Lecture 18: Hardness of Approximation

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

November 16, 2020

Overview

- Background and Motivation
- Why Hardness of Approximation?
- How do we prove Hardness of Approximation?
- Hardness of Approximation - Example
- Proofs \& Hardness of Approximation
- Conclusion
- Acknowledgements

Why Study Hardness of Approximation?

- Since the 50s and 60s (before we "formally knew" about NP) researchers from many areas noticed that certain combinatorial problems were much harder to solve than others
John Nash
Gödel -s Ven Neumann
Johnson
Gorey and others
in TCS or CO
combinatorial introcteble problems optimization problems

Why Study Hardness of Approximation?

- Since the 50s and 60s (before we "formally knew" about NP) researchers from many areas noticed that certain combinatorial problems were much harder to solve than others
- What do we do when we see such a hard problem?

Why Study Hardness of Approximation?

- Since the 50s and 60s (before we "formally knew" about NP) researchers from many areas noticed that certain combinatorial problems were much harder to solve than others
- What do we do when we see such a hard problem?
- design algorithm which is efficient on "most" instances and always gives us the exact/best answer

Why Study Hardness of Approximation?

- Since the 50s and 60s (before we "formally knew" about NP) researchers from many areas noticed that certain combinatorial problems were much harder to solve than others
- What do we do when we see such a hard problem?
- design algorithm which is efficient on "most" instances and always gives us the exact/best answer
- design (always) efficient algorithm, but finds sub-optimal solutions

Approximation Algorithms

Why Study Hardness of Approximation?

- Since the 50s and 60s (before we "formally knew" about NP) researchers from many areas noticed that certain combinatorial problems were much harder to solve than others
- What do we do when we see such a hard problem?
- design algorithm which is efficient on "most" instances and always gives us the exact/best answer
- design (always) efficient algorithm, but finds sub-optimal solutions

Approximation Algorithms

- For $\alpha \geq 1$, an algorithm is α-approximate for a minimization (maximization) problem if on every input instance the algorithm finds a solution with cost $\leq \alpha \cdot O P T\left(\geq \frac{1}{\alpha} \cdot O P T\right)$.

Why Study Hardness of Approximation?

- Since the 50s and 60s (before we "formally knew" about NP) researchers from many areas noticed that certain combinatorial problems were much harder to solve than others
- What do we do when we see such a hard problem?
- design algorithm which is efficient on "most" instances and always gives us the exact/best answer
- design (always) efficient algorithm, but finds sub-optimal solutions

Approximation Algorithms

- For $\alpha \geq 1$, an algorithm is α-approximate for a minimization (maximization) problem if on every input instance the algorithm finds a solution with cost $\leq \alpha \cdot O P T\left(\geq \frac{1}{\alpha} \cdot O P T\right)$.
- For some problems, it is possible to prove that even the design of approximation algorithms for certain values of α is impossible, unless $\mathrm{P}=\mathrm{NP}$ (in which case we would have an exact algorithm).

$$
\alpha \text {-approximation } \begin{gathered}
\text { Hardness of Approximation }
\end{gathered} \text { exactly solve } P
$$

Why Study Hardness of Approximation?

- Since the 50s and 60s (before we "formally knew" about NP) researchers from many areas noticed that certain combinatorial problems were much harder to solve than others
- What do we do when we see such a hard problem?
- design algorithm which is efficient on "most" instances and always gives us the exact/best answer
- design (always) efficient algorithm, but finds sub-optimal solutions

Approximation Algorithms

- For $\alpha \geq 1$, an algorithm is α-approximate for a minimization (maximization) problem if on every input instance the algorithm finds a solution with cost $\leq \alpha \cdot O P T\left(\geq \frac{1}{\alpha} \cdot O P T\right)$.
- For some problems, it is possible to prove that even the design of approximation algorithms for certain values of α is impossible, unless $\mathrm{P}=\mathrm{NP}$ (in which case we would have an exact algorithm).

Hardness of Approximation

- Important to know the limits of efficient algorithms!
- Background and Motivation
- Why Hardness of Approximation?
- How do we prove Hardness of Approximation?
- Hardness of Approximation - Example
- Proofs \& Hardness of Approximation
- Conclusion
- Acknowledgements

How do we Prove Hardness of Approximation?

- When we prove that a combinatorial problem \mathcal{C} is NP-hard, we usually pick our favorite NP-complete combinatorial problem L and we show a reduction that

How do we Prove Hardness of Approximation?

- When we prove that a combinatorial problem \mathcal{C} is NP-hard, we usually pick our favorite NP-complete combinatorial problem L and we show a reduction that
- maps every YES instance of L to a YES instance of \mathcal{C}
- maps every NO instance of L to a NO instance of \mathcal{C}

So if we had an algorithm that solves e then this algorithm would also solve L!
(size of the reduction must be small)

How do we Prove Hardness of Approximation?

- When we prove that a combinatorial problem \mathcal{C} is NP-hard, we usually pick our favorite NP-complete combinatorial problem L and we show a reduction that
- maps every YES instance of L to a YES instance of \mathcal{C}
- maps every NO instance of L to a NO instance of \mathcal{C}
- Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)
- maps every YES instance of SAT to a YES instance of CLIQUE
- maps every NO instance of SAT to a NO instance of CLIQUE

If φ is a boolean formula, then we would map φ to graph G_{φ} that had k-clique in case φ in satisfiable. $\varphi \mapsto\left(\theta_{\varphi}, k\right)$ YES If φ not satisfiable, we could map it to $\left(H_{\varphi}, k\right)$ where H_{φ} has cliques of site $\leqslant k-1$.

How do we Prove Hardness of Approximation?

- When we prove that a combinatorial problem \mathcal{C} is NP-hard, we usually pick our favorite NP-complete combinatorial problem L and we show a reduction that
- maps every YES instance of L to a YES instance of \mathcal{C}
- maps every NO instance of L to a NO instance of \mathcal{C}
- Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)
- maps every YES instance of SAT to a YES instance of CLIQUE
- maps every NO instance of SAT to a NO instance of CLIQUE

How do we Prove Hardness of Approximation?

- When we prove that a combinatorial problem \mathcal{C} is NP-hard, we usually pick our favorite NP-complete combinatorial problem L and we show a reduction that
- maps every YES instance of L to a YES instance of \mathcal{C}
- maps every NO instance of L to a NO instance of \mathcal{C}
- Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)
- maps every YES instance of SAT to a YES instance of CLIQUE
- maps every NO instance of SAT to a NO instance of CLIQUE
- For hardness of approximation what we would like is a (more robust) reduction of the form:

How do we Prove Hardness of Approximation?

$$
\varphi \longmapsto\left\{\begin{array}{l}
\left(G_{\varphi}, k\right) \text { yes of Clive } \\
\left(\mathrm{H}_{\varphi}, k\right) \text { VERy MuCH No } H_{\varphi} \text { deena have } \\
k / 3 \text {-cliques }
\end{array}\right.
$$

MAX-Cliave: input graph G, output maximum clique of G

- Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)
- maps every YES instance of SAT to a YES instance of CLIQUE
- maps every NO instance of SAT to a NO instance of CLIQUE
- For hardness of approximation what we would like is a (more robust) reduction of the form:
- maps every YES instance of SAT to a YES instance of CLIQUE
- maps every NO instance of SAT to a VERY-MUCH-NO instance of CLIQUE
had 2-approximation alg. for max clave
$\operatorname{MAX}-\operatorname{CLiQUE}\left(G_{u}\right) \longmapsto$ have $0 \mathrm{k} / \mathrm{z}$ clique (YES
MAX-Cliquk $\left(H_{\text {He }}\right) \longmapsto$ have $0 \leqslant w_{3}$ clique \int No
- Background and Motivation
- Why Hardness of Approximation?
- How do we prove Hardness of Approximation?
- Hardness of Approximation - Example
- Proofs \& Hardness of Approximation
- Conclusion
- Acknowledgements

Traveling Salesman Problem

- Input: set of points X and a symmetric distance function

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}
$$

Traveling Salesman Problem

- Input: set of points X and a symmetric distance function

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}
$$

- For any path $p_{0} \rightarrow p_{1} \rightarrow \cdots \rightarrow p_{t}$ in X, length of the path is sum of distances traveled

$$
\sum_{i=0}^{t-1} d\left(p_{i}, p_{i+1}\right)
$$

Traveling Salesman Problem

- Input: set of points X and a symmetric distance function

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}
$$

- For any path $p_{0} \rightarrow p_{1} \rightarrow \cdots \rightarrow p_{t}$ in X, length of the path is sum of distances traveled

$$
\sum_{i=0}^{t-1} d\left(p_{i}, p_{i+1}\right)
$$

- Output: find a cycle that reaches all points in X of shortest length.

Traveling Salesman Problem

- Input: set of points X and a symmetric distance function

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}
$$

- For any path $p_{0} \rightarrow p_{1} \rightarrow \cdots \rightarrow p_{t}$ in X, length of the path is sum of distances traveled

$$
\sum_{i=0}^{t-1} d\left(p_{i}, p_{i+1}\right)
$$

- Output: find a cycle that reaches all points in X of shortest length.
- Definitely a problem we would like to solve
- Efficient route planning (mail system, shuttle bus pick up and drop off...)

Traveling Salesman Problem

- Input: set of points X and a symmetric distance function

$$
d: X \times X \rightarrow \mathbb{R}_{\geq 0}
$$

- For any path $p_{0} \rightarrow p_{1} \rightarrow \cdots \rightarrow p_{t}$ in X, length of the path is sum of distances traveled

$$
\sum_{i=0}^{t-1} d\left(p_{i}, p_{i+1}\right)
$$

- Output: find a cycle that reaches all points in X of shortest length.
- Definitely a problem we would like to solve
- Efficient route planning (mail system, shuttle bus pick up and drop off...)
- One of the famous NP-complete problems

Hardness of Approximation - TSP

(1) General TSP without repetitions (General TSP-NR)

Hardness of Approximation - TSP

(1) General TSP without repetitions (General TSP-NR)

- if $P \neq N P$ then there is no poly-time constant-approximation algorithm for General TSP-NR.

Hardness of Approximation - TSP

(1) General TSP without repetitions (General TSP-NR)

- if $P \neq N P$ then there is no poly-time constant-approximation algorithm for General TSP-NR.
- More generally, if there is any function $r: \mathbb{N} \rightarrow \mathbb{N}$ such that $r(n)$ computable in polynomial time, then it is hard to $r(n)$-approximate General TSP-NR if we assume that $P \neq N P$

Hardness of Approximation - TSP

(1) General TSP without repetitions (General TSP-NR)

- if $P \neq N P$ then there is no poly-time constant-approximation algorithm for General TSP-NR.
- More generally, if there is any function $r: \mathbb{N} \rightarrow \mathbb{N}$ such that $r(n)$ computable in polynomial time, then it is hard to $r(n)$-approximate General TSP-NR if we assume that $P \neq N P$
(2) How does one prove any such hardness of approximation? By reduction another NP-hard problem. from

Hardness of Approximation - TSP

(1) General TSP without repetitions (General TSP-NR)

- if $P \neq N P$ then there is no poly-time constant-approximation algorithm for General TSP-NR.
- More generally, if there is any function $r: \mathbb{N} \rightarrow \mathbb{N}$ such that $r(n)$ computable in polynomial time, then it is hard to $r(n)$-approximate General TSP-NR if we assume that $P \neq N P$
(2) How does one prove any such hardness of approximation? By reduction to another NP-hard problem.
(3) In our case, let's reduce it to the Hamiltonian Cycle Problem

Theorem

If there is an algorithm M which solves TSP without repetitions with α-approximation, then $P=N P$.

Hardness of Approximation

(1) Hamiltonian Cycle Problem: given a graph $G(V, E)$, decide whether there exists a cycle \mathcal{C} which passes through every vertex at most once.

Hardness of Approximation

(1) Hamiltonian Cycle Problem: given a graph $G(V, E)$, decide whether there exists a cycle \mathcal{C} which passes through every vertex at most once.
(2) If we had an algorithm M which solved the α-approximate TSP without repetition problem, then

- from graph $G(V, E)$, construct weighted graph $H(V, F, w)$ such that

Hardness of Approximation

(1) Hamiltonian Cycle Problem: given a graph $G(V, E)$, decide whether there exists a cycle \mathcal{C} which passes through every vertex at most once.
(2) If we had an algorithm M which solved the α-approximate TSP without repetition problem, then

- from graph $G(V, E)$, construct weighted graph $H(V, F, w)$ such that
- All edges $\{u, v\} \in F$ (that is, H is the complete graph on V)

Hardness of Approximation

(0) Hamiltonian Cycle Problem: given a graph $G(V, E)$, decide whether there exists a cycle \mathcal{C} which passes through every vertex at most once.
(2) If we had an algorithm M which solved the α-approximate TSP without repetition problem, then

- from graph $G(V, E)$, construct weighted graph $H(V, F, w)$ such that
- All edges $\{u, v\} \in F$ (that is, H is the complete graph on V)
- $w(u, v)=\left\{\begin{array}{l}1, \text { if }\{u, v\} \in E \\ (1+\alpha) \cdot|V|, \text { if }\{u, v\} \notin E\end{array}\right.$

Hardness of Approximation

(1) Hamiltonian Cycle Problem: given a graph $G(V, E)$, decide whether there exists a cycle \mathcal{C} which passes through every vertex at most once.
(2) If we had an algorithm M which solved the α-approximate TSP without repetition problem, then

- from graph $G(V, E)$, construct weighted graph $H(V, F, w)$ such that
- All edges $\{u, v\} \in F$ (that is, H is the complete graph on V)
- $w(u, v)=\left\{\begin{array}{l}1, \text { if }\{u, v\} \in E \\ (1+\alpha) \cdot|V|, \text { if }\{u, v\} \notin E\end{array}\right.$
(3) If G has a Hamiltonian Cycle, then OPT for the TSP is of value $\leq|V|$ $O P T(H) \leqslant|V|$

Hardness of Approximation

(0) Hamiltonian Cycle Problem: given a graph $G(V, E)$, decide whether there exists a cycle \mathcal{C} which passes through every vertex at most once.
(2) If we had an algorithm M which solved the α-approximate TSP without repetition problem, then

- from graph $G(V, E)$, construct weighted graph $H(V, F, w)$ such that
- All edges $\{u, v\} \in F$ (that is, H is the complete graph on V)
- $w(u, v)=\left\{\begin{array}{l}1, \text { if }\{u, v\} \in E \\ (1+\alpha) \cdot|V|, \text { if }\{u, v\} \notin E\end{array}\right.$
(3) If G has a Hamiltonian Cycle, then OPT for the TSP is of value $\leq|V|$
(9) If G has no Hamiltonian Cycle, then OPT for TSP must use an edge not in V, thus value is $\geq(1+\alpha) \cdot|V|$
$\operatorname{OPT}(H) \geqslant$ weight of $\{0, b \zeta \$ E=(1+\alpha) \cdot|V|$

Hardness of Approximation

(1) Hamiltonian Cycle Problem: given a graph $G(V, E)$, decide whether there exists a cycle \mathcal{C} which passes through every vertex at most once.
(2) If we had an algorithm M which solved the α-approximate TSP without repetition problem, then

- from graph $G(V, E)$, construct weighted graph $H(V, F, w)$ such that
- All edges $\{u, v\} \in F$ (that is, H is the complete graph on V)
- $w(u, v)=\left\{\begin{array}{l}1, \text { if }\{u, v\} \in E \\ (1+\alpha) \cdot|V|, \text { if }\{u, v\} \notin E\end{array}\right.$
(0) If G has a Hamiltonian Cycle, then OPT for the TSP is of value $\leq|V|$
- If G has no Hamiltonian Cycle, then OPT for TSP must use an edge not in V, thus value is $\geq(1+\alpha) \cdot|V|$
- Thus, M on input H will output a Hamiltonian Cycle of G, if G has one, or it will output a solution with value $\geq(1+\alpha) \cdot|V|$
inputs only heve cycles
of beight
$\left\{\begin{array}{l}\leq|V| \leftarrow \\ \geqslant(1+\alpha)|V|\end{array}\right.$

Discussion of Proof

- Background and Motivation
- Why Hardness of Approximation?
- How do we prove Hardness of Approximation?
- Hardness of Approximation - Example
- Proofs \& Hardness of Approximation
- Conclusion
- Acknowledgements

Complexity Classes

- NP: Set of languages $L \subseteq\{0,1\}^{*}$ such that there exists a poly-time Turing Machine V, such that:

$$
x \in L \Leftrightarrow \exists w \in\{0,1)^{\text {poly }(|x|)} \text { s.t. } V(x, \underset{\mathbf{w}}{ })=1
$$

$\omega \leftarrow$ witness that x in in the language

$$
\begin{aligned}
& x \in L \Rightarrow \exists \omega \in \underbrace{\{0,1 \mid\}^{\text {poly }(x \mid)}}_{\text {small }} \text { set. } v(x, \omega)=1 \\
& x \notin L \Rightarrow \forall \omega \in\{0,1\}^{p \operatorname{pog}(x \mid x)} \text { р.t. } V(x, \omega)=0
\end{aligned}
$$

Complexity Classes

- NP: Set of languages $L \subseteq\{0,1\}^{*}$ such that there exists a poly-time Turing Machine V, such that:

$$
x \in L \Leftrightarrow \exists w \in\{0,1\}^{\text {poly }(|x|)} \text { s.t. } V(x, y)=1
$$

- BPP: Set of languages $L \subseteq\{0,1\}^{*}$ such that there exists a poly-time Turing Machine M, such that:

$$
x \in L \Leftrightarrow \operatorname{Pr}_{R \in\{0,1\}^{p o l y}(|x|)}[M(\underline{x}, \underline{R})=1] \geq 2 / 3
$$

$R \leftarrow$ random string used by the ravdimi: zed algorithm

$$
\begin{aligned}
& \text { alfgaithm } \\
& \tilde{M}:=M(\cdot, \text { random tins })
\end{aligned}
$$

Complexity Classes

- NP: Set of languages $L \subseteq\{0,1\}^{*}$ such that there exists a poly-time Turing Machine V, such that:

$$
x \in L \Leftrightarrow \exists w \in\{0,1\}^{\text {poly }(|x|)} \text { s.t. } V(x, y)=1
$$

- BPP: Set of languages $L \subseteq\{0,1\}^{*}$ such that there exists a poly-time Turing Machine M, such that:

$$
x \in L \Leftrightarrow \operatorname{Pr}_{R \in\{0,1\} \text { poly }(|x|)}[M(x, R)=1] \geq 2 / 3
$$

- RP: Set of languages $L \subseteq\{0,1\}^{*}$ such that there exists a poly-time Turing Machine M, such that:

$$
\begin{aligned}
& \rightarrow x \in L \Rightarrow \underset{R \in\{0,1\}^{\text {poly }(|x|)}}{\operatorname{Pr}}[M(x, R)=1] \geq 2 / 3 \\
& \longrightarrow x \notin L \Rightarrow \underset{R \in\{0,1\}^{\text {poly }(|x|)}}{ }[M(x, R)=1]=0
\end{aligned}
$$

Randomized algoithms with one-sided

Complexity Classes

- NP: Set of languages $L \subseteq\{0,1\}^{*}$ such that there exists a poly-time Turing Machine V, such that:

$$
x \in L \Leftrightarrow \exists w \in\{0,1\}^{\text {poly }(|x|)} \text { s.t. } V(x, y)=1
$$

- BPP: Set of languages $L \subseteq\{0,1\}^{*}$ such that there exists a poly-time Turing Machine M, such that:

$$
x \in L \Leftrightarrow \operatorname{Pr}_{R \in\{0,1\} \text { poly }(|x|)}[M(x, R)=1] \geq 2 / 3
$$

- RP: Set of languages $L \subseteq\{0,1\}^{*}$ such that there exists a poly-time Turing Machine M, such that:

$$
\begin{aligned}
& x \in L \Rightarrow \underset{R \in\{0,1\}^{\text {poly }(|x|)}}{\operatorname{Pr}}[M(x, R)=1] \geq 2 / 3 \\
& x \notin L \Rightarrow \operatorname{Pr}_{R \in\{0,1\}\}^{\text {poly }(|x|)}}[M(x, R)=1]=0
\end{aligned}
$$

- co-RP: languages $L \subseteq\{0,1\}^{*}$ s.t. $\bar{L} \in R P$

Proof Systems

A proof system looks like this:

Proof Systems

A proof system looks like this:
(1) A prover and a verifier agree on the following:

- The prover must provide proofs in a certain format
- The verifier can use algorithms from a certain complexity class for verification

Proof Systems

A proof system looks like this:
(1) A prover and a verifier agree on the following:

- The prover must provide proofs in a certain format
- The verifier can use algorithms from a certain complexity class for verification
(2) A statement is given to both prover and verifier (for instance "Graph $G(V, E)$ has a Hamiltonian Cycle")

Proof Systems

A proof system looks like this:
(1) A prover and a verifier agree on the following:

- The prover must provide proofs in a certain format
- The verifier can use algorithms from a certain complexity class for verification
(2) A statement is given to both prover and verifier (for instance "Graph $G(V, E)$ has a Hamiltonian Cycle")
(3) A prover writes down a proof of the statement

Proof Systems

A proof system looks like this:
(1) A prover and a verifier agree on the following:

- The prover must provide proofs in a certain format
- The verifier can use algorithms from a certain complexity class for verification
(2) A statement is given to both prover and verifier (for instance "Graph $G(V, E)$ has a Hamiltonian Cycle")
(3) A prover writes down a proof of the statement
(9) The verifier uses an algorithm of their choice to check the statement and proof, and accepts or rejects accordingly.

Proof Systems

A proof system looks like this:
(1) A prover and a verifier agree on the following:

- The prover must provide proofs in a certain format
- The verifier can use algorithms from a certain complexity class for verification
(2) A statement is given to both prover and verifier (for instance "Graph $G(V, E)$ has a Hamiltonian Cycle")
(3) A prover writes down a proof of the statement
(9) The verifier uses an algorithm of their choice to check the statement and proof, and accepts or rejects accordingly.
(3) NP as a proof system:
- $L \subseteq\{0,1\}^{n}$ is the language, verifier can use any poly-time Turing Machine

Proof Systems

A proof system looks like this:
(1) A prover and a verifier agree on the following:

- The prover must provide proofs in a certain format
- The verifier can use algorithms from a certain complexity class for verification
(2) A statement is given to both prover and verifier (for instance "Graph $G(V, E)$ has a Hamiltonian Cycle")
(3) A prover writes down a proof of the statement
(9) The verifier uses an algorithm of their choice to check the statement and proof, and accepts or rejects accordingly.
(6) NP as a proof system:
- $L \subseteq\{0,1\}^{n}$ is the language, verifier can use any poly-time Turing Machine
- Given an element x, the prover gives a proof (also known as witness) $w \in\{0,1\}^{\text {poly }(|x|)}$
witness can be thought of on proof that x in language

Proof Systems

A proof system looks like this:
(1) A prover and a verifier agree on the following:

- The prover must provide proofs in a certain format
- The verifier can use algorithms from a certain complexity class for verification
(2) A statement is given to both prover and verifier (for instance "Graph $G(V, E)$ has a Hamiltonian Cycle")
(3) A prover writes down a proof of the statement
(9) The verifier uses an algorithm of their choice to check the statement and proof, and accepts or rejects accordingly.
(6) NP as a proof system:
- $L \subseteq\{0,1\}^{n}$ is the language, verifier can use any poly-time Turing Machine
- Given an element x, the prover gives a proof (also known as witness) $w \in\{0,1\}^{\text {poly }(|x|)}$
- Verifier picks a poly-time Turing Machine V and outputs $\left\{\begin{array}{l}T R U E, \text { if } V(x, w)=1 \\ \text { FALSE, otherwise }\end{array}\right.$

Proof Systems - Completeness and Soundness

How good is a proof system?
(1) Two parameters (aside from efficiency):

Proof Systems - Completeness and Soundness

How good is a proof system?
(1) Two parameters (aside from efficiency):

- Completeness: correct statements have a proof in the system

Proof Systems - Completeness and Soundness

How good is a proof system?
(1) Two parameters (aside from efficiency):

- Completeness: correct statements have a proof in the system
- Soundness: false statements do not have a proof in the system

Proof Systems - Completeness and Soundness

How good is a proof system?
(1) Two parameters (aside from efficiency):

- Completeness: correct statements have a proof in the system
- Soundness: false statements do not have a proof in the system
(2) NP as a proof system:
- $L \subseteq\{0,1\}^{n}$ is the language, verifier can use any poly-time Turing Machine

Proof Systems - Completeness and Soundness

How good is a proof system?
(1) Two parameters (aside from efficiency):

- Completeness: correct statements have a proof in the system
- Soundness: false statements do not have a proof in the system
(2) NP as a proof system:
- $L \subseteq\{0,1\}^{n}$ is the language, verifier can use any poly-time Turing Machine
- Given an element x, the prover gives a proof (also known as witness) $w \in\{0,1\}^{\text {poly }(|x|)}$

Proof Systems - Completeness and Soundness

How good is a proof system?
(1) Two parameters (aside from efficiency):

- Completeness: correct statements have a proof in the system
- Soundness: false statements do not have a proof in the system
(2) NP as a proof system:
- $L \subseteq\{0,1\}^{n}$ is the language, verifier can use any poly-time Turing Machine
- Given an element x, the prover gives a proof (also known as witness) $w \in\{0,1\}^{\text {poly }(|x|)}$
- Verifier picks a poly-time Turing Machine V and outputs
$\{$ TRUE, if $V(x, w)=1$
\{FALSE, otherwise

Proof Systems - Completeness and Soundness

How good is a proof system?
(1) Two parameters (aside from efficiency):

- Completeness: correct statements have a proof in the system
- Soundness: false statements do not have a proof in the system
(2) NP as a proof system:
- $L \subseteq\{0,1\}^{n}$ is the language, verifier can use any poly-time Turing Machine
- Given an element x, the prover gives a proof (also known as witness) $w \in\{0,1\}^{\text {poly }(|x|)}$
- Verifier picks a poly-time Turing Machine V and outputs
$\{T R U E$, if $V(x, w)=1$
FALSE, otherwise
- Completeness: $x \in L \Rightarrow \exists w \in\{0,1\}^{\text {poly }(|x|)}$ such that $V(x, w)=1$

Proof Systems - Completeness and Soundness

How good is a proof system?
(1) Two parameters (aside from efficiency):

- Completeness: correct statements have a proof in the system
- Soundness: false statements do not have a proof in the system
(2) NP as a proof system:
- $L \subseteq\{0,1\}^{n}$ is the language, verifier can use any poly-time Turing Machine
- Given an element x, the prover gives a proof (also known as witness) $w \in\{0,1\}^{\text {poly }(|x|)}$
- Verifier picks a poly-time Turing Machine V and outputs
$\{T R U E$, if $V(x, w)=1$
FALSE, otherwise
- Completeness: $x \in L \Rightarrow \exists w \in\{0,1\}^{\text {poly }(|x|)}$ such that $V(x, w)=1$
- Soundness: $x \notin L \Rightarrow \forall w \in\{0,1\}^{\text {poly }(|x|)}$ we have $V(x, w)=0$

Interactive Proofs: Complexity Classes

The above discussion motivates us to define complexity classes in terms of proof systems!

Interactive Proofs: Complexity Classes

The above discussion motivates us to define complexity classes in terms of proof systems!

Definition (Interactive Proof Systems)

The class IP consists of all languages L that have an interactive proof system (P, V) where

Interactive Proofs: Complexity Classes

The above discussion motivates us to define complexity classes in terms of proof systems!

Definition (Interactive Proof Systems)

The class IP consists of all languages L that have an interactive proof system (P, V) where
(1) the verifier V is a randomized, polynomial time algorithm
(2) there is an honest prover P (who can be all powerful)

$$
\begin{aligned}
& \text { V is efficient } \\
& P \text { honest if }\left\{\begin{array}{l}
x \in C \text { them } P \text { valid proof } \\
x \notin L \text { them } P \text { false } \\
\text { (ont in y to }) \\
\text { chat }
\end{array}\right.
\end{aligned}
$$

Interactive Proofs: Complexity Classes

The above discussion motivates us to define complexity classes in terms of proof systems!

Definition (Interactive Proof Systems)

The class IP consists of all languages L that have an interactive proof system (P, V) where
(1) the verifier V is a randomized, polynomial time algorithm
(2) there is an honest prover P (who can be all powerful)
(3) for any $x \in\{0,1\}^{*}$

- $x \in L \Rightarrow$ for an honest prover \underline{P},

$$
\operatorname{Pr}[V(x, P)=1]=1
$$

- $x \notin L \Rightarrow$ for any prover P^{\prime},
P could belicisus

$$
\operatorname{Pr}\left[V\left(x, P^{\prime}\right)=1\right] \leq 1 / 2
$$

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistc proof system, the verifier has a randomized algorithm V for which:
(1) Given language L (the language of correct statements)

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistc proof system, the verifier has a randomized algorithm V for which:
(1) Given language L (the language of correct statements)
(2) $x \in L \Rightarrow$ there exists proof w such that $\operatorname{Pr}[V(x, w)=1]=1$

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistc proof system, the verifier has a randomized algorithm V for which:
(1) Given language L (the language of correct statements)
(2) $x \in L \Rightarrow$ there exists proof w such that $\operatorname{Pr}[V(x, w)=1]=1$
(3) $x \notin L \Rightarrow$ for any proof w, we have $\operatorname{Pr}[V(x, w)=1] \leq 1 / 2$

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistc proof system, the verifier has a randomized algorithm V for which:
(1) Given language L (the language of correct statements)
(2) $x \in L \Rightarrow$ there exists proof w such that $\operatorname{Pr}[V(x, w)=1]=1$
(3) $x \notin L \Rightarrow$ for any proof w, we have $\operatorname{Pr}[V(x, w)=1] \leq 1 / 2$

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that have a randomized poly-time verifier V such that

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistc proof system, the verifier has a randomized algorithm V for which:
(1) Given language L (the language of correct statements)
(2) $x \in L \Rightarrow$ there exists proof w such that $\operatorname{Pr}[V(x, w)=1]=1$
(3) $x \notin L \Rightarrow$ for any proof w, we have $\operatorname{Pr}[V(x, w)=1] \leq 1 / 2$

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that have a randomized poly-time verifier V such that
(1) $x \in L \Rightarrow$ there exists proof w such that $\operatorname{Pr}[V(x, w)=1]=1$

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistc proof system, the verifier has a randomized algorithm V for which:
(1) Given language L (the language of correct statements)
(2) $x \in L \Rightarrow$ there exists proof w such that $\operatorname{Pr}[V(x, w)=1]=1$
(3) $x \notin L \Rightarrow$ for any proof w, we have $\operatorname{Pr}[V(x, w)=1] \leq 1 / 2$

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that have a randomized poly-time verifier V such that
(1) $x \in L \Rightarrow$ there exists proof w such that $\operatorname{Pr}[V(x, w)=1]=1$
(2) $x \notin L \Rightarrow$ for any proof w, we have $\operatorname{Pr}[V(x, w)=1] \leq 1 / 2$

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L that have a randomized poly-time verifier V such that
(1) $x \in L \Rightarrow$ there exists proof w such that $\operatorname{Pr}[V(x, w)=1]=1$
(2) $x \notin L \Rightarrow$ for any proof w, we have $\operatorname{Pr}[V(x, w)=1] \leq 1 / 2$

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L that have a randomized poly-time verifier V such that
(1) $x \in L \Rightarrow$ there exists proof w such that $\operatorname{Pr}[V(x, w)=1]=1$
(2) $x \notin L \Rightarrow$ for any proof w, we have $\operatorname{Pr}[V(x, w)=1] \leq 1 / 2$

- $P C P[r(n), q(n)]$ consists of all languages $L \in P C P$ such that, on inputs of length n

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L that have a randomized poly-time verifier V such that
(1) $x \in L \Rightarrow$ there exists proof w such that $\operatorname{Pr}[V(x, w)=1]=1$
(2) $x \notin L \Rightarrow$ for any proof w, we have $\operatorname{Pr}[V(x, w)=1] \leq 1 / 2$

- $P C P[r(n), q(n)]$ consists of all languages $L \in P C P$ such that, on inputs of length n
(1) Uses $O(r(n))$ random bits
(2) Examines $O(q(n))$ bits of a proof w

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L that have a randomized poly-time verifier V such that
(1) $x \in L \Rightarrow$ there exists proof w such that $\operatorname{Pr}[V(x, w)=1]=1$
(2) $x \notin L \Rightarrow$ for any proof w, we have $\operatorname{Pr}[V(x, w)=1] \leq 1 / 2$

- $P C P[r(n), q(n)]$ consists of all languages $L \in P C P$ such that, on inputs of length n
(1) Uses $O(r(n))$ random bits
(2) Examines $O(q(n))$ bits of a proof w
don't nee al to look at entire proof!

Theorem (PCP theorem [AS'98, ALMSS'98])
$0(1)$
$\left[r_{2}(n), q_{c}(n)\right)$ prob. propr

PCP and Approximability of Max SAT

Theorem

(1) The PCP theorem implies that there is an $\varepsilon>0$ such that there is no polynomial time $(1+\varepsilon)$-approximation algorithm for Max 3SAT, unless $P=N P$.
(2) Moreover, if Max 3SAT is hard to approximate within a factor of $(1+\varepsilon)$, then the PCP theorem holds.

- In other words, the PCP theorem and the hardness of approximation of Max 3SAT are equivalent.

PCP and Approximability of Max SAT

(1) Let us assume the PCP theorem holds.

- Let $L \in P C P[\log n, 1]$ be an NP-complete problem.
- Let V be the $(O(\log n), q)$ verifier for L, where q is a constant $r(h)$

PCP and Approximability of Max SAT

(1) Let us assume the PCP theorem holds.

- Let $L \in P C P[\log n, 1]$ be an NP-complete problem.
- Let V be the $(O(\log n), q)$ verifier for L, where q is a constant
(2) We now describe a reduction from L to Max 3SAT which has a gap.

PCP and Approximability of Max SAT

(1) Let us assume the PCP theorem holds.

- Let $L \in P C P[\log n, 1]$ be an NP-complete problem.
- Let V be the $(O(\log n), q)$ verifier for L, where q is a constant
(2) We now describe a reduction from L to Max 3SAT which has a gap.
(3) Given an instance x of problem L, we construct 3CNF formula φ_{x} with $\underline{\underline{m}}$ clauses such that, for some ε we have
- $x \in L \Rightarrow \varphi_{x}$ is satisfiable (sat infies m clanes)
- $x \notin L \Rightarrow$ no assignment satisfies more than $(1-\varepsilon) \cdot m$ clauses of φ_{x}

PCP and Approximability of Max SAT
 $V(x, R)$

(1) Let us assume the PCP theorem holds.

- Let $L \in P C P[\log n, 1]$ be an NP-complete problem.
- Let V be the $(O(\log n), q)$ verifier for L, where q is a constant
(2) We now describe a reduction from L to Max 3SAT which has a gap.
(3) Given an instance x of problem L, we construct 3CNF formula φ_{x} with m clauses such that, for some ε we have
- $x \in L \Rightarrow \varphi_{x}$ is satisfiable
- $x \notin L \Rightarrow$ no assignment satisfies more than $(1-\varepsilon) \cdot m$ clauses of φ_{x}
(9) Enumerate all random inputs R for the verifier V.
- Length of each random string is $O(\log n)$, by definition. So number of such random inputs is poly (n).
- For each R, V chooses q positions $\left(i_{1}^{R}\right), \ldots, i_{q}^{R}$ and a boolean function $f_{R}:\{0,1\}^{q} \rightarrow\{0,1\}$ and accepts iff $f_{R}\left(w_{i_{1}^{R}}, \ldots, w_{i_{q}}\right)=1$.

PCP and Approximability of Max SAT

(1) Enumerate all random inputs R for the verifier V.

- Length of each random string is $O(\log n)$, by definition. So number of such random inputs is poly (n).
- For each R, V chooses q positions $i_{1}^{R}, \ldots, i_{q}^{R}$ and a boolean function $f_{R}:\{0,1\}^{q} \rightarrow\{0,1\}$ and accepts iff $f_{R}\left(w_{i_{1}^{R}}, \ldots, w_{i_{q}^{R}}\right)=1$.
poly (n) mary functions

PCP and Approximability of Max SAT
(1) Enumerate all random inputs R for the verifier V.

- Length of each random string is $O(\log n)$, by definition. So number of such random inputs is poly (n).
- For each R, V chooses q positions $i_{1}^{R}, \ldots, i_{q}^{R}$ and a boolean function $f_{R}:\{0,1\}^{q} \rightarrow\{0,1\}$ and accepts of $f_{R}\left(w_{i_{1}^{R}}, \ldots, w_{i_{q}^{R}}\right)=1$.
(2) Simulate the computation f_{R} of the verifier for different random inputs R and witnesses w as a Boolean formula.
- Can be done with a CNF of size 2^{q}
- Converting to 3CNF we get a formula of $\operatorname{size} q \cdot 2^{q}$
\rightarrow Practice problem

$$
\Lambda \underbrace{\left(a_{1} v \vee a_{t}\right)}_{\Lambda\left(a_{i} v a_{i 2} v a_{i 3}\right)}=\Lambda\left(a_{1} v a_{2} v a_{3}\right)
$$

PCP and Approximability of Max SAT

(1) Enumerate all random inputs R for the verifier V.

- Length of each random string is $O(\log n)$, by definition. So number of such random inputs is poly (n).
- For each R, V chooses q positions $i_{1}^{R}, \ldots, i_{q}^{R}$ and a boolean function $f_{R}:\{0,1\}^{q} \rightarrow\{0,1\}$ and accepts iff $f_{R}\left(w_{i_{1}^{R}}, \ldots, w_{i_{q}^{R}}\right)=1$.
(2) Simulate the computation f_{R} of the verifier for different random inputs R and witnesses w as a Boolean formula.
- Can be done with a CNF of size 2^{q}
- Converting to 3CNF we get a formula of size $q \cdot 2^{q}$
(3) Let φ_{x} be the 3CNF we get by putting together all the 3CNFs constructed above

PCP and Approximability of Max SAT

(1) Enumerate all random inputs R for the verifier V.

- Length of each random string is $O(\log n)$, by definition. So number of such random inputs is poly (n).
- For each R, V chooses q positions $i_{1}^{R}, \ldots, i_{q}^{R}$ and a boolean function $f_{R}:\{0,1\}^{q} \rightarrow\{0,1\}$ and accepts iff $f_{R}\left(w_{i_{1}^{R}}, \ldots, w_{i_{q}^{R}}\right)=1$.
(2) Simulate the computation f_{R} of the verifier for different random inputs R and witnesses w as a Boolean formula.
- Can be done with a CNF of size 2^{q}
- Converting to 3CNF we get a formula of size $q \cdot 2^{q}$
(3) Let φ_{x} be the 3 CNF we get by putting together all the 3CNFs constructed above
(9) If $x \in L$ then there is a witness w such that $V(x, w)$ accepts for every random string R. In this case, φ_{x} is satisfiable!

PCP and Approximability of Max SAT

(1) Enumerate all random inputs R for the verifier V.

- Length of each random string is $O(\log n)$, by definition. So number of such random inputs is poly (n).
- For each R, V chooses q positions $i_{1}^{R}, \ldots, i_{q}^{R}$ and a boolean function $f_{R}:\{0,1\}^{q} \rightarrow\{0,1\}$ and accepts iff $f_{R}\left(w_{i_{1}^{R}}, \ldots, w_{i_{q}^{R}}\right)=1$.
(2) Simulate the computation f_{R} of the verifier for different random inputs R and witnesses w as a Boolean formula. $f_{R}\left(w_{i p}, \ldots, w\right)=0$
- Can be done with a CNF of size 2^{q}
- Converting to 3CNF we get a formula of size $q \cdot 2^{q}$
(3) Let φ_{x} be the 3CNF we get by putting together all the 3CNFs constructed above
(9) If $x \in L$ then there is a witness w such that $V(x, w)$ accepts for every random string R. In this case, φ_{x} is satisfiable! m Clewes
(5) If $x \notin L$ then the verifier says NO for half of the random strings R.
- For each such random string, at least one of its clauses fails
- Thus at least $\varepsilon=\frac{1}{2} \cdot\left(\frac{1}{q \cdot 2^{q}}\right)$ of the clauses of φ_{x} fails. $\left(1-\frac{1}{2 \cdot 1 \cdot 21}\right) \mathrm{m}$

Digested Proof of Theorem

Digested Proof of Theorem

Conclusion

- Important to study hardness of approximation for NP-hard problems

Conclusion

- Important to study hardness of approximation for NP-hard problems
- Different hard problems have different approximation parameters

Conclusion

- Important to study hardness of approximation for NP-hard problems
- Different hard problems have different approximation parameters
- For hardness of approximation, need more robust reductions between combinatorial problems

Conclusion

- Important to study hardness of approximation for NP-hard problems
- Different hard problems have different approximation parameters
- For hardness of approximation, need more robust reductions between combinatorial problems
- Proof systems, in particular Probabilistic Checkable Proofs, allows us to get such strong reductions

Conclusion

- Important to study hardness of approximation for NP-hard problems
- Different hard problems have different approximation parameters
- For hardness of approximation, need more robust reductions between combinatorial problems
- Proof systems, in particular Probabilistic Checkable Proofs, allows us to get such strong reductions
- Many more applications in computer science and industry!
- Program Checking (for software engineering)
- Zero-knowledge proofs in cryptocurrencies
- many more...

Acknowledgement

- Lecture based largely on:
- Section's 1-3 of Luca's survey [Trevisan 2004]
- [Motwani \& Raghavan 2007, Chapter 7]
- See Luca's survey https://arxiv.org/pdf/cs/0409043

References I

Trevisan, Luca (2004)
Inapproximability of combinatorial optimization problems.
arXiv preprint cs/0409043 (2004).
Motwani, Rajeev and Raghavan, Prabhakar (2007)
Randomized Algorithms
Arora, Sanjeev, and Shmuel Safra (1998)
Probabilistic checking of proofs: A new characterization of NP.
Journal of the ACM (JACM) 45, no. 1 (1998): 70-122.
(Arora, Sanjeev, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy (1998)

Proof verification and the hardness of approximation problems.
Journal of the ACM (JACM) 45, no. 3 (1998): 501-555.

