Lecture 14: Semidefinite Programming Relaxation and MAX-CUT

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

November 11, 2020

Overview

－Why Relax \＆Round？
－Max－Cut SDP Relaxation and Rounding
－Conclusion
－Acknowledgements

Motivation - NP-hard problems

- Many important problems are NP-hard to solve.

Motivation - NP-hard problems

- Many important problems are NP-hard to solve.
- What do we do when we see one?

Motivation - NP-hard problems

- Many important problems are NP-hard to solve.
- What do we do when we see one?
(1) Find approximate solutions in polynomial time!

Motivation - NP-hard problems

- Many important problems are NP-hard to solve.
- What do we do when we see one?
(1) Find approximate solutions in polynomial time!
(2) Sometimes we even do that for problems in P (but we want much much faster solutions)

Motivation - NP-hard problems

- Many important problems are NP-hard to solve.
- What do we do when we see one?
(1) Find approximate solutions in polynomial time!
- Integer Linear Program (ILP):

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } A x & \leq b \\
x & \in \mathbb{N}^{n}
\end{aligned}
$$

Motivation - NP-hard problems

- Many important problems are NP-hard to solve.
- What do we do when we see one?
(1) Find approximate solutions in polynomial time!
- Integer Linear Program (ILP):

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } A x & \leq b \\
x & \in \mathbb{N}^{n}
\end{aligned}
$$

- Advantage of ILPs: very expressive language to formulate optimization problems (capture many combinatorial optimization problems)

Motivation - NP-hard problems

- Many important problems are NP-hard to solve.
- What do we do when we see one?
(1) Find approximate solutions in polynomial time!
- Integer Linear Program (ILP):

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } A x & \leq b \\
x & \in \mathbb{N}^{n}
\end{aligned}
$$

- Advantage of ILPs: very expressive language to formulate optimization problems (capture many combinatorial optimization problems)
- Disadvantage of ILPs: capture even NP-hard problems (thus NP-hard)

Motivation - NP-hard problems

- Many important problems are NP-hard to solve.
- What do we do when we see one?
(1) Find approximate solutions in polynomial time!
- Integer Linear Program (ILP):

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } A x & \leq b \\
x & \in \mathbb{N}^{n}
\end{aligned}
$$

- Advantage of ILPs: very expressive language to formulate optimization problems (capture many combinatorial optimization problems)
- Disadvantage of ILPs: capture even NP-hard problems (thus NP-hard)
- But we know how to solve LPs. Can we get partial credit in life?

Motivation - NP-hard problems

- Quadratic Program (QP):

$$
\begin{array}{r}
\text { minimize } g(x) \\
\text { subject to } q_{i}(x) \geq 0
\end{array}
$$

where each $q_{i}(x)$ and $g(x)$ are quadratic functions on x.

Motivation - NP-hard problems

- Quadratic Program (QP):

$$
\begin{array}{r}
\text { minimize } g(x) \\
\text { subject to } q_{i}(x) \geq 0
\end{array}
$$

where each $q_{i}(x)$ and $g(x)$ are quadratic functions on x.

- Advantage of QPs: very expressive language to formulate optimization problems

Motivation - NP-hard problems

- Quadratic Program (QP):

$$
\begin{array}{r}
\text { minimize } g(x) \\
\text { subject to } q_{i}(x) \geq 0
\end{array}
$$

where each $q_{i}(x)$ and $g(x)$ are quadratic functions on x.

- Advantage of QPs: very expressive language to formulate optimization problems
- Disadvantage of QPs: capture even NP-hard problems (ILPs for instance)

Motivation - NP-hard problems

- Quadratic Program (QP):

$$
\begin{array}{r}
\text { minimize } g(x) \\
\text { subject to } q_{i}(x) \geq 0
\end{array}
$$

where each $q_{i}(x)$ and $g(x)$ are quadratic functions on x.

- Advantage of QPs: very expressive language to formulate optimization problems
- Disadvantage of QPs: capture even NP-hard problems (ILPs for instance)
- Can relax quadratic programs with SDPs

Motivation - NP-hard problems

- Quadratic Program (QP):

$$
\begin{array}{r}
\text { minimize } g(x) \\
\text { subject to } q_{i}(x) \geq 0
\end{array}
$$

where each $q_{i}(x)$ and $g(x)$ are quadratic functions on x.

- Advantage of QPs: very expressive language to formulate optimization problems
- Disadvantage of QPs: capture even NP-hard problems (ILPs for instance)
- Can relax quadratic programs with SDPs
- Can we get better approximations using SDPs instead of ILPs?

Motivation - NP-hard problems

- Quadratic Program (QP):

$$
\begin{array}{r}
\text { minimize } g(x) \\
\text { subject to } q_{i}(x) \geq 0
\end{array}
$$

where each $q_{i}(x)$ and $g(x)$ are quadratic functions on x.

- Advantage of QPs: very expressive language to formulate optimization problems
- Disadvantage of QPs: capture even NP-hard problems (ILPs for instance)
- Can relax quadratic programs with SDPs
- Can we get better approximations using SDPs instead of ILPs?
- Yes. Today we will see Max-Cut (more generally constraint satisfaction relaxations)

Motivation - NP-hard problems

- Quadratic Program (QP):

$$
\begin{array}{r}
\text { minimize } g(x) \\
\text { subject to } q_{i}(x) \geq 0
\end{array}
$$

where each $q_{i}(x)$ and $g(x)$ are quadratic functions on x.

- Advantage of QPs: very expressive language to formulate optimization problems
- Disadvantage of QPs: capture even NP-hard problems (ILPs for instance)
- Can relax quadratic programs with SDPs
- Can we get better approximations using SDPs instead of ILPs?
- Yes. Today we will see Max-Cut (more generally constraint satisfaction relaxations)
- Very impressive recent theoretical developments! Unique Games Conjecture, Sum-of-Squares, and more!

Example

Maximum Cut (Max-Cut):

$$
G(V, E) \text { graph. }
$$

Cut $S \subseteq V$ and size of cut is

$$
|E(S, \bar{S})|=|\{(u, v) \in E \quad \mid u \in S, v \notin S\}| .
$$

Goal: find cut of maximum size.

Example

Maximum Cut (Max-Cut):

$$
G(V, E) \text { graph. }
$$

Cut $S \subseteq V$ and size of cut is

$$
|E(S, \bar{S})|=|\{(u, v) \in E \quad \mid \quad u \in S, v \notin S\}|
$$

Goal: find cut of maximum size.
Integer Linear Program:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
x_{v} & \in\{0,1\} \text { for } v \in V
\end{aligned}
$$

Example - Weighted Variant

Maximum Cut (Max-Cut):

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Cut $S \subseteq V$ and weight of cut is the sum of weights of edges crossing cut. Goal: find cut of maximum weight.

Integer Linear Program:

$$
\operatorname{maximize} \sum_{e \in E} z_{e} \cdot w_{e}
$$

subject to $x_{u}+x_{v} \geq z_{e}$ for $e=\{u, v\} \in E$

$$
\begin{aligned}
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
x_{v} & \in\{0,1\} \text { for } v \in V
\end{aligned}
$$

Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:

[^0]
Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate optimization problem as QP^{1}

[^1]
Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate optimization problem as QP^{1}
(2) Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an SDP relaxation.

Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate optimization problem as QP^{1}
(2) Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an SDP relaxation.
(3) We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

$$
O P T(S D P) \geq O P T(I S D P)
$$

Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate optimization problem as QP^{1}
(2) Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an SDP relaxation.
(3) We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

$$
O P T(S D P) \geq O P T(I S D P)
$$

(9) Solve SDP (approximately) optimally using efficient algorithm.

[^2]
Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate optimization problem as QP^{1}
(2) Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

This is called an SDP relaxation.
(3) We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

$$
O P T(S D P) \geq O P T(I S D P)
$$

(9) Solve SDP (approximately) optimally using efficient algorithm.
(1) If solution to SDP is integral and one-dimensional, then it is a solution to QP and we are done

Relax... \& Round!

In our quest to get efficient (exact or approximate) algorithms for problems of interest, the following strategy is very useful:
(1) Formulate optimization problem as QP^{1}
(2) Derive SDP from the QP by going to higher dimensions and imposing PSD constraint

> This is called an SDP relaxation.
(3) We are still maximizing the same objective function, but over a (potentially) larger set of solutions.

$$
O P T(S D P) \geq O P T(I S D P)
$$

(9) Solve SDP (approximately) optimally using efficient algorithm.
(1) If solution to SDP is integral and one-dimensional, then it is a solution to QP and we are done
(2) If solution has higher dimension, then we have to devise rounding procedure that transforms
high dimensional solutions \rightarrow integral \& 1D solutions
rounded SDP solution value $\geq c \cdot O P T(Q P)$

[^3]
Analyzing ILP for Max-Cut

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Integer Linear Program:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
x_{v} & \in\{0,1\} \text { for } v \in V
\end{aligned}
$$

Analyzing ILP for Max-Cut

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Integer Linear Program:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
x_{v} & \in\{0,1\} \text { for } v \in V
\end{aligned}
$$

- $O P T(I L P)=1 \Leftrightarrow G$ is bipartite

Analyzing ILP for Max-Cut

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Integer Linear Program:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
x_{v} & \in\{0,1\} \text { for } v \in V
\end{aligned}
$$

- OPT $\operatorname{OLP})=1 \Leftrightarrow G$ is bipartite
- OPT $(I L P) \geq 1 / 2$

Analyzing ILP for Max-Cut

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Integer Linear Program:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
x_{v} & \in\{0,1\} \text { for } v \in V
\end{aligned}
$$

- $O P T(I L P)=1 \Leftrightarrow G$ is bipartite
- OPT $(I L P) \geq 1 / 2$
- G complete graph $\Rightarrow O P T=\frac{1}{2}+\frac{1}{2(n-1)}$

Analyzing ILP for Max-Cut

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Integer Linear Program:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
x_{v} & \in\{0,1\} \text { for } v \in V
\end{aligned}
$$

- $O P T(I L P)=1 \Leftrightarrow G$ is bipartite
- OPT $(I L P) \geq 1 / 2$
- G complete graph $\Rightarrow O P T=\frac{1}{2}+\frac{1}{2(n-1)}$
- Max-Cut NP-hard

Proof that $O P T(I L P) \geq 1 / 2$
Probabilistic method:
Pick $x_{v}=\left\{\begin{array}{lll}0 & \text { with probability } & 1 / 2 \\ 1 & \text { with probability } & 1 / 2\end{array}\right.$

$$
\begin{aligned}
& \mathbb{E}\left[z_{u v}\right]=1 / 2 \\
& \mathbb{E}[\text { value of cut }]=\sum \omega_{u v} \cdot \mathbb{E}\left[z_{u v}\right] \\
&=\frac{1}{2} \sum \omega_{u v}=\frac{1}{2}
\end{aligned}
$$

\therefore there is integral solution that is \geqslant average (expectation)

Rounding Max-Cut ILP

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Linear Program Relaxation:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
0 \leq x_{v} & \leq 1 \text { for } v \in V \\
0 \leq z_{e} & \leq 1 \text { for } e \in E
\end{aligned}
$$

Rounding Max-Cut ILP

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Linear Program Relaxation:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
0 \leq x_{v} & \leq 1 \text { for } v \in V \\
0 \leq z_{e} & \leq 1 \text { for } e \in E
\end{aligned}
$$

- Setting $x_{v}=1 / 2, z_{e}=1$ we get $\operatorname{OPT}(L P)$ always $=1$

Rounding Max-Cut ILP

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Linear Program Relaxation:

$$
\begin{aligned}
\text { maximize } & \sum_{e \in E} z_{e} \cdot w_{e} \\
\text { subject to } x_{u}+x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
2-x_{u}-x_{v} & \geq z_{e} \text { for } e=\{u, v\} \in E \\
0 \leq x_{v} & \leq 1 \text { for } v \in V \\
0 \leq z_{e} & \leq 1 \text { for } e \in E
\end{aligned}
$$

- Setting $x_{v}=1 / 2, z_{e}=1$ we get $\operatorname{OPT}(L P)$ always $=1$
- This relaxation is not helpful! :(
- Why Relax \& Round?
- Max-Cut SDP Relaxation and Rounding
- Conclusion
- Acknowledgements

Max-Cut

$$
G(V, E, w) \text { weighted graph. } \sum_{e \in E} w_{e}=1
$$

Quadratic Program:

$$
\begin{aligned}
& \text { maximize } \sum_{\{u, v\} \in E} \frac{1}{2} \cdot w_{u, v} \cdot\left(1-x_{u} x_{v}\right) \\
& \text { subject to } x_{v}^{2}=1 \text { for } v \in V
\end{aligned}
$$

SDP Relaxation [Delorme, Poljak 1993]

$$
G(V, E, w) \text { weighted graph, }|V|=n \text { and } \sum_{e \in E} w_{e}=1
$$

Semidefinite Program:

$$
\begin{aligned}
\text { maximize } & \sum_{\{u, v\} \in E} \frac{1}{2} \cdot w_{u, v} \cdot\left(1-y_{u}^{T} y_{v}\right) \\
\text { subject to }\left\|y_{v}\right\|_{2}^{2} & =1 \text { for } v \in V \\
y_{v} & \in \mathbb{R}^{d} \text { for } v \in V
\end{aligned}
$$

SDP Relaxation [Delorme, Poljak 1993]

$$
G(V, E, w) \text { weighted graph, }|V|=n \text { and } \sum_{e \in E} w_{e}=1
$$

Semidefinite Program:

$$
\text { maximize } \sum_{\{u, v\} \in E} \frac{1}{2} \cdot w_{u, v} \cdot\left(1-y_{u}^{T} y_{v}\right)
$$

subject to $\left\|y_{v}\right\|_{2}^{2}=1$ for $v \in V$

$$
y_{v} \in \mathbb{R}^{d} \text { for } v \in V \quad d \leq n
$$

- How is that an SDP?

$$
\begin{aligned}
& X_{i j}=y_{i}^{\top} y_{j} \quad \therefore \quad x=y^{\top} y \quad y=\left(\begin{array}{lll}
y_{1} y_{2} \cdots y_{n}
\end{array}\right) \\
& x_{i i}=y_{i}^{\top} y_{i}=\left\|y_{i}\right\|^{2}=1
\end{aligned}
$$

$$
\Leftrightarrow X<0 \text { and } X_{i i}=1 \quad \forall i \in[n]
$$

What is this SDP doing？

Figure 10．1：Vectors \vec{y}_{v} embedded onto a unit sphere in \mathbb{R}^{d} ．

What is this SDP doing?

Figure 10.1: Vectors \vec{y}_{v} embedded onto a unit sphere in \mathbb{R}^{d}.

- Let $\gamma_{u, v}=y_{u}^{T} y_{v}=\cos \left(y_{u}, y_{v}\right)$

What is this SDP doing?

Figure 10.1: Vectors \vec{y}_{v} embedded onto a unit sphere in \mathbb{R}^{d}.

- Let $\gamma_{u, v}=y_{u}^{T} y_{v}=\cos \left(y_{u}, y_{v}\right)$
- for any edge, want $\gamma_{u v} \approx-1$, as this maximizes our weight

What is this SDP doing?

Figure 10.1: Vectors \vec{y}_{v} embedded onto a unit sphere in \mathbb{R}^{d}.

- Let $\gamma_{u, v}=y_{u}^{T} y_{v}=\cos \left(y_{u}, y_{v}\right)$
- for any edge, want $\gamma_{u v} \approx-1$, as this maximizes our weight
- Geometrically, want vertices from our max-cut S to be as far away from the complement \bar{S} as possible

What is this SDP doing?

Figure 10.1: Vectors \vec{y}_{v} embedded onto a unit sphere in \mathbb{R}^{d}.

- Let $\gamma_{u, v}=y_{u}^{T} y_{v}=\cos \left(y_{u}, y_{v}\right)$
- for any edge, want $\gamma_{u v} \approx-1$, as this maximizes our weight
- Geometrically, want vertices from our max-cut S to be as far away from the complement \bar{S} as possible
- If all y_{v} 's are in a one-dimensional space, then we get original quadratic program
$O P T(S D P) \geq$ Weight of Maximum Cut

Example

Let's consider $G=K_{3}$ with equal weights on edges.

Example

Let's consider $G=K_{3}$ with equal weights on edges.

- Embed $y_{1}, y_{2}, y_{3} \in \mathbb{R}^{2} 120$ degrees apart in unit circle

Example
Let's consider $G=K_{3}$ with equal weights on edges.

- Embed $y_{1}, y_{2}, y_{3} \in \mathbb{R}^{2} 120$ degrees apart in unit circle
- We get:

$$
\begin{aligned}
& \text { OPT }(\text { SOP })=\sum_{i<j} \frac{1}{3} \cdot \frac{1}{2} \cdot(1-\cos (2 \pi / 3)) \\
& =3 \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot\left(1+\frac{1}{2}\right) \\
& =3 / 4
\end{aligned}
$$

$$
\cos (2 \pi / 3)=-\cos (\pi-2 \pi / 3)=-\cos (\pi / 3)=\frac{1}{2}
$$

Example

Let's consider $G=K_{3}$ with equal weights on edges.

- Embed $y_{1}, y_{2}, y_{3} \in \mathbb{R}^{2} 120$ degrees apart in unit circle
- We get:
- $O P T_{S D P}\left(K_{3}\right)=3 / 4$
- $O P T_{\text {max-cut }}\left(K_{3}\right)=2 / 3$

Example

Let's consider $G=K_{3}$ with equal weights on edges.

- Embed $y_{1}, y_{2}, y_{3} \in \mathbb{R}^{2} 120$ degrees apart in unit circle
- We get:
- $O P T_{S D P}\left(K_{3}\right)=3 / 4$
- $O P T_{\text {max-cut }}\left(K_{3}\right)=2 / 3$
- So we get approximation 8/9 (better than the LP relaxation)

Example

Let's consider $G=K_{3}$ with equal weights on edges.

- Embed $y_{1}, y_{2}, y_{3} \in \mathbb{R}^{2} 120$ degrees apart in unit circle
- We get:
- $O P T_{S D P}\left(K_{3}\right)=3 / 4$
- $O P T_{\text {max-cut }}\left(K_{3}\right)=2 / 3$
- So we get approximation 8/9 (better than the LP relaxation)
- Practice problem: try this with C_{5}.
should get ≈ 0.88

Max-Cut - Rounding

(1) Let $z_{u} \in \mathbb{R}^{n}$ be an optimal solution to our SDP

Max-Cut - Rounding

(1) Let $z_{u} \in \mathbb{R}^{n}$ be an optimal solution to our SDP
(2) How do we convert it into a cut?

Max-Cut - Rounding

(1) Let $z_{u} \in \mathbb{R}^{n}$ be an optimal solution to our SDP
(2) How do we convert it into a cut?
(3) Need to "pick sides"

Max-Cut - Rounding

(1) Let $z_{u} \in \mathbb{R}^{n}$ be an optimal solution to our SDP
(2) How do we convert it into a cut?
(3) Need to "pick sides"
(9) [Goemans, Williamson 1994]: Choose a random hyperplane though origin!

Max-Cut - Rounding

(1) Let $z_{u} \in \mathbb{R}^{n}$ be an optimal solution to our SDP
(2) How do we convert it into a cut?
(3) Need to "pick sides"
(9) [Goemans, Williamson 1994]: Choose a random hyperplane though origin!
(3) Choose normal vector $g \in \mathbb{R}^{n}$ from a Gaussian distribution.
(0) Set $x_{u}=\operatorname{sign}\left(g^{T} z_{u}\right)$ as our solution

Max-Cut - Rounding

(1) Let $z_{u} \in \mathbb{R}^{n}$ be an optimal solution to our SDP
(2) How do we convert it into a cut?
(3) Need to "pick sides"
(9) [Goemans, Williamson 1994]: Choose a random hyperplane though origin!
(5) Choose normal vector $g \in \mathbb{R}^{n}$ from a Gaussian distribution.
(6) Set $x_{u}=\operatorname{sign}\left(g^{T} z_{u}\right)$ as our solution

Figure 10.2: Vectors being separated by a hyperplane with normal \vec{g}.

Analysis of Rounding - Sketch

- Probability that edge $\{u, v\}$ crosses the cut is same as probability that z_{u}, z_{v} fall in different sides of hyperplane

$$
\operatorname{Pr}[\{u, v\} \text { crosses cut }]=\operatorname{Pr}\left[g \text { splits } z_{u}, z_{v}\right]
$$

Analysis of Rounding - Sketch

- Probability that edge $\{u, v\}$ crosses the cut is same as probability that z_{u}, z_{v} fall in different sides of hyperplane

$$
\operatorname{Pr}[\{u, v\} \text { crosses cut }]=\operatorname{Pr}\left[g \text { splits } z_{u}, z_{v}\right]
$$

- Looking at the problem in the plane:

Figure 10.3: The plane of two vectors being cut by the hyperplane
Plane ruts u, v different sides of cut.

Analysis of Rounding - Sketch

- Probability that edge $\{u, v\}$ crosses the cut is same as probability that z_{u}, z_{v} fall in different sides of hyperplane

$$
\operatorname{Pr}[\{u, v\} \text { crosses cut }]=\operatorname{Pr}\left[g \text { splits } z_{u}, z_{v}\right]
$$

- Looking at the problem in the plane:

Figure 10.3: The plane of two vectors being cut by the hyperplane

- Probability of splitting z_{u}, z_{v} :

$$
\begin{aligned}
\operatorname{Pr}[\{u, v\} \text { crosses cut }] & =\frac{\theta}{\pi}=\frac{\cos ^{-1}\left(z_{u}^{T} z_{v}\right)}{\pi}=\frac{\cos ^{-1}\left(\gamma_{u v}\right)}{\pi} \\
\mathbb{E}[\text { value of cut }] & =\sum_{\{u, v\} \in E} w_{u, v} \cdot \frac{\cos ^{-1}\left(\gamma_{u v}\right)}{\pi}
\end{aligned}
$$

Analysis of Rounding - Sketch

- Expected value of cut:

$$
\mathbb{E}[\text { value of cut }]=\sum_{\{u, v\} \in E} w_{u, v} \cdot \frac{\cos ^{-1}\left(\gamma_{u v}\right)}{\pi}
$$

Analysis of Rounding - Sketch

- Expected value of cut:

$$
\mathbb{E}[\text { value of cut }]=\sum_{\{u, v\} \in E} w_{u, v} \cdot \frac{\cos ^{-1}\left(\gamma_{u v}\right)}{\pi}
$$

- Recall that

$$
O P T_{S D P}=\sum_{\{u, v\} \in E} \frac{1}{2} \cdot w_{u, v} \cdot\left(1-z_{u}^{T} z_{v}\right)=\sum_{\{u, v\} \in E} \frac{1}{2} \cdot w_{u, v} \cdot\left(1-\gamma_{u v}\right)
$$

Analysis of Rounding - Sketch

- Expected value of cut:

$$
\mathbb{E}[\text { value of cut }]=\sum_{\{u, v\} \in E} w_{u, v} \cdot \frac{\cos ^{-1}\left(\gamma_{u v}\right)}{\pi}
$$

- Recall that

$$
O P T_{S D P}=\sum_{\{u, v\} \in E} \frac{1}{2} \cdot w_{u, v} \cdot\left(1-z_{u}^{T} z_{v}\right)=\sum_{\{u, v\} \in E} \frac{1}{2} \cdot w_{u, v} \cdot\left(1-\gamma_{u v}\right)
$$

- If we find α such that

$$
\frac{\cos ^{-1}\left(\gamma_{u v}\right)}{\pi} \geq \frac{1}{2}\left(1-\gamma_{u v}\right), \quad \text { for all } \gamma_{u v} \in[-1,1]
$$

Then we have an α-approximation algorithm!
(also need to prove concentration result)

Analysis of Rounding - Sketch

- Expected value of cut:

$$
\mathbb{E}[\text { value of cut }]=\sum_{\{u, v\} \in E} w_{u, v} \cdot \frac{\cos ^{-1}\left(\gamma_{u v}\right)}{\pi}
$$

- Recall that

$$
O P T_{S D P}=\sum_{\{u, v\} \in E} \frac{1}{2} \cdot w_{u, v} \cdot\left(1-z_{u}^{T} z_{v}\right)=\sum_{\{u, v\} \in E} \frac{1}{2} \cdot w_{u, v} \cdot\left(1-\gamma_{u v}\right)
$$

- If we find α such that

$$
\frac{\cos ^{-1}\left(\gamma_{u v}\right)}{\pi} \geq \frac{1}{2}\left(1-\gamma_{u v}\right), \quad \text { for all } \gamma_{u v} \in[-1,1]
$$

Then we have an α-approximation algorithm!

Theorem ([Goemans, Williamson 1994])

$\alpha=0.87856 \ldots$ works, and gives us our approximation algorithm.

Putting Everything Together

（1）Formulate Max－Cut problem as Quadratic Programming

Putting Everything Together

(1) Formulate Max-Cut problem as Quadratic Programming
(2) Derive SDP from the quadratic program SDP relaxation

Putting Everything Together

(1) Formulate Max-Cut problem as Quadratic Programming
(2) Derive SDP from the quadratic program SDP relaxation

Putting Everything Together

(1) Formulate Max-Cut problem as Quadratic Programming
(2) Derive SDP from the quadratic program
(3) We are still maximizing the same objective function (weight of cut), but over a (potentially) larger (higher-dimensional) set of solutions.

$$
O P T(S D P) \geq O P T(\text { Max-Cut })
$$

Putting Everything Together

(1) Formulate Max-Cut problem as Quadratic Programming
(2) Derive SDP from the quadratic program
(3) We are still maximizing the same objective function (weight of cut), but over a (potentially) larger (higher-dimensional) set of solutions.

$$
O P T(S D P) \geq O P T(\text { Max-Cut })
$$

(9) Solve SDP optimally using efficient algorithm.

Putting Everything Together

(1) Formulate Max-Cut problem as Quadratic Programming
(2) Derive SDP from the quadratic program
(3) We are still maximizing the same objective function (weight of cut), but over a (potentially) larger (higher-dimensional) set of solutions.

$$
O P T(S D P) \geq O P T(\text { Max-Cut })
$$

(4) Solve SDP optimally using efficient algorithm.
(1) If solution to SDP is integral and one dimensional, then it is a solution to Max-Cut and we are done

Putting Everything Together

(1) Formulate Max-Cut problem as Quadratic Programming
(2) Derive SDP from the quadratic program
(3) We are still maximizing the same objective function (weight of cut), but over a (potentially) larger (higher-dimensional) set of solutions.

$$
O P T(S D P) \geq O P T(\text { Max-Cut })
$$

(4) Solve SDP optimally using efficient algorithm.
(1) If solution to SDP is integral and one dimensional, then it is a solution to Max-Cut and we are done
(2) If have higher dimensional solutions, rounding procedure

Random Hyperplane Cut algorithm, with high probability we get

$$
\operatorname{cost}(\text { rounded solution }) \geq 0.878 \cdot O P T(S D P) \geq 0.878 \cdot O P T(\text { Max-Cut })
$$

Remarks

(1) SDPs are very powerful for solving (approximating) many hard problems

Remarks

(1) SDPs are very powerful for solving (approximating) many hard problems
(2) Recent and exciting work, driven by Unique Games Conjecture (UGC), shows that if UGC is true, then all these approximation algorithms are tight!
https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf

Remarks

(1) SDPs are very powerful for solving (approximating) many hard problems
(2) Recent and exciting work, driven by Unique Games Conjecture (UGC), shows that if UGC is true, then all these approximation algorithms are tight!
https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf
(3) Other applications in robust statistics, via the SDP \& Sum-of-Squares connection
https://arxiv.org/abs/1711.11581

Remarks

(1) SDPs are very powerful for solving (approximating) many hard problems
(2) Recent and exciting work, driven by Unique Games Conjecture (UGC), shows that if UGC is true, then all these approximation algorithms are tight!
https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf
(3) Other applications in robust statistics, via the SDP \& Sum-of-Squares connection

> https://arxiv.org/abs/1711.11581
(9) Connections to automated theorem proving
https://eccc.weizmann.ac.il/report/2019/106/

Remarks

(1) SDPs are very powerful for solving (approximating) many hard problems
(2) Recent and exciting work, driven by Unique Games Conjecture (UGC), shows that if UGC is true, then all these approximation algorithms are tight!
https://www.cs.cmu.edu/~anupamg/adv-approx/lecture24.pdf
(3) Other applications in robust statistics, via the SDP \& Sum-of-Squares connection
https://arxiv.org/abs/1711.11581
(9) Connections to automated theorem proving https://eccc.weizmann.ac.il/report/2019/106/
All of these are amazing final project topics!

Conclusion

- Mathematical programming - very general, and pervasive in (combinatorial) algorithmic life

Conclusion

- Mathematical programming - very general, and pervasive in (combinatorial) algorithmic life
- Mathematical Programming hard in general

Conclusion

- Mathematical programming - very general, and pervasive in (combinatorial) algorithmic life
- Mathematical Programming hard in general
- Sometimes can get SDP rounding!

Conclusion

- Mathematical programming - very general, and pervasive in (combinatorial) algorithmic life
- Mathematical Programming hard in general
- Sometimes can get SDP rounding!
- Solve SDP and round the solution

Conclusion

- Mathematical programming - very general, and pervasive in (combinatorial) algorithmic life
- Mathematical Programming hard in general
- Sometimes can get SDP rounding!
- Solve SDP and round the solution
- Deterministic rounding when solutions are nice
- Randomized rounding when things a bit more complicated
our rounding will "decrease dimension" and "make it integral".

Acknowledgement

- Lecture based largely on:
- Lecture 14 of Anupam Gupta and Ryan O'Donnell's Optimization class https://www.cs.cmu.edu/~anupamg/adv-approx/
- See their notes at
https://www.cs.cmu.edu/~anupamg/adv-approx/lecture14.pdf

References I

5 Delorme, Charles, and Svatopluk Poljak (1993)
Laplacian eigenvalues and the maximum cut problem.
Mathematical Programming 62.1-3 (1993): 557-574.
Goemans, Michel and Williamson, David 1994
0.879-approximation algorithms for Max Cut and Max 2SAT.

Proceedings of the twenty-sixth annual ACM symposium on Theory of computing. 1994

[^0]: ${ }^{1}$ Even more general mathematical program, so long as derive SDP from it.

[^1]: ${ }^{1}$ Even more general mathematical program, so long as derive SDP from it.

[^2]: ${ }^{1}$ Even more general mathematical program, so long as derive SDP from it.

[^3]: ${ }^{1}$ Even more general mathematical program, so long as derive SDP from it.

