
Lecture 20: Online Algorithms & k-server

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 23, 2020

1 / 113



Overview

Administrivia

Online Algorithms: Randomized Lower Bounds

k-server on a line

Conclusion

Acknowledgements

2 / 113



Rate this course!

Please log in to

https://evaluate.uwaterloo.ca/

from November 24th until December 7th and provide us with your
evaluation and feedback on the course!

This would really help me figuring out what worked and what didn’t
for the course

And whether I should put memes or gifs into my slides...

Teaching this course is also a learning experience for me :)

3 / 113



Competitive Analysis

Input is given as a sequence s = s1, s2, . . . , sn of events.

Let Copt(s) be the minimum cost that any algorithm (even one that
could look at the entire input beforehand) could achieve for input s

Let CA(s) be the cost of your online algorithm on input s

Definition (Deterministic Competitive Ratio)

A deterministic online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

CA(s) ≤ k · Copt(s) + O(1)

Definition (Randomized Competitive Ratio)

A randomized online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

E[CA(s)] ≤ k · Copt(s).

4 / 113



Competitive Analysis

Input is given as a sequence s = s1, s2, . . . , sn of events.

Let Copt(s) be the minimum cost that any algorithm (even one that
could look at the entire input beforehand) could achieve for input s

Let CA(s) be the cost of your online algorithm on input s

Definition (Deterministic Competitive Ratio)

A deterministic online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

CA(s) ≤ k · Copt(s) + O(1)

Definition (Randomized Competitive Ratio)

A randomized online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

E[CA(s)] ≤ k · Copt(s).

5 / 113



Competitive Analysis

Input is given as a sequence s = s1, s2, . . . , sn of events.

Let Copt(s) be the minimum cost that any algorithm (even one that
could look at the entire input beforehand) could achieve for input s

Let CA(s) be the cost of your online algorithm on input s

Definition (Deterministic Competitive Ratio)

A deterministic online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

CA(s) ≤ k · Copt(s) + O(1)

Definition (Randomized Competitive Ratio)

A randomized online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

E[CA(s)] ≤ k · Copt(s).

6 / 113



Competitive Analysis

Input is given as a sequence s = s1, s2, . . . , sn of events.

Let Copt(s) be the minimum cost that any algorithm (even one that
could look at the entire input beforehand) could achieve for input s

Let CA(s) be the cost of your online algorithm on input s

Definition (Deterministic Competitive Ratio)

A deterministic online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

CA(s) ≤ k · Copt(s) + O(1)

Definition (Randomized Competitive Ratio)

A randomized online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

E[CA(s)] ≤ k · Copt(s).

7 / 113



Competitive Analysis

Input is given as a sequence s = s1, s2, . . . , sn of events.

Let Copt(s) be the minimum cost that any algorithm (even one that
could look at the entire input beforehand) could achieve for input s

Let CA(s) be the cost of your online algorithm on input s

Definition (Deterministic Competitive Ratio)

A deterministic online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

CA(s) ≤ k · Copt(s) + O(1)

Definition (Randomized Competitive Ratio)

A randomized online algorithm A has competitive ratio k (aka
k-competitive) if for all inputs s, we have:

E[CA(s)] ≤ k · Copt(s).

8 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)

Page stores the content of the item and its location in main memory
When we get a request, we first look up in cache, then L1, then L2,
then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
Have to also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

9 / 113



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)

Page stores the content of the item and its location in main memory
When we get a request, we first look up in cache, then L1, then L2,
then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
Have to also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

10 / 113



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory

When we get a request, we first look up in cache, then L1, then L2,
then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
Have to also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

11 / 113



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory
When we get a request, we first look up in cache, then L1, then L2,
then main memory

If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
Have to also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

12 / 113



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory
When we get a request, we first look up in cache, then L1, then L2,
then main memory
If request is in cache, we have a hit ↔ request takes negligible time

Otherwise we have miss ↔ need to fetch data from slower memory
Have to also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

13 / 113



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory
When we get a request, we first look up in cache, then L1, then L2,
then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
Have to also copy new data & location to cache

If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

14 / 113



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory
When we get a request, we first look up in cache, then L1, then L2,
then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
Have to also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

15 / 113



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory
When we get a request, we first look up in cache, then L1, then L2,
then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
Have to also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

16 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory
When we get a request, we first look up in cache, then L1, then L2,
then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
Have to also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

17 / 113



Online Paging Problem

Computer memory is hierarchical: cache → L1 → L2 → main memory

Memory can be modelled in the following way:

Each layer of memory is an array with certain number of pages (hence
the name)
Page stores the content of the item and its location in main memory
When we get a request, we first look up in cache, then L1, then L2,
then main memory
If request is in cache, we have a hit ↔ request takes negligible time
Otherwise we have miss ↔ need to fetch data from slower memory
Have to also copy new data & location to cache
If cache full, must delete an old entry before copying new data

Main question: which entry of the cache to delete?

Cost function: number of cache misses

Simplification: assume we only have cache and main memory.

18 / 113



Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least
k-competitive!

Proof by trolling.1 Let’s use k + 1 pages, and let A be our paging
algorithm.

Input sequence: at each step, request page that A doesn’t have.

A faults every single time.

Offline Algorithm: on cache miss, delete page which is requested
furthest in the future.

When offline algorithm deletes a page, it’s next delete happens after
at least k steps.

1Common lower bound technique for online algorithms, also commonly used online as
well :)

19 / 113



Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least
k-competitive!

Proof by trolling.1 Let’s use k + 1 pages, and let A be our paging
algorithm.

Input sequence: at each step, request page that A doesn’t have.

A faults every single time.

Offline Algorithm: on cache miss, delete page which is requested
furthest in the future.

When offline algorithm deletes a page, it’s next delete happens after
at least k steps.

1Common lower bound technique for online algorithms, also commonly used online as
well :)

20 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least
k-competitive!

Proof by trolling.1 Let’s use k + 1 pages, and let A be our paging
algorithm.

Input sequence: at each step, request page that A doesn’t have.

A faults every single time.

Offline Algorithm: on cache miss, delete page which is requested
furthest in the future.

When offline algorithm deletes a page, it’s next delete happens after
at least k steps.

1Common lower bound technique for online algorithms, also commonly used online as
well :)

21 / 113



Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least
k-competitive!

Proof by trolling.1 Let’s use k + 1 pages, and let A be our paging
algorithm.

Input sequence: at each step, request page that A doesn’t have.

A faults every single time.

Offline Algorithm: on cache miss, delete page which is requested
furthest in the future.

When offline algorithm deletes a page, it’s next delete happens after
at least k steps.

1Common lower bound technique for online algorithms, also commonly used online as
well :)

22 / 113



Lower Bound - Deterministic Paging Algorithms

Theorem

Any deterministic algorithm for paging with k pages is at least
k-competitive!

Proof by trolling.1 Let’s use k + 1 pages, and let A be our paging
algorithm.

Input sequence: at each step, request page that A doesn’t have.

A faults every single time.

Offline Algorithm: on cache miss, delete page which is requested
furthest in the future.

When offline algorithm deletes a page, it’s next delete happens after
at least k steps.

1Common lower bound technique for online algorithms, also commonly used online as
well :)

23 / 113



Randomized Online Algorithms & Game Theory

Think of online algorithms as being a zero-sum, two-player game
between you (the algorithm) and an adversary (the entity choosing
the sequence of requests).

Each of your strategies is a different deterministic algorithm

Each of adversary’s strategies is a sequence of requests

Entry (A, s) of payoff matrix: CA(s)

Algorithm wants to minimize cost

Adversary wants to maximize it

Randomized algorithm ⇔ mixed strategies!

As we showed in lecture 12, if one player is using mixed strategy, the
other player has as best response a pure strategy

Theorem (Yao’s minimax principle)

If for some input distribution, no deterministic algorithm is k-competitive,
then no randomized algorithm is k-competitive!

24 / 113



Randomized Online Algorithms & Game Theory

Think of online algorithms as being a zero-sum, two-player game
between you (the algorithm) and an adversary (the entity choosing
the sequence of requests).

Each of your strategies is a different deterministic algorithm

Each of adversary’s strategies is a sequence of requests

Entry (A, s) of payoff matrix: CA(s)

Algorithm wants to minimize cost

Adversary wants to maximize it

Randomized algorithm ⇔ mixed strategies!

As we showed in lecture 12, if one player is using mixed strategy, the
other player has as best response a pure strategy

Theorem (Yao’s minimax principle)

If for some input distribution, no deterministic algorithm is k-competitive,
then no randomized algorithm is k-competitive!

25 / 113



Randomized Online Algorithms & Game Theory

Think of online algorithms as being a zero-sum, two-player game
between you (the algorithm) and an adversary (the entity choosing
the sequence of requests).

Each of your strategies is a different deterministic algorithm

Each of adversary’s strategies is a sequence of requests

Entry (A, s) of payoff matrix: CA(s)

Algorithm wants to minimize cost

Adversary wants to maximize it

Randomized algorithm ⇔ mixed strategies!

As we showed in lecture 12, if one player is using mixed strategy, the
other player has as best response a pure strategy

Theorem (Yao’s minimax principle)

If for some input distribution, no deterministic algorithm is k-competitive,
then no randomized algorithm is k-competitive!

26 / 113



Randomized Online Algorithms & Game Theory

Think of online algorithms as being a zero-sum, two-player game
between you (the algorithm) and an adversary (the entity choosing
the sequence of requests).

Each of your strategies is a different deterministic algorithm

Each of adversary’s strategies is a sequence of requests

Entry (A, s) of payoff matrix: CA(s)

Algorithm wants to minimize cost

Adversary wants to maximize it

Randomized algorithm ⇔ mixed strategies!

As we showed in lecture 12, if one player is using mixed strategy, the
other player has as best response a pure strategy

Theorem (Yao’s minimax principle)

If for some input distribution, no deterministic algorithm is k-competitive,
then no randomized algorithm is k-competitive!

27 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Randomized Online Algorithms & Game Theory

Think of online algorithms as being a zero-sum, two-player game
between you (the algorithm) and an adversary (the entity choosing
the sequence of requests).

Each of your strategies is a different deterministic algorithm

Each of adversary’s strategies is a sequence of requests

Entry (A, s) of payoff matrix: CA(s)

Algorithm wants to minimize cost

Adversary wants to maximize it

Randomized algorithm ⇔ mixed strategies!

As we showed in lecture 12, if one player is using mixed strategy, the
other player has as best response a pure strategy

Theorem (Yao’s minimax principle)

If for some input distribution, no deterministic algorithm is k-competitive,
then no randomized algorithm is k-competitive!

28 / 113



Randomized Online Algorithms & Game Theory

Think of online algorithms as being a zero-sum, two-player game
between you (the algorithm) and an adversary (the entity choosing
the sequence of requests).

Each of your strategies is a different deterministic algorithm

Each of adversary’s strategies is a sequence of requests

Entry (A, s) of payoff matrix: CA(s)

Algorithm wants to minimize cost

Adversary wants to maximize it

Randomized algorithm ⇔ mixed strategies!

As we showed in lecture 12, if one player is using mixed strategy, the
other player has as best response a pure strategy

Theorem (Yao’s minimax principle)

If for some input distribution, no deterministic algorithm is k-competitive,
then no randomized algorithm is k-competitive!

29 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Randomized Online Algorithms & Game Theory

Think of online algorithms as being a zero-sum, two-player game
between you (the algorithm) and an adversary (the entity choosing
the sequence of requests).

Each of your strategies is a different deterministic algorithm

Each of adversary’s strategies is a sequence of requests

Entry (A, s) of payoff matrix: CA(s)

Algorithm wants to minimize cost

Adversary wants to maximize it

Randomized algorithm ⇔ mixed strategies!

As we showed in lecture 12, if one player is using mixed strategy, the
other player has as best response a pure strategy

Theorem (Yao’s minimax principle)

If for some input distribution, no deterministic algorithm is k-competitive,
then no randomized algorithm is k-competitive!

30 / 113



Randomized Online Algorithms & Game Theory

Think of online algorithms as being a zero-sum, two-player game
between you (the algorithm) and an adversary (the entity choosing
the sequence of requests).

Each of your strategies is a different deterministic algorithm

Each of adversary’s strategies is a sequence of requests

Entry (A, s) of payoff matrix: CA(s)

Algorithm wants to minimize cost

Adversary wants to maximize it

Randomized algorithm ⇔ mixed strategies!

As we showed in lecture 12, if one player is using mixed strategy, the
other player has as best response a pure strategy

Theorem (Yao’s minimax principle)

If for some input distribution, no deterministic algorithm is k-competitive,
then no randomized algorithm is k-competitive!

31 / 113

Rafael Oliveira




Lower Bound - Randomized Paging Algorithms

1 Setting: k + 1 distinct pages, cache of size k, n requests

2 Distribution of inputs: uniform distribution

3 Equivalently: each page has probability 1
k+1 of being chosen

4 Online Algorithm

No matter what our (fixed) deterministic algorithm A does, only k
pages in cache, with probability 1

k+1 requested page not in memory
Expected number of requests per fault: k + 1 (which is O(k))

5 Offline Algorithm (OPT)

OPT can see the whole input beforehand (still use Farthest in Future)
Farthest in Future faults only after k + 1 distinct pages seen
Expected number of requests per fault:2 Θ(k log k) (see reference)

Theorem

Any randomized algorithm for paging with k pages is Ω(log k)-competitive!

2Here expectation is over the choice of input.
32 / 113



Lower Bound - Randomized Paging Algorithms

1 Setting: k + 1 distinct pages, cache of size k, n requests

2 Distribution of inputs: uniform distribution

3 Equivalently: each page has probability 1
k+1 of being chosen

4 Online Algorithm

No matter what our (fixed) deterministic algorithm A does, only k
pages in cache, with probability 1

k+1 requested page not in memory
Expected number of requests per fault: k + 1 (which is O(k))

5 Offline Algorithm (OPT)

OPT can see the whole input beforehand (still use Farthest in Future)
Farthest in Future faults only after k + 1 distinct pages seen
Expected number of requests per fault:2 Θ(k log k) (see reference)

Theorem

Any randomized algorithm for paging with k pages is Ω(log k)-competitive!

2Here expectation is over the choice of input.
33 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Lower Bound - Randomized Paging Algorithms

1 Setting: k + 1 distinct pages, cache of size k, n requests

2 Distribution of inputs: uniform distribution

3 Equivalently: each page has probability 1
k+1 of being chosen

4 Online Algorithm

No matter what our (fixed) deterministic algorithm A does, only k
pages in cache, with probability 1

k+1 requested page not in memory
Expected number of requests per fault: k + 1 (which is O(k))

5 Offline Algorithm (OPT)

OPT can see the whole input beforehand (still use Farthest in Future)
Farthest in Future faults only after k + 1 distinct pages seen
Expected number of requests per fault:2 Θ(k log k) (see reference)

Theorem

Any randomized algorithm for paging with k pages is Ω(log k)-competitive!

2Here expectation is over the choice of input.
34 / 113



Lower Bound - Randomized Paging Algorithms

1 Setting: k + 1 distinct pages, cache of size k, n requests

2 Distribution of inputs: uniform distribution

3 Equivalently: each page has probability 1
k+1 of being chosen

4 Online Algorithm

No matter what our (fixed) deterministic algorithm A does, only k
pages in cache, with probability 1

k+1 requested page not in memory

Expected number of requests per fault: k + 1 (which is O(k))

5 Offline Algorithm (OPT)

OPT can see the whole input beforehand (still use Farthest in Future)
Farthest in Future faults only after k + 1 distinct pages seen
Expected number of requests per fault:2 Θ(k log k) (see reference)

Theorem

Any randomized algorithm for paging with k pages is Ω(log k)-competitive!

2Here expectation is over the choice of input.
35 / 113

Rafael Oliveira


Rafael Oliveira




Lower Bound - Randomized Paging Algorithms

1 Setting: k + 1 distinct pages, cache of size k, n requests

2 Distribution of inputs: uniform distribution

3 Equivalently: each page has probability 1
k+1 of being chosen

4 Online Algorithm

No matter what our (fixed) deterministic algorithm A does, only k
pages in cache, with probability 1

k+1 requested page not in memory
Expected number of requests per fault: k + 1 (which is O(k))

5 Offline Algorithm (OPT)

OPT can see the whole input beforehand (still use Farthest in Future)
Farthest in Future faults only after k + 1 distinct pages seen
Expected number of requests per fault:2 Θ(k log k) (see reference)

Theorem

Any randomized algorithm for paging with k pages is Ω(log k)-competitive!

2Here expectation is over the choice of input.
36 / 113



Lower Bound - Randomized Paging Algorithms

1 Setting: k + 1 distinct pages, cache of size k, n requests

2 Distribution of inputs: uniform distribution

3 Equivalently: each page has probability 1
k+1 of being chosen

4 Online Algorithm

No matter what our (fixed) deterministic algorithm A does, only k
pages in cache, with probability 1

k+1 requested page not in memory
Expected number of requests per fault: k + 1 (which is O(k))

5 Offline Algorithm (OPT)

OPT can see the whole input beforehand (still use Farthest in Future)

Farthest in Future faults only after k + 1 distinct pages seen
Expected number of requests per fault:2 Θ(k log k) (see reference)

Theorem

Any randomized algorithm for paging with k pages is Ω(log k)-competitive!

2Here expectation is over the choice of input.
37 / 113

Rafael Oliveira




Lower Bound - Randomized Paging Algorithms

1 Setting: k + 1 distinct pages, cache of size k, n requests

2 Distribution of inputs: uniform distribution

3 Equivalently: each page has probability 1
k+1 of being chosen

4 Online Algorithm

No matter what our (fixed) deterministic algorithm A does, only k
pages in cache, with probability 1

k+1 requested page not in memory
Expected number of requests per fault: k + 1 (which is O(k))

5 Offline Algorithm (OPT)

OPT can see the whole input beforehand (still use Farthest in Future)
Farthest in Future faults only after k + 1 distinct pages seen

Expected number of requests per fault:2 Θ(k log k) (see reference)

Theorem

Any randomized algorithm for paging with k pages is Ω(log k)-competitive!

2Here expectation is over the choice of input.
38 / 113



Lower Bound - Randomized Paging Algorithms

1 Setting: k + 1 distinct pages, cache of size k, n requests

2 Distribution of inputs: uniform distribution

3 Equivalently: each page has probability 1
k+1 of being chosen

4 Online Algorithm

No matter what our (fixed) deterministic algorithm A does, only k
pages in cache, with probability 1

k+1 requested page not in memory
Expected number of requests per fault: k + 1 (which is O(k))

5 Offline Algorithm (OPT)

OPT can see the whole input beforehand (still use Farthest in Future)
Farthest in Future faults only after k + 1 distinct pages seen
Expected number of requests per fault:2 Θ(k log k) (see reference)

Theorem

Any randomized algorithm for paging with k pages is Ω(log k)-competitive!

2Here expectation is over the choice of input.
39 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Lower Bound - Randomized Paging Algorithms

1 Setting: k + 1 distinct pages, cache of size k, n requests

2 Distribution of inputs: uniform distribution

3 Equivalently: each page has probability 1
k+1 of being chosen

4 Online Algorithm

No matter what our (fixed) deterministic algorithm A does, only k
pages in cache, with probability 1

k+1 requested page not in memory
Expected number of requests per fault: k + 1 (which is O(k))

5 Offline Algorithm (OPT)

OPT can see the whole input beforehand (still use Farthest in Future)
Farthest in Future faults only after k + 1 distinct pages seen
Expected number of requests per fault:2 Θ(k log k) (see reference)

Theorem

Any randomized algorithm for paging with k pages is Ω(log k)-competitive!

2Here expectation is over the choice of input.
40 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Administrivia

Online Algorithms: Randomized Lower Bounds

k-server on a line

Conclusion

Acknowledgements

41 / 113



k-server Problem

Setup: we are given a metric space (X , d).

Online algorithm manages k mobile servers, each server is located at
a point in X

A request specifies a point in X , to which a server must be moved,
unless we already have a server there.

Main question: which server to move?

Cost function: total distance travelled

Goal: minimize distance travelled

Paging is special case of this problem (points of simplex)

Today’s Simplification: assume X is a line. Think X = R

42 / 113



k-server Problem

Setup: we are given a metric space (X , d).

Online algorithm manages k mobile servers, each server is located at
a point in X

A request specifies a point in X , to which a server must be moved,
unless we already have a server there.

Main question: which server to move?

Cost function: total distance travelled

Goal: minimize distance travelled

Paging is special case of this problem (points of simplex)

Today’s Simplification: assume X is a line. Think X = R

43 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




k-server Problem

Setup: we are given a metric space (X , d).

Online algorithm manages k mobile servers, each server is located at
a point in X

A request specifies a point in X , to which a server must be moved,
unless we already have a server there.

Main question: which server to move?

Cost function: total distance travelled

Goal: minimize distance travelled

Paging is special case of this problem (points of simplex)

Today’s Simplification: assume X is a line. Think X = R

44 / 113



k-server Problem

Setup: we are given a metric space (X , d).

Online algorithm manages k mobile servers, each server is located at
a point in X

A request specifies a point in X , to which a server must be moved,
unless we already have a server there.

Main question: which server to move?

Cost function: total distance travelled

Goal: minimize distance travelled

Paging is special case of this problem (points of simplex)

Today’s Simplification: assume X is a line. Think X = R

45 / 113



k-server Problem

Setup: we are given a metric space (X , d).

Online algorithm manages k mobile servers, each server is located at
a point in X

A request specifies a point in X , to which a server must be moved,
unless we already have a server there.

Main question: which server to move?

Cost function: total distance travelled

Goal: minimize distance travelled

Paging is special case of this problem (points of simplex)

Today’s Simplification: assume X is a line. Think X = R

46 / 113



k-server Problem

Setup: we are given a metric space (X , d).

Online algorithm manages k mobile servers, each server is located at
a point in X

A request specifies a point in X , to which a server must be moved,
unless we already have a server there.

Main question: which server to move?

Cost function: total distance travelled

Goal: minimize distance travelled

Paging is special case of this problem (points of simplex)

Today’s Simplification: assume X is a line. Think X = R

47 / 113



k-server Problem

Setup: we are given a metric space (X , d).

Online algorithm manages k mobile servers, each server is located at
a point in X

A request specifies a point in X , to which a server must be moved,
unless we already have a server there.

Main question: which server to move?

Cost function: total distance travelled

Goal: minimize distance travelled

Paging is special case of this problem (points of simplex)

Today’s Simplification: assume X is a line. Think X = R

48 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




k-server Problem

Setup: we are given a metric space (X , d).

Online algorithm manages k mobile servers, each server is located at
a point in X

A request specifies a point in X , to which a server must be moved,
unless we already have a server there.

Main question: which server to move?

Cost function: total distance travelled

Goal: minimize distance travelled

Paging is special case of this problem (points of simplex)

Today’s Simplification: assume X is a line. Think X = R

49 / 113



Attempt 1: Greedy

1 Strategy: just move the server which is closest to the request to it

2 Not competitive.

3 Scenario: two servers A and B, initially located at 0 and 1 respectively

4 Requests: sequence given by s2k−1 = 3/4, s2k = 5/4, for k ≥ 1

5 Only server B will move

6 Best strategy: put A on 3/4, B on 5/4

50 / 113



Attempt 1: Greedy

1 Strategy: just move the server which is closest to the request to it

2 Not competitive.

3 Scenario: two servers A and B, initially located at 0 and 1 respectively

4 Requests: sequence given by s2k−1 = 3/4, s2k = 5/4, for k ≥ 1

5 Only server B will move

6 Best strategy: put A on 3/4, B on 5/4

51 / 113



Attempt 1: Greedy

1 Strategy: just move the server which is closest to the request to it

2 Not competitive.

3 Scenario: two servers A and B, initially located at 0 and 1 respectively

4 Requests: sequence given by s2k−1 = 3/4, s2k = 5/4, for k ≥ 1

5 Only server B will move

6 Best strategy: put A on 3/4, B on 5/4

52 / 113



Attempt 1: Greedy

1 Strategy: just move the server which is closest to the request to it

2 Not competitive.

3 Scenario: two servers A and B, initially located at 0 and 1 respectively

4 Requests: sequence given by s2k−1 = 3/4, s2k = 5/4, for k ≥ 1

5 Only server B will move

6 Best strategy: put A on 3/4, B on 5/4

53 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Attempt 1: Greedy

1 Strategy: just move the server which is closest to the request to it

2 Not competitive.

3 Scenario: two servers A and B, initially located at 0 and 1 respectively

4 Requests: sequence given by s2k−1 = 3/4, s2k = 5/4, for k ≥ 1

5 Only server B will move

6 Best strategy: put A on 3/4, B on 5/4

54 / 113



Attempt 1: Greedy

1 Strategy: just move the server which is closest to the request to it

2 Not competitive.

3 Scenario: two servers A and B, initially located at 0 and 1 respectively

4 Requests: sequence given by s2k−1 = 3/4, s2k = 5/4, for k ≥ 1

5 Only server B will move

6 Best strategy: put A on 3/4, B on 5/4

55 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Attempt 2: Double Coverage (DC)

If request falls between two servers, move both towards request at
same rate until one reaches it

Else, just move the closest server to the request.

Theorem

For k servers, Double Coverage is k-competitive.

1 How to model OPT (offline algorithm)?

2 Will assume that OPT algorithm moves exactly one server at a time.

3 This is w.l.o.g., because can convert any offline strategy into a
strategy that moves one server per request, by deferring moves to the
future

4 How to analyze competitiveness?
5 Potential Function:

match each server from DC to a server of OPT
track changes as requests come

56 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Attempt 2: Double Coverage (DC)

If request falls between two servers, move both towards request at
same rate until one reaches it

Else, just move the closest server to the request.

Theorem

For k servers, Double Coverage is k-competitive.

1 How to model OPT (offline algorithm)?

2 Will assume that OPT algorithm moves exactly one server at a time.

3 This is w.l.o.g., because can convert any offline strategy into a
strategy that moves one server per request, by deferring moves to the
future

4 How to analyze competitiveness?
5 Potential Function:

match each server from DC to a server of OPT
track changes as requests come

57 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Attempt 2: Double Coverage (DC)

If request falls between two servers, move both towards request at
same rate until one reaches it

Else, just move the closest server to the request.

Theorem

For k servers, Double Coverage is k-competitive.

1 How to model OPT (offline algorithm)?

2 Will assume that OPT algorithm moves exactly one server at a time.

3 This is w.l.o.g., because can convert any offline strategy into a
strategy that moves one server per request, by deferring moves to the
future

4 How to analyze competitiveness?
5 Potential Function:

match each server from DC to a server of OPT
track changes as requests come

58 / 113



Attempt 2: Double Coverage (DC)

If request falls between two servers, move both towards request at
same rate until one reaches it

Else, just move the closest server to the request.

Theorem

For k servers, Double Coverage is k-competitive.

1 How to model OPT (offline algorithm)?

2 Will assume that OPT algorithm moves exactly one server at a time.

3 This is w.l.o.g., because can convert any offline strategy into a
strategy that moves one server per request, by deferring moves to the
future

4 How to analyze competitiveness?
5 Potential Function:

match each server from DC to a server of OPT
track changes as requests come

59 / 113



Attempt 2: Double Coverage (DC)

If request falls between two servers, move both towards request at
same rate until one reaches it

Else, just move the closest server to the request.

Theorem

For k servers, Double Coverage is k-competitive.

1 How to model OPT (offline algorithm)?

2 Will assume that OPT algorithm moves exactly one server at a time.

3 This is w.l.o.g., because can convert any offline strategy into a
strategy that moves one server per request, by deferring moves to the
future

4 How to analyze competitiveness?
5 Potential Function:

match each server from DC to a server of OPT
track changes as requests come

60 / 113



Attempt 2: Double Coverage (DC)

If request falls between two servers, move both towards request at
same rate until one reaches it

Else, just move the closest server to the request.

Theorem

For k servers, Double Coverage is k-competitive.

1 How to model OPT (offline algorithm)?

2 Will assume that OPT algorithm moves exactly one server at a time.

3 This is w.l.o.g., because can convert any offline strategy into a
strategy that moves one server per request, by deferring moves to the
future

4 How to analyze competitiveness?
5 Potential Function:

match each server from DC to a server of OPT
track changes as requests come

61 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Attempt 2: Double Coverage (DC)

If request falls between two servers, move both towards request at
same rate until one reaches it

Else, just move the closest server to the request.

Theorem

For k servers, Double Coverage is k-competitive.

1 How to model OPT (offline algorithm)?

2 Will assume that OPT algorithm moves exactly one server at a time.

3 This is w.l.o.g., because can convert any offline strategy into a
strategy that moves one server per request, by deferring moves to the
future

4 How to analyze competitiveness?

5 Potential Function:
match each server from DC to a server of OPT
track changes as requests come

62 / 113



Attempt 2: Double Coverage (DC)

If request falls between two servers, move both towards request at
same rate until one reaches it

Else, just move the closest server to the request.

Theorem

For k servers, Double Coverage is k-competitive.

1 How to model OPT (offline algorithm)?

2 Will assume that OPT algorithm moves exactly one server at a time.

3 This is w.l.o.g., because can convert any offline strategy into a
strategy that moves one server per request, by deferring moves to the
future

4 How to analyze competitiveness?
5 Potential Function:

match each server from DC to a server of OPT
track changes as requests come

63 / 113



Potential Method - Recap

In potential method, we have a potential function Φt for each time t

Real cost of operation: ct
Ammortized cost at time t:

γt = ct + Φt − Φt−1

Total ammortized cost:
n∑

t=1

γt =
n∑

t=1

ct + Φt − Φt−1

= Φn − Φ0 +
n∑

t=1

ct

If potential function is always non-negative

n∑
t=1

ct ≤ Φ0 +
n∑

t=1

γt

64 / 113



Potential Method - Recap

In potential method, we have a potential function Φt for each time t

Real cost of operation: ct

Ammortized cost at time t:

γt = ct + Φt − Φt−1

Total ammortized cost:
n∑

t=1

γt =
n∑

t=1

ct + Φt − Φt−1

= Φn − Φ0 +
n∑

t=1

ct

If potential function is always non-negative

n∑
t=1

ct ≤ Φ0 +
n∑

t=1

γt

65 / 113



Potential Method - Recap

In potential method, we have a potential function Φt for each time t

Real cost of operation: ct
Ammortized cost at time t:

γt = ct + Φt − Φt−1

Total ammortized cost:
n∑

t=1

γt =
n∑

t=1

ct + Φt − Φt−1

= Φn − Φ0 +
n∑

t=1

ct

If potential function is always non-negative

n∑
t=1

ct ≤ Φ0 +
n∑

t=1

γt

66 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Potential Method - Recap

In potential method, we have a potential function Φt for each time t

Real cost of operation: ct
Ammortized cost at time t:

γt = ct + Φt − Φt−1

Total ammortized cost:
n∑

t=1

γt =
n∑

t=1

ct + Φt − Φt−1

= Φn − Φ0 +
n∑

t=1

ct

If potential function is always non-negative

n∑
t=1

ct ≤ Φ0 +
n∑

t=1

γt

67 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Potential Method - Recap

In potential method, we have a potential function Φt for each time t

Real cost of operation: ct
Ammortized cost at time t:

γt = ct + Φt − Φt−1

Total ammortized cost:
n∑

t=1

γt =
n∑

t=1

ct + Φt − Φt−1

= Φn − Φ0 +
n∑

t=1

ct

If potential function is always non-negative

n∑
t=1

ct ≤ Φ0 +
n∑

t=1

γt

68 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




DC Analysis - Potential Function

Main idea: have the ammortized cost per request be (a multiple of) the
cost of OPT, while the actual cost is the cost of DC.

Consider the state of DC and of OPT at time t

Let Mt be cost of minimum cost matching between DC’s servers and
OPT servers

Let St be sum of pairwise distances of DC’s servers

Our potential function will be

Φt = k ·Mt + St

Note that Φt ≥ 0 at all times

Use Amortized Analysis to compute amortized cost of DC

Break requests into two parts:

First account for OPT move
Then account for DC move

69 / 113



DC Analysis - Potential Function

Main idea: have the ammortized cost per request be (a multiple of) the
cost of OPT, while the actual cost is the cost of DC.

Consider the state of DC and of OPT at time t

Let Mt be cost of minimum cost matching between DC’s servers and
OPT servers

Let St be sum of pairwise distances of DC’s servers

Our potential function will be

Φt = k ·Mt + St

Note that Φt ≥ 0 at all times

Use Amortized Analysis to compute amortized cost of DC

Break requests into two parts:

First account for OPT move
Then account for DC move

70 / 113



DC Analysis - Potential Function

Main idea: have the ammortized cost per request be (a multiple of) the
cost of OPT, while the actual cost is the cost of DC.

Consider the state of DC and of OPT at time t

Let Mt be cost of minimum cost matching between DC’s servers and
OPT servers

Let St be sum of pairwise distances of DC’s servers

Our potential function will be

Φt = k ·Mt + St

Note that Φt ≥ 0 at all times

Use Amortized Analysis to compute amortized cost of DC

Break requests into two parts:

First account for OPT move
Then account for DC move

71 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




DC Analysis - Potential Function

Main idea: have the ammortized cost per request be (a multiple of) the
cost of OPT, while the actual cost is the cost of DC.

Consider the state of DC and of OPT at time t

Let Mt be cost of minimum cost matching between DC’s servers and
OPT servers

Let St be sum of pairwise distances of DC’s servers

Our potential function will be

Φt = k ·Mt + St

Note that Φt ≥ 0 at all times

Use Amortized Analysis to compute amortized cost of DC

Break requests into two parts:

First account for OPT move
Then account for DC move

72 / 113



DC Analysis - Potential Function

Main idea: have the ammortized cost per request be (a multiple of) the
cost of OPT, while the actual cost is the cost of DC.

Consider the state of DC and of OPT at time t

Let Mt be cost of minimum cost matching between DC’s servers and
OPT servers

Let St be sum of pairwise distances of DC’s servers

Our potential function will be

Φt = k ·Mt + St

Note that Φt ≥ 0 at all times

Use Amortized Analysis to compute amortized cost of DC

Break requests into two parts:

First account for OPT move
Then account for DC move

73 / 113



DC Analysis - Potential Function

Main idea: have the ammortized cost per request be (a multiple of) the
cost of OPT, while the actual cost is the cost of DC.

Consider the state of DC and of OPT at time t

Let Mt be cost of minimum cost matching between DC’s servers and
OPT servers

Let St be sum of pairwise distances of DC’s servers

Our potential function will be

Φt = k ·Mt + St

Note that Φt ≥ 0 at all times

Use Amortized Analysis to compute amortized cost of DC

Break requests into two parts:

First account for OPT move
Then account for DC move

74 / 113



DC Analysis - Potential Function

Main idea: have the ammortized cost per request be (a multiple of) the
cost of OPT, while the actual cost is the cost of DC.

Consider the state of DC and of OPT at time t

Let Mt be cost of minimum cost matching between DC’s servers and
OPT servers

Let St be sum of pairwise distances of DC’s servers

Our potential function will be

Φt = k ·Mt + St

Note that Φt ≥ 0 at all times

Use Amortized Analysis to compute amortized cost of DC

Break requests into two parts:

First account for OPT move
Then account for DC move

75 / 113



DC Analysis - Potential Function
1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves

1 The request falls between two servers A and B. Say that B is taken to
the location requested.

Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

76 / 113



DC Analysis - Potential Function
1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d

So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves

1 The request falls between two servers A and B. Say that B is taken to
the location requested.

Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

77 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




DC Analysis - Potential Function
1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d

Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves

1 The request falls between two servers A and B. Say that B is taken to
the location requested.

Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

78 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




DC Analysis - Potential Function
1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d

Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves

1 The request falls between two servers A and B. Say that B is taken to
the location requested.

Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

79 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




DC Analysis - Potential Function
1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0

Ammortized cost of DC: γt+1 ≤ k · d
2 DC moves

1 The request falls between two servers A and B. Say that B is taken to
the location requested.

Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

80 / 113



DC Analysis - Potential Function
1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves

1 The request falls between two servers A and B. Say that B is taken to
the location requested.

Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

81 / 113

Rafael Oliveira




DC Analysis - Potential Function
1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves

1 The request falls between two servers A and B. Say that B is taken to
the location requested.

Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

82 / 113



DC Analysis - Potential Function

1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves
1 The request falls between two servers A and B. Say that B is taken to

the location requested.

Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

83 / 113



DC Analysis - Potential Function

1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves
1 The request falls between two servers A and B. Say that B is taken to

the location requested.
Both servers move a distance δ.

Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

84 / 113



DC Analysis - Potential Function

1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves
1 The request falls between two servers A and B. Say that B is taken to

the location requested.
Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)

Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

85 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




DC Analysis - Potential Function

1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves
1 The request falls between two servers A and B. Say that B is taken to

the location requested.
Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)

Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

86 / 113



DC Analysis - Potential Function

1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves
1 The request falls between two servers A and B. Say that B is taken to

the location requested.
Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ

B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

87 / 113



DC Analysis - Potential Function

1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves
1 The request falls between two servers A and B. Say that B is taken to

the location requested.
Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)

A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

88 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




DC Analysis - Potential Function

1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves
1 The request falls between two servers A and B. Say that B is taken to

the location requested.
Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move

Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

89 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




DC Analysis - Potential Function

1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves
1 The request falls between two servers A and B. Say that B is taken to

the location requested.
Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

90 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




DC Analysis - Potential Function

1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves
1 The request falls between two servers A and B. Say that B is taken to

the location requested.
Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ

Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

91 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




DC Analysis - Potential Function

1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves
1 The request falls between two servers A and B. Say that B is taken to

the location requested.
Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ

Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

92 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




DC Analysis - Potential Function

1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves
1 The request falls between two servers A and B. Say that B is taken to

the location requested.
Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)

93 / 113

Rafael Oliveira




DC Analysis - Potential Function

1 OPT moves

If OPT moves a distance d , the distance from the moved server to the
matched DC’s server increases by d
So Mt+1 ≤ Mt + d
Thus potential increased (so far) by Φt+1 − Φt ≤ k · d
Real cost incurred by DC: ct+1 = 0
Ammortized cost of DC: γt+1 ≤ k · d

2 DC moves
1 The request falls between two servers A and B. Say that B is taken to

the location requested.
Both servers move a distance δ.
Thus pairwise distances decrease by 2δ (because they are in a line)
Changes in other pairwise distances cancel out (because line)
Thus S decreases by 2δ
B has match at destination (problem constraint)
A may be further from its match, but balanced by B’s move
Mt+1 ≤ Mt

Potential Change: Φt+1 − Φt ≤ k · 0 − 2 · δ = −2 · δ
Real cost incurred by DC: ct+1 = 2δ
Ammortized cost of DC: γt+1 ≤ 2δ − 2δ = 0

2 Only one server moves (request outside the border)
94 / 113



DC Analysis - Potential Function

1 OPT moves distance d

Ammortized cost of DC: γt ≤ k · d
2 DC moves

1 The request falls between two servers.

Ammortized cost of DC: γt ≤ 0

2 Only one server, say A, moves (request outside the border)

Suppose A moved δ
A has its match (from OPT’s server) at destination
Mt+1 ≤ Mt − δ
Each pairwise distance (A,B) (where B is another of DC’s servers)
increases by δ
Total distance increased: St+1 − St ≤ (k − 1) · δ
Change in potential:

∆Φ ≤ −k · δ + (k − 1) · δ = −δ

Real cost incurred by DC: ct+1 = δ
Ammortized cost at this step: γt+1 =≤ δ − δ = 0

95 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




DC Analysis - Potential Function

1 OPT moves distance d

Ammortized cost of DC: γt ≤ k · d
2 DC moves

1 The request falls between two servers.

Ammortized cost of DC: γt ≤ 0

2 Only one server, say A, moves (request outside the border)

Suppose A moved δ

A has its match (from OPT’s server) at destination
Mt+1 ≤ Mt − δ
Each pairwise distance (A,B) (where B is another of DC’s servers)
increases by δ
Total distance increased: St+1 − St ≤ (k − 1) · δ
Change in potential:

∆Φ ≤ −k · δ + (k − 1) · δ = −δ

Real cost incurred by DC: ct+1 = δ
Ammortized cost at this step: γt+1 =≤ δ − δ = 0

96 / 113



DC Analysis - Potential Function

1 OPT moves distance d

Ammortized cost of DC: γt ≤ k · d
2 DC moves

1 The request falls between two servers.

Ammortized cost of DC: γt ≤ 0

2 Only one server, say A, moves (request outside the border)

Suppose A moved δ
A has its match (from OPT’s server) at destination

Mt+1 ≤ Mt − δ
Each pairwise distance (A,B) (where B is another of DC’s servers)
increases by δ
Total distance increased: St+1 − St ≤ (k − 1) · δ
Change in potential:

∆Φ ≤ −k · δ + (k − 1) · δ = −δ

Real cost incurred by DC: ct+1 = δ
Ammortized cost at this step: γt+1 =≤ δ − δ = 0

97 / 113



DC Analysis - Potential Function

1 OPT moves distance d

Ammortized cost of DC: γt ≤ k · d
2 DC moves

1 The request falls between two servers.

Ammortized cost of DC: γt ≤ 0

2 Only one server, say A, moves (request outside the border)

Suppose A moved δ
A has its match (from OPT’s server) at destination
Mt+1 ≤ Mt − δ

Each pairwise distance (A,B) (where B is another of DC’s servers)
increases by δ
Total distance increased: St+1 − St ≤ (k − 1) · δ
Change in potential:

∆Φ ≤ −k · δ + (k − 1) · δ = −δ

Real cost incurred by DC: ct+1 = δ
Ammortized cost at this step: γt+1 =≤ δ − δ = 0

98 / 113



DC Analysis - Potential Function

1 OPT moves distance d

Ammortized cost of DC: γt ≤ k · d
2 DC moves

1 The request falls between two servers.

Ammortized cost of DC: γt ≤ 0

2 Only one server, say A, moves (request outside the border)

Suppose A moved δ
A has its match (from OPT’s server) at destination
Mt+1 ≤ Mt − δ
Each pairwise distance (A,B) (where B is another of DC’s servers)
increases by δ

Total distance increased: St+1 − St ≤ (k − 1) · δ
Change in potential:

∆Φ ≤ −k · δ + (k − 1) · δ = −δ

Real cost incurred by DC: ct+1 = δ
Ammortized cost at this step: γt+1 =≤ δ − δ = 0

99 / 113



DC Analysis - Potential Function

1 OPT moves distance d

Ammortized cost of DC: γt ≤ k · d
2 DC moves

1 The request falls between two servers.

Ammortized cost of DC: γt ≤ 0

2 Only one server, say A, moves (request outside the border)

Suppose A moved δ
A has its match (from OPT’s server) at destination
Mt+1 ≤ Mt − δ
Each pairwise distance (A,B) (where B is another of DC’s servers)
increases by δ
Total distance increased: St+1 − St ≤ (k − 1) · δ

Change in potential:

∆Φ ≤ −k · δ + (k − 1) · δ = −δ

Real cost incurred by DC: ct+1 = δ
Ammortized cost at this step: γt+1 =≤ δ − δ = 0

100 / 113

Rafael Oliveira


Rafael Oliveira




DC Analysis - Potential Function

1 OPT moves distance d

Ammortized cost of DC: γt ≤ k · d
2 DC moves

1 The request falls between two servers.

Ammortized cost of DC: γt ≤ 0

2 Only one server, say A, moves (request outside the border)

Suppose A moved δ
A has its match (from OPT’s server) at destination
Mt+1 ≤ Mt − δ
Each pairwise distance (A,B) (where B is another of DC’s servers)
increases by δ
Total distance increased: St+1 − St ≤ (k − 1) · δ
Change in potential:

∆Φ ≤ −k · δ + (k − 1) · δ = −δ

Real cost incurred by DC: ct+1 = δ
Ammortized cost at this step: γt+1 =≤ δ − δ = 0

101 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




DC Analysis - Potential Function

1 OPT moves distance d

Ammortized cost of DC: γt ≤ k · d
2 DC moves

1 The request falls between two servers.

Ammortized cost of DC: γt ≤ 0

2 Only one server, say A, moves (request outside the border)

Suppose A moved δ
A has its match (from OPT’s server) at destination
Mt+1 ≤ Mt − δ
Each pairwise distance (A,B) (where B is another of DC’s servers)
increases by δ
Total distance increased: St+1 − St ≤ (k − 1) · δ
Change in potential:

∆Φ ≤ −k · δ + (k − 1) · δ = −δ

Real cost incurred by DC: ct+1 = δ

Ammortized cost at this step: γt+1 =≤ δ − δ = 0

102 / 113



DC Analysis - Potential Function

1 OPT moves distance d

Ammortized cost of DC: γt ≤ k · d
2 DC moves

1 The request falls between two servers.

Ammortized cost of DC: γt ≤ 0

2 Only one server, say A, moves (request outside the border)

Suppose A moved δ
A has its match (from OPT’s server) at destination
Mt+1 ≤ Mt − δ
Each pairwise distance (A,B) (where B is another of DC’s servers)
increases by δ
Total distance increased: St+1 − St ≤ (k − 1) · δ
Change in potential:

∆Φ ≤ −k · δ + (k − 1) · δ = −δ

Real cost incurred by DC: ct+1 = δ
Ammortized cost at this step: γt+1 =≤ δ − δ = 0

103 / 113

Rafael Oliveira




DC Analysis - Wrapping Up
1 OPT moves distance d

Ammortized cost of DC: γt ≤ k · d
2 DC moves

1 The request falls between two servers.

Ammortized cost of DC: γt ≤ 0

2 Only one server moves (request outside the border)

Ammortized cost at this step: γt =≤ δ − δ = 0

By our potential function inequality, we have:

n∑
t=1

ct ≤ Φ0 +
n∑

t=1

γt

Since γt ≤ k · d whenever OPT moves d , and γt ≤ 0 when OPT
doesn’t move, we have that

∑
t γt ≤ k · Copt

Since Φ0 is the initial state, we can regard it as constant (even 0, if
require that servers start at a certain place)

104 / 113

Rafael Oliveira




DC Analysis - Wrapping Up
1 OPT moves distance d

Ammortized cost of DC: γt ≤ k · d
2 DC moves

1 The request falls between two servers.

Ammortized cost of DC: γt ≤ 0

2 Only one server moves (request outside the border)

Ammortized cost at this step: γt =≤ δ − δ = 0

By our potential function inequality, we have:

n∑
t=1

ct ≤ Φ0 +
n∑

t=1

γt

Since γt ≤ k · d whenever OPT moves d , and γt ≤ 0 when OPT
doesn’t move, we have that

∑
t γt ≤ k · Copt

Since Φ0 is the initial state, we can regard it as constant (even 0, if
require that servers start at a certain place)

105 / 113

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




DC Analysis - Wrapping Up
1 OPT moves distance d

Ammortized cost of DC: γt ≤ k · d
2 DC moves

1 The request falls between two servers.

Ammortized cost of DC: γt ≤ 0

2 Only one server moves (request outside the border)

Ammortized cost at this step: γt =≤ δ − δ = 0

By our potential function inequality, we have:

n∑
t=1

ct ≤ Φ0 +
n∑

t=1

γt

Since γt ≤ k · d whenever OPT moves d , and γt ≤ 0 when OPT
doesn’t move, we have that

∑
t γt ≤ k · Copt

Since Φ0 is the initial state, we can regard it as constant (even 0, if
require that servers start at a certain place)

106 / 113



DC Analysis - Wrapping Up
1 OPT moves distance d

Ammortized cost of DC: γt ≤ k · d
2 DC moves

1 The request falls between two servers.

Ammortized cost of DC: γt ≤ 0

2 Only one server moves (request outside the border)

Ammortized cost at this step: γt =≤ δ − δ = 0

By our potential function inequality, we have:

n∑
t=1

ct ≤ Φ0 +
n∑

t=1

γt

Since γt ≤ k · d whenever OPT moves d , and γt ≤ 0 when OPT
doesn’t move, we have that

∑
t γt ≤ k · Copt

Since Φ0 is the initial state, we can regard it as constant (even 0, if
require that servers start at a certain place)

107 / 113



Conclusion

Online algorithms are important for many applications, when we need
to make decisions right when we receive the information.

Applications in

Stock Market
Dating
Skiing
Caching
Machine Learning (regret minimization)
many more...

Competitive Analysis: measures performance of our algorithm against
best algorithm that could see into the future

Saw how to use minimax theorem in Yao’s principle to prove lower
bounds for randomized online algorithms.

108 / 113



Conclusion

Online algorithms are important for many applications, when we need
to make decisions right when we receive the information.

Applications in

Stock Market
Dating
Skiing
Caching
Machine Learning (regret minimization)
many more...

Competitive Analysis: measures performance of our algorithm against
best algorithm that could see into the future

Saw how to use minimax theorem in Yao’s principle to prove lower
bounds for randomized online algorithms.

109 / 113



Conclusion

Online algorithms are important for many applications, when we need
to make decisions right when we receive the information.

Applications in

Stock Market
Dating
Skiing
Caching
Machine Learning (regret minimization)
many more...

Competitive Analysis: measures performance of our algorithm against
best algorithm that could see into the future

Saw how to use minimax theorem in Yao’s principle to prove lower
bounds for randomized online algorithms.

110 / 113



Conclusion

Online algorithms are important for many applications, when we need
to make decisions right when we receive the information.

Applications in

Stock Market
Dating
Skiing
Caching
Machine Learning (regret minimization)
many more...

Competitive Analysis: measures performance of our algorithm against
best algorithm that could see into the future

Saw how to use minimax theorem in Yao’s principle to prove lower
bounds for randomized online algorithms.

111 / 113



Acknowledgement

Lecture based largely on:

Lectures 18 & 20 of Karger’s 6.854 Fall 2004 algorithms course
[Motwani & Raghavan 2007, Chapter 13]

See Karger’s Lecture 18 notes at

http://courses.csail.mit.edu/6.854/06/scribe/s23-onlineRandomLb.pdf

See Karger’s Lecture 20 notes at

http://courses.csail.mit.edu/6.854/06/scribe/s24-paging.pdf

112 / 113

http://courses.csail.mit.edu/6.854/06/scribe/s23-onlineRandomLb.pdf
http://courses.csail.mit.edu/6.854/06/scribe/s24-paging.pdf


References I

Motwani, Rajeev and Raghavan, Prabhakar (2007)

Randomized Algorithms

113 / 113


	Administrivia
	Online Algorithms: Randomized Lower Bounds
	k-server on a line
	Conclusion
	Acknowledgements

