.pdf
- See Karger's Lecture 20 notes at
http://courses.csail.mit.edu/6.854/06/scribe/s24-paging.pdf

References I

P- Motwani, Rajeev and Raghavan, Prabhakar (2007) Randomized Algorithms

[^0]: ${ }^{1}$ Common lower bound technique for online algorithms, also commonly used online as well :)

[^1]: ${ }^{1}$ Common lower bound technique for online algorithms, also commonly used online as well :)

[^2]: ${ }^{2}$ Here expectation is over the choice of input.

[^3]: ${ }^{2}$ Here expectation is over the choice of input.

[^4]: ${ }^{2}$ Here expectation is over the choice of input.

[^5]: ${ }^{2}$ Here expectation is over the choice of input.

[^6]: ${ }^{2}$ Here expectation is over the choice of input.

[^7]: ${ }^{2}$ Here expectation is over the choice of input.

[^8]: ${ }^{2}$ Here expectation is over the choice of input.

