Lecture 18: Hardness of Approximation

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

November 16, 2020

1/90

Overview

@ Background and Motivation
e Why Hardness of Approximation?
o How do we prove Hardness of Approximation?
e Hardness of Approximation - Example

@ Proofs & Hardness of Approximation

@ Conclusion

@ Acknowledgements

2/90

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
problems were much harder to solve than others
Jenhn Mash

Ge ol

researchers from many areas noticed that certain combinatorial

—5 Um Aeume hwn
Jeham

(i

/ othuc
0 TCS ot CO

Ca"MlDinQ fen-ol
inach bl prabens ooy ot

P"L&'Obmm

3/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

4/90

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer

5/90

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
o design (always) efficient algorithm, but finds sub-optimal solutions

Approximation Algorithms

6/90

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
o design (always) efficient algorithm, but finds sub-optimal solutions
Approximation Algorithms
e For @ > 1, an algorithm is a-approximate for a minimization

(maximization) problem if on every input instance the algorithm finds a
solution with cost < a- OPT (> 1. OPT).

Al polu tisns

< otoPY

-

oP 7/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
o design (always) efficient algorithm, but finds sub-optimal solutions
Approximation Algorithms
e For @ > 1, an algorithm is a-approximate for a minimization
(maximization) problem if on every input instance the algorithm finds a
solution with cost < a- OPT (> 1. OPT).
@ For some problems, it is possible to prove that even the design of
approximation algorithms for certain values of « is impossible, unless
P = NP (in which case we would have an exact algorithm).

Hardness of Approximation
- owﬂo\limakm ? C) QXM*% nkve 8

8/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Why Study Hardness of Approximation?

@ Since the 50s and 60s (before we “formally knew” about NP)
researchers from many areas noticed that certain combinatorial
problems were much harder to solve than others

@ What do we do when we see such a hard problem?

e design algorithm which is efficient on “most” instances and always
gives us the exact/best answer
o design (always) efficient algorithm, but finds sub-optimal solutions
Approximation Algorithms
e For @ > 1, an algorithm is a-approximate for a minimization
(maximization) problem if on every input instance the algorithm finds a
solution with cost < a- OPT (> 1. OPT).
@ For some problems, it is possible to prove that even the design of
approximation algorithms for certain values of « is impossible, unless
P = NP (in which case we would have an exact algorithm).

Hardness of Approximation
@ Important to know the limits of efficient algorithms!

9/90

Background and Motivation

e How do we prove Hardness of Approximation?

Proofs & Hardness of Approximation

Conclusion

Acknowledgements

10/90

How do we Prove Hardness of Approximation?

@ When we prove that a combinatorial problem C is NP-hard, we
usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

11/90

How do we Prove Hardness of Approximation?

@ When we prove that a combinatorial problem C is NP-hard, we
usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

e maps every YES instance of L to a YES instance of C
e maps every NO instance of L to a NO instance of C

Se .',(we haol on ol%en'i'hwl +uet Aclves e'
then Hhin ol gouthw wonlol elso atve L'

(/u'u o the seducliom munt be mvm.u)

12/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

How do we Prove Hardness of Approximation?

@ When we prove that a combinatorial problem C is NP-hard, we
usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

e maps every YES instance of L to a YES instance of C
e maps every NO instance of L to a NO instance of C

@ Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)

e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a NO instance of CLIQUE

H @ n O beeleowm »6mvrwea, Hen we woudel
wop @ to queph G, that hed b - cligme

in oo @17 noirn%a‘\:h_ @ — (84 k) VES
j'f W nt /)a‘l'\'/l{(aut, we (,MA-eDI wmep 4 b

(H({’k\ WM Hq "IM C(.W Ofl)l'l—(ﬁi)k-l.

13/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

How do we Prove Hardness of Approximation?

@ When we prove that a combinatorial problem C is NP-hard, we

usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

e maps every YES instance of L to a YES instance of C
e maps every NO instance of L to a NO instance of C

@ Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)

e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a NO instance of CLIQUE

14 /90

How do we Prove Hardness of Approximation?

@ When we prove that a combinatorial problem C is NP-hard, we
usually pick our favorite NP-complete combinatorial problem L and
we show a reduction that

e maps every YES instance of L to a YES instance of C
e maps every NO instance of L to a NO instance of C

@ Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)

e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a NO instance of CLIQUE

@ For hardness of approximation what we would like is a (more robust)
reduction of the form:

15/90

How do we Prove Hardness of Approximation?
(Ggik) YES o CUeIE
¢ (Hq) ¥) VERY MYCH MO HQ s u/s-clf
MAX-CLiOUE: inpud quph G, owtput mavimm clign €6
@ Let's do this for the CLIQUE problem. Input for CLIQUE is (G, k)

e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a NO instance of CLIQUE

@ For hardness of approximation what we would like is a (more robust)
reduction of the form:

e maps every YES instance of SAT to a YES instance of CLIQUE
e maps every NO instance of SAT to a VERY-MUCH-NO instance of
CLIQUE

(QUE
hao 2- oppueximelim N /«W("cuou »
MAX-CLI'GW-(G\O —> have & 14/1 Co?,w\ ”
MAX-CL.-QUT»(HQ) — hawve o<l cl.rw\

16 /90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Background and Motivation

e Hardness of Approximation - Example

Proofs & Hardness of Approximation

Conclusion

Acknowledgements

17/90

Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function

d:XXX—>]R20

18/90

Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function
d: XxX— RZO

@ For any path pg — p1 — -+ — p: in X, length of the path is sum of

distances traveled .
tf

> d(pi,pit1)

i=0

19/90

Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function
d: XxX—]RZO

@ For any path pg — p1 — -+ — p: in X, length of the path is sum of
distances traveled

-1
> d(pi,pit1)
i=0

@ QOutput: find a cycle that reaches all points in X of shortest length.

20/90

Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function
d: XxX—]RZO

@ For any path pg — p1 — -+ — p: in X, length of the path is sum of
distances traveled

-1
> d(pi,pit1)
i=0

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

o Efficient route planning (mail system, shuttle bus pick up and drop
off...)

21/90

Traveling Salesman Problem

@ Input: set of points X and a symmetric distance function
d: XxX—]RZO

@ For any path pg — p1 — -+ — p: in X, length of the path is sum of
distances traveled

-1
> d(pi,pit1)
i=0

Output: find a cycle that reaches all points in X of shortest length.

Definitely a problem we would like to solve

o Efficient route planning (mail system, shuttle bus pick up and drop
off...)

@ One of the famous NP-complete problems

22/90

Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)

23/90

Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)

o if P # NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.

24/90

Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)
o if P # NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
e More generally, if there is any function r : N — N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P % NP

25/90

Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)
o if P # NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
e More generally, if there is any function r : N — N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P % NP

@ How does one prove any such hardness of approximation?
By reduction # another NP-hard problem.

i

26/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hardness of Approximation - TSP

@ General TSP without repetitions (General TSP-NR)
o if P # NP then there is no poly-time constant-approximation algorithm
for General TSP-NR.
e More generally, if there is any function r : N — N such that r(n)
computable in polynomial time, then it is hard to r(n)-approximate
General TSP-NR if we assume that P % NP

@ How does one prove any such hardness of approximation?
By reduction to another NP-hard problem.

© In our case, let's reduce it to the Hamiltonian Cycle Problem

If there is an algorithm M which solves TSP without repetitions with
a-approximation, then P = NP.

27/90

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

28/90

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that

—
Honni Pomiam TSP
:gd{ @yubllm

29/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that
o All edges {u,v} € F (thatis, H is the complete graph on V)

30/90

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that
o All edges {u,v} € F (thatis, H is the complete graph on V)

1, if {u,v} e E
(1+a)-|V|, f{uv}€E

o w(u,v)=

31/90

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that
o All edges {u,v} € F (thatis, H is the complete graph on V)

1, if {u,v} e E
(14+a)-|V|, if{uv}€E
@ If G has a Hamiltonian Cycle, then OPT for the TSP is of value < |V/|

orT (W) < IVl

o w(u,v)=

32/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that
o All edges {u,v} € F (thatis, H is the complete graph on V)

1, if {u,v} e E
(14+a)-|V|, if{uv}€E
@ If G has a Hamiltonian Cycle, then OPT for the TSP is of value < |V/|

@ If G has no Hamiltonian Cycle, then OPT for TSP must use an edge
not in V/, thus value is > (14 «) - |V/|
DR |

OPT(H) = weight ¢ WS¢ € = (

o w(u,v)=

33/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Hardness of Approximation

© Hamiltonian Cycle Problem: given a graph G(V/, E), decide
whether there exists a cycle C which passes through every vertex at
most once.

@ If we had an algorithm M which solved the a-approximate TSP
without repetition problem, then

o from graph G(V/, E), construct weighted graph H(V, F, w) such that
o All edges {u,v} € F (thatis, H is the complete graph on V)

1, if {u,v} e E

(1+a)-|V|, f{uv}€E

@ If G has a Hamiltonian Cycle, then OPT for the TSP is of value < |V/|

@ If G has no Hamiltonian Cycle, then OPT for TSP must use an edge
not in V/, thus value is > (14 «) - |V/|

© Thus, M on input H will output a Hamiltonian Cycle of G, if G has
one, or it will output a solution with valgg_z (1+a)-|V|

npula ey ta;(m oy, | €W

o w(u,v)=

weipht > (hlIvl

34/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Discussion of Proof

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

@ Proofs & Hardness of Approximation

36/90

Complexity Classes

@ NP: Set of languages L C {0,1}* such that there exists a poly-time

Turing Machine V/, such that:

xeledwe {0,1s.t. V(ix,¢) =1
w

w & witnem thad X in ia 44 Mh?ﬂo.}(

poly OV
(=> 3 wedal At v(x,w) =1
X € 7:“_

() i
XJL = Ywe {O,,[m FRE \l(v,w) -0

37/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Complexity Classes

@ NP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine V/, such that:

xeledwe{0,1}PVID st v(x,y)=1

@ BPP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine M, such that:

xelL& Pr [M(x,R) =1]>2/3
Re{0,1}poly(Ix]) - =

K(- Jtandom Afru'ng unedl bg Jhe nowebm;

200l @lsaliwﬁ\

38/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Complexity Classes

@ NP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine V/, such that:

x € L 3w e {0, 1}p0|y(\><\) st. V(x,y)=1

@ BPP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine M, such that:
xelLs [M(x,R)=1]>2/3
Re{0, 1}poly(\X\
@ RP: Set of languages L C {0, 1}* such that there exists a poly-time
Turing Machine M, such that:
- xel= [M(x,R)=1]>2/3
Re{0, 1}poly(\X\
- x¢L= PrI(H)[(x,R)=1]=0
Re{0,1}poly(lx
. Ml ovLan
Randemi ud dgmi-"nm with M

39/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Complexity Classes

@ NP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine V/, such that:

x € L 3w e {0, 1}p0|y(\><\) st. V(x,y)=1

@ BPP: Set of languages L C {0,1}* such that there exists a poly-time
Turing Machine M, such that:
xelLs Pr [M(x,R) =1]>2/3
Re{0,1}poly(Ix])

@ RP: Set of languages L C {0, 1}* such that there exists a poly-time
Turing Machine M, such that:

xel= [M(x,R)=1]>2/3

Pr
Re{0,1}poly(Ix])
x¢L= Pr [M(x,R)=1]=0
Re{0,1}pely(Ix])

@ co-RP: languages L C {0,1}* s.t. L € RP

40/90

Proof Systems
A proof system looks like this:

41/90

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification

42/90

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")

43/90

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")

© A prover writes down a proof of the statement

44 /90

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")
© A prover writes down a proof of the statement
@ The verifier uses an algorithm of their choice to check the statement
and proof, and accepts or rejects accordingly.

45/90

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")
© A prover writes down a proof of the statement
@ The verifier uses an algorithm of their choice to check the statement

and proof, and accepts or rejects accordingly.
© NP as a proof system:

o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine

46 /90

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")
© A prover writes down a proof of the statement
@ The verifier uses an algorithm of their choice to check the statement
and proof, and accepts or rejects accordingly.
© NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine

o Given an element-x, the prover gives a proof (also known as witness)
w € {0, 1 4"\&" X
wilner cem be "‘3"8“ "(o M

n .IAMW

47/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Proof Systems

A proof system looks like this:
@ A prover and a verifier agree on the following:
e The prover must provide proofs in a certain format
e The verifier can use algorithms from a certain complexity class for
verification
@ A statement is given to both prover and verifier (for instance “Graph
G(V, E) has a Hamiltonian Cycle")
© A prover writes down a proof of the statement
@ The verifier uses an algorithm of their choice to check the statement
and proof, and accepts or rejects accordingly.
© NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine
o Given an element x, the prover gives a proof (also known as witness)
= {071}pdy0XD
o Verifier picks a poly-time Turing Machine V' and outputs

TRUE, if V(x,w)=1 \ cheechs thet M ie
FALSE, otherwise covuet fon 3 opat

48/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):

49/90

Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):
o Completeness: correct statements have a proof in the system

50 /90

Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):

o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system

51/90

Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):

o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system

@ NP as a proof system:

o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine

52/90

Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):

o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system

@ NP as a proof system:

o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine

o Given an element x, the prover gives a proof (also known as witness)
w e {0, 1}poly(|X|)

53/90

Proof Systems - Completeness and Soundness

How good is a proof system?

© Two parameters (aside from efficiency):
o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system

@ NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing

Machine
o Given an element x, the prover gives a proof (also known as witness)

w e {0, 1}poly(|X|)
o Verifier picks a poly-time Turing Machine V' and outputs

TRUE, if V(x,w) =1
FALSE, otherwise

54/90

Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):
o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system
@ NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine
o Given an element x, the prover gives a proof (also known as witness)
w e {071}pdy0XD
o Verifier picks a poly-time Turing Machine V' and outputs
TRUE, if V(x,w) =1
FALSE, otherwise
o Completeness: x € L = 3w € {0,1}PY(XD) such that V(x,w) =1
Covmed 3o D
Atakwend p"‘”{ Couged

55/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Proof Systems - Completeness and Soundness

How good is a proof system?
© Two parameters (aside from efficiency):
o Completeness: correct statements have a proof in the system
e Soundness: false statements do not have a proof in the system
@ NP as a proof system:
o L C{0,1}" is the language, verifier can use any poly-time Turing
Machine
Given an element x, the prover gives a proof (also known as witness)
w e {0, 1}pol(Ix))
o Verifier picks a poly-time Turing Machine V' and outputs
{TRUE, if V(x,w) =1

FALSE, otherwise

Completeness: x € L = 3w € {0,1}PY(XD) such that V(x,w) =1
Soundness: x ¢ L = Yw € {0,1}P°Y(X) we have V(x,w) = 0

— N
ible va oy wid
plme e
Ao

56 /90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Interactive Proofs: Complexity Classes

The above discussion motivates us to define complexity classes in terms of
proof systems!

57/90

Interactive Proofs: Complexity Classes

The above discussion motivates us to define complexity classes in terms of
proof systems!

Definition (Interactive Proof Systems)

The class IP consists of all languages L that have an interactive proof
system (P, V) where

58 /90

Interactive Proofs: Complexity Classes

The above discussion motivates us to define complexity classes in terms of
proof systems!

Definition (Interactive Proof Systems)

The class IP consists of all languages L that have an interactive proof
system (P, V) where

@ the verifier V is a randomized, polynomial time algorithm

@ there is an honest prover P (who can be all powerful)
‘ ‘cient
o 3%'.‘ x el P ustid ¢t
P howat (] g0 tom P fabx

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Interactive Proofs: Complexity Classes

The above discussion motivates us to define complexity classes in terms of
proof systems!

Definition (Interactive Proof Systems)

The class IP consists of all languages L that have an interactive proof
system (P, V) where

@ the verifier V is a randomized, polynomial time algorithm

@ there is an honest prover P (who can be all powerful)

@ for any x € {0,1}* J
o x € L= for an honest prover P, XEL 3 V‘
azup‘!

PriV(x,P)=1] =1

° X %L = for any prover P’,

G"Jdmaj A
ONE-5DED E2RON

PrV(x, P) =1] <1/2

60 /90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

61/90

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistc proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)

62 /90

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistc proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)
@ x € L = there exists proof w such that Pr[V(x,w) =1] =1

63/90

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistc proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)
@ x € L = there exists proof w such that Pr[V(x,w) =1] =1
@ x ¢ L = for any proof w, we have Pr[V(x,w) =1] <1/2

64/90

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistc proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)
@ x € L = there exists proof w such that Pr[V(x,w) =1] =1
@ x ¢ L = for any proof w, we have Pr[V(x,w) =1] <1/2

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that
have a randomized poly-time verifier V' such that

65 /90

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistc proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)
@ x € L = there exists proof w such that Pr[V(x,w) =1] =1
@ x ¢ L = for any proof w, we have Pr[V(x,w) =1] <1/2

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that
have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V(x,w) =1] =1

66 /90

Probabilistic Proof Systems

What if we allow our verifier to run a randomized algorithm?

Definition (Probabilistic Proof System)

In a probabilistc proof system, the verifier has a randomized algorithm V
for which:

@ Given language L (the language of correct statements)
@ x € L = there exists proof w such that Pr[V(x,w) =1] =1
@ x ¢ L = for any proof w, we have Pr[V(x,w) =1] <1/2

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs consists of languages L that
have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V(x,w) =1] =1
@ x & L = for any proof w, we have Pr[V(x,w) =1] <1/2

67 /90

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V(x,w) =1] =1
@ x & L = for any proof w, we have Pr[V(x,w) =1] <1/2

68 /90

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V(x,w) =1] =1
@ x & L = for any proof w, we have Pr[V(x,w) =1] <1/2

e PCP[r(n), q(n)] consists of all languages L € PCP such that, on
inputs of length n

69 /90

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V(x,w) =1] =1
@ x & L = for any proof w, we have Pr[V(x,w) =1] <1/2

e PCP[r(n), q(n)] consists of all languages L € PCP such that, on
inputs of length n

V @ Uses O(r(n)) random bits
@ Examines O(q(n)) bits of a proof w

70/90

Rafael Oliveira

Rafael Oliveira

Quantifying Probabilistic Proof Systems

Definition (Probabilistic Checkable Proofs (PCPs))

The class of Probabilistic Checkable Proofs (PCP) consists of languages L
that have a randomized poly-time verifier V' such that

@ x € L = there exists proof w such that Pr[V(x,w) =1] =1
@ x & L = for any proof w, we have Pr[V(x,w) =1] <1/2

e PCP[r(n), q(n)] consists of all languages L € PCP such that, on

inputs of length n olon 't necal +o
@ Uses O(r(n)) random bits) L et (’/nh'fb’*
@ Examines O(q(n)) bits of a proof w =7

prosf’

Theorem (PCP theorem [AS'98, ALM&S'98])

PCP[Iog n 1] =

I\‘
V. [T, 8) p £

71/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

PCP and Approximability of Max SAT

Theorem
© The PCP theorem implies that there is an € > 0 such that there is no
polynomial time (1 + &)-approximation algorithm for Max 3SAT,
unless P = NP.
@ Moreover, if Max 3SAT is hard to approximate within a factor of
(1+¢€), then the PCP theorem holds.

@ In other words, the PCP theorem and the hardness of approximation
of Max 3SAT are equivalent.

/\ <O‘V01 VaA)

72/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

PCP and Approximability of Max SAT

@ Let us assume the PCP theorem holds.

o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where q is a constant
e

n(»)

73/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

PCP and Approximability of Max SAT

@ Let us assume the PCP theorem holds.

o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where q is a constant

@ We now describe a reduction from L to Max 3SAT which has a gap.

74/90

PCP and Approximability of Max SAT

@ Let us assume the PCP theorem holds.
o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where g is a constant
@ We now describe a reduction from L to Max 3SAT which has a gap.

© Given an instance x of problem L, we construct 3CNF formula ¢y
with m clauses such that, for some € we have
y/ clanu,)

o x € L= ¢, is satisfiable (Aa-l infrta m
e x ¢ L = no assignment satisfies more than (1 — &) - m clauses of o,

75/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

PCP and ApprOX|mab|I|ty of Max SAT

v(x, R

@ Let us assume the PCP theorem holds.
o Let L € PCP[log n,1] be an NP-complete problem.
o Let V be the (O(logn), q) verifier for L, where g is a constant
@ We now describe a reduction from L to Max 3SAT which has a gap.

© Given an instance x of problem L, we construct 3CNF formula ¢y
with m clauses such that, for some £ we have

e x € L= ¢, is satisfiable
e x ¢ L = no assignment satisfies more than (1 —) - m clauses of @y

0 Enumerate all random inputs R for the verifier V.

4"0 Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).

-"V’ o F s g positions(i{y, ... and a boolean function
{fR {0, 1}‘7 — {0, 1} [and accepts ifR(W,-lR. ~wir) =1
-

76 /90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

PCP and Approximability of Max SAT

© Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of

such random inputs is poly(n).
o For each R, V chooses g positions if, ..., ¥ and a boolean function

fr : {0,1}9 — {0,1} and accepts iff fr(wer, ..., w;r) = 1.

polyln) meve fumctiyn

77/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

PCP and Approximability of Max SAT

© Enumerate all random inputs R for the verifier V.

o Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
R

o For each R, V chooses g positions if*, ..., ig R and a boolean function

fr : {0,1}9 — {0,1} and accepts iff fr(w;r, ..., ,q) =1

@ Simulate the computation fg of the verifier for different random
inputs R and witnesses w as a Boolean formula.

e Can be done with a CNF of size 29
e Converting to 3CNF we get a formula of size
5 Yrioc tice ry'wbl!/m

/\(0V - V&e) - /\(Q'VQW%)

/\ Ca;lu@;1vaix

78/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

PCP and Approximability of Max SAT

© Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
o For each R, V chooses q positions if¥,... i and a boolean function

iy
fr : {0,1}9 — {0,1} and accepts iff fr(w;z, ..., W,-‘;?) =1

@ Simulate the computation| fg of the verifier for different random
inputs R and witnesses w as a Boolean formula.

e Can be done with a CNF of size 29
e Converting to 3CNF we get a formula of sizel q-29

© Let ¢, be the 3CNF we get by putting together all the 3CNFs
constructed above

79/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

PCP and Approximability of Max SAT

© Enumerate all random inputs R for the verifier V.
o Length of each random string is O(log n), by definition. So number of

such random inputs is poly(n).
o For each R, V chooses g positions if, ..., ¥ and a boolean function

fr : {0,1}9 — {0,1} and accepts iff fr(w;r, ..., W,-‘;?) =1
@ Simulate the computation fg of the verifier for different random
inputs R and witnesses w as a Boolean formula.
e Can be done with a CNF of size 29
e Converting to 3CNF we get a formula of size g - 29

© Let ¢, be the 3CNF we get by putting together all the 3CNFs
constructed above

© If x € L then there is a witness w such that V/(x, w) accepts for every
random string R. In this case, px is satisfiable!

80 /90

PCP and Approximability of Max SAT

© Enumerate all random inputs R for the verifier V.

o Length of each random string is O(log n), by definition. So number of
such random inputs is poly(n).
R

o For each R, V chooses q positions if¥,... i and a boolean function

g
fr : {0,1}9 — {0, 1} and accepts iff fr(wp, ..., Wi§) =1
imulate the computation fr of the verifier for different random
inputs R and witnesses w as a Boolean formula. “{K(w”;)y, w) =0

e Can be done with a CNF of size 29 ™~ @ e
o Converting to 3CNF we get a formula of siz iy la M ¢

© Let ¢, be the 3CNF we get by putting together all the 3CNFs
constructed above
© If x € L then there is a witness w such that V/(x, w) accepts for every
random string R. In this case, @y is satisfiable! "M Clowass
@ If x & L then the verifier says NO for half of the random strings R.
e For each such randomrs

ing, at least one of its clauses fails \M

o Thus at least ¢ =

2t : of the clauses of ¢, fails. (" ?.';.11
(AT A

81/90

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Rafael Oliveira

Digested Proof of Theorem

Digested Proof of Theorem

Conclusion

@ Important to study hardness of approximation for NP-hard problems

84/90

Conclusion

@ Important to study hardness of approximation for NP-hard problems

@ Different hard problems have different approximation parameters

85 /90

Conclusion

@ Important to study hardness of approximation for NP-hard problems
@ Different hard problems have different approximation parameters

@ For hardness of approximation, need more robust reductions between
combinatorial problems

86 /90

Conclusion

Important to study hardness of approximation for NP-hard problems
Different hard problems have different approximation parameters

For hardness of approximation, need more robust reductions between
combinatorial problems

Proof systems, in particular Probabilistic Checkable Proofs, allows us
to get such strong reductions

87/90

Conclusion

@ Important to study hardness of approximation for NP-hard problems

@ Different hard problems have different approximation parameters

@ For hardness of approximation, need more robust reductions between
combinatorial problems

@ Proof systems, in particular Probabilistic Checkable Proofs, allows us
to get such strong reductions

@ Many more applications in computer science and industry!

e Program Checking (for software engineering)
e Zero-knowledge proofs in cryptocurrencies
@ many more...

88 /90

Acknowledgement

@ Lecture based largely on:

o Section’s 1-3 of Luca’s survey [Trevisan 2004]
o [Motwani & Raghavan 2007, Chapter 7]

@ See Luca's survey https://arxiv.org/pdf/cs/0409043

89 /90

https://arxiv.org/pdf/cs/0409043

References |

ﬁ Trevisan, Luca (2004)
Inapproximability of combinatorial optimization problems.
arXiv preprint cs/0409043 (2004).

ﬁ Motwani, Rajeev and Raghavan, Prabhakar (2007)
Randomized Algorithms

ﬁ Arora, Sanjeev, and Shmuel Safra (1998)
Probabilistic checking of proofs: A new characterization of NP.
Journal of the ACM (JACM) 45, no. 1 (1998): 70-122.

ﬁ Arora, Sanjeev, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy
(1998)
Proof verification and the hardness of approximation problems.
Journal of the ACM (JACM) 45, no. 3 (1998): 501-555.

90 /90

	Background and Motivation
	Why Hardness of Approximation?
	How do we prove Hardness of Approximation?
	Hardness of Approximation - Example

	Proofs & Hardness of Approximation
	Conclusion
	Acknowledgements

