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Mathematical Programming
Mathematical Programming deals with problems of the form

minimize f (x)

subject to g1(x) ≥ 0

...

gm(x) ≥ 0

x ∈ Rn

Very general family of problems.

Special case when all f , g1, . . . , gm are linear. Linear Programming

More general case: Semidefinite Programming
1 A1, . . . ,An,B ∈ Sm are m ×m symmetric matrices
2 Constraints:

x1 · A1 + · · ·+ xn · An � B

3 Minimize linear function cT x
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What is a Semidefinite Program?

Sm := Sm(R) space of all m ×m symmetric matrices (real entries)

A ∈ Sm is positive semidefinite (PSD), denoted A � 0 if
1 all eigenvalues of A are non-negative
2 A = Y TY for some Y ∈ Rd×m where d ≤ m
3 zTAz ≥ 0 for any z ∈ Rm

4 and more...
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What is a Semidefinite Program?

Sm := Sm(R) space of all m ×m symmetric matrices (real entries)

A ∈ Sm is positive semidefinite (PSD), denoted A � 0 if
1 all eigenvalues of A are non-negative
2 A = Y TY for some Y ∈ Rd×m where d ≤ m
3 zTAz ≥ 0 for any z ∈ Rm

4 and more...

Semidefinite Programming deals with problems of the form

minimize cT x

subject to x1 · A1 + · · ·+ xn · An � B

x ∈ Rn

Where we use C � D to denote that C − D � 0 (i.e., C − D is PSD).
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How does it generalize Linear Programming?

Linear Programming

minimize aT x

subject to Cx ≥ b

x ∈ Rn
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How does it generalize Linear Programming?

Linear Programming

minimize aT x

subject to Cx ≥ b

x ∈ Rn

Semidefinite Programming

minimize cT x

subject to x1 · A1 + · · ·+ xn · An � B

x ∈ Rn

Set Ai ’s to be diagonal matrices, and B = diag(b1, . . . , bm)
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Why should I care?

Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!
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Why should I care?

Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!

Semidefinite Programming is no different!

equilibrium analysis of dynamics and control (flight controls, robotics,
etc.)
robust optimization
statistics and ML
continuous games
software verification
filter design
quantum computation and information
automated theorem proving
packing problems
many more

See more here

https://windowsontheory.org/2016/08/27/

proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/
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Important Questions

minimize cT x

subject to x1 · A1 + · · ·+ xn · An � B

x ∈ Rn
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Important Questions

minimize cT x

subject to x1 · A1 + · · ·+ xn · An � B

x ∈ Rn

1 When is a Semidefinite Program feasible?
Is there a solution to the constraints at all?

2 When is a Semidefinite Program bounded?
Is there a minimum? Is the minimum achievable? Or is the minimum
−∞?

3 Can we characterize optimality?
How can we know that we found a minimum solution?
Do these solutions have nice description?
Do the solutions have small bit complexity?

4 How do we design efficient algorithms that find optimal solutions to
Semidefinite Programs?
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Spectrahedra
To understand SDPs, we need to understand their feasible regions, which
are called spectrahedra and described as Linear Matrix Inequalities (LMIs).
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To understand SDPs, we need to understand their feasible regions, which
are called spectrahedra and described as Linear Matrix Inequalities (LMIs).

Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

A0 +
n�

i=1

Aixi � 0,

where A0, . . . ,An are symmetric matrices.
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Spectrahedra
To understand SDPs, we need to understand their feasible regions, which
are called spectrahedra and described as Linear Matrix Inequalities (LMIs).

Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

A0 +
n�

i=1

Aixi � 0,

where A0, . . . ,An are symmetric matrices.

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMIs. In other words, it
can be defined as:

S =

�
x ∈ Rn |

n�

i=1

Aixi � B, Ai ,B ∈ Sm

�
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Example of Spectrahedron

Polyhedron:
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Example of Spectrahedron

Circle:
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Example of Spectrahedron

Hyperbola:
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Example of Spectrahedron

Elliptic curve:
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Projected Spectrahedron
For both LPs and SDPs, it is enough to obtain a linear projection of
spectrahedron (or polyhedron, if in LP).
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Projected Spectrahedron
For both LPs and SDPs, it is enough to obtain a linear projection of
spectrahedron (or polyhedron, if in LP).

Definition (Projected Spectrahedron)

A set S ∈ Rn is a projected spectrahedron if it has the form:

S =



x ∈ Rn | ∃y ∈ Rt s.t.

n�

i=1

Aixi +
t�

j=1

Bjyj � C , Ai ,Bj ,C ∈ Sm




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Projected Spectrahedron
For both LPs and SDPs, it is enough to obtain a linear projection of
spectrahedron (or polyhedron, if in LP).

Definition (Projected Spectrahedron)

A set S ∈ Rn is a projected spectrahedron if it has the form:

S =
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
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Example of Spectrahedron

Projection quadratic cone intersected with halfspace:

39 / 102

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




How do we test membership in the Spectrahedron?
To be able to optimize, we must be able to test whether a given point
x ∈ Rn is inside our spectrahedron

S =

�
x ∈ Rn |

n�

i=1

Aixi � B, Ai ,B ∈ Sm

�
.
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How do we test membership in the Spectrahedron?
To be able to optimize, we must be able to test whether a given point
x ∈ Rn is inside our spectrahedron

S =

�
x ∈ Rn |

n�

i=1

Aixi � B, Ai ,B ∈ Sm

�
.

Note that x ∈ S is (by definition) equivalent to

Z =
n�

i=1

Aixi − B � 0
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�
x ∈ Rn |
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i=1
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�
.

Note that x ∈ S is (by definition) equivalent to

Z =
n�

i=1

Aixi − B � 0

So, how do we efficiently check if Z � 0?
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S =

�
x ∈ Rn |

n�
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�
.

Note that x ∈ S is (by definition) equivalent to

Z =
n�

i=1

Aixi − B � 0

So, how do we efficiently check if Z � 0?
Symmetric Gaussian Elimination!
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How do we test membership in the Spectrahedron?
To be able to optimize, we must be able to test whether a given point
x ∈ Rn is inside our spectrahedron

S =

�
x ∈ Rn |

n�

i=1

Aixi � B, Ai ,B ∈ Sm

�
.

Note that x ∈ S is (by definition) equivalent to

Z =
n�

i=1

Aixi − B � 0

So, how do we efficiently check if Z � 0?
Symmetric Gaussian Elimination!
We will use following characterizations of PSDness of symmetric
A ∈ Sm

1 all eigenvalues of A are non-negative
2 A = LDLT for some L lower triangular and unit diagonal, D diagonal

and non-negative
3 zTAz ≥ 0 for any z ∈ Rm

4 Any principal minor of A has non-negative determinant
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How do we test membership in the Spectrahedron?

Input: symmetric matrix A ∈ Sm

Output: YES if A � 0, NO otherwise (and output z ∈ Rm such that
zTAz < 0)
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Output: YES if A � 0, NO otherwise (and output z ∈ Rm such that
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How do we test membership in the Spectrahedron?

Input: symmetric matrix A ∈ Sm

Output: YES if A � 0, NO otherwise (and output z ∈ Rm such that
zTAz < 0)

Our algorithm runs in time strongly polynomial.
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Part I
Why Semidefinite Programming?
Convex Algebraic Geometry

Part II
Duality Theory
Application: Control Theory

Conclusion

Acknowledgements
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Working with Symmetric Matrices

Definition (Frobenius Inner Product)

A,B ∈ Sm, define the Frobenius inner product as

�A,B� := tr[AB] =
�

i ,j

AijBij

This is the “usual inner product” if you think of the matrices as
vectors

Thus, have the norm

�A�2 =
�

�A,A� =
��

i ,j

A2
ij

With this norm, can talk about the polar dual to a given
spectrahedron S ⊆ Sm:

S◦ = {Y ∈ Sm | �Y ,X � ≤ 1, ∀X ∈ S}
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Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Where now:
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Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

minimize �C ,X �
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Where now:

the variables are encoded in a positive semidefinite matrix X ,
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Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Where now:

the variables are encoded in a positive semidefinite matrix X ,

each constraint is given by an inner product �Ai ,X � = bi

Note the similarity with LP standard primal. Can obtain LP standard
form by making X and Ai ’s to be diagonal
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Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Where now:

the variables are encoded in a positive semidefinite matrix X ,

each constraint is given by an inner product �Ai ,X � = bi

Note the similarity with LP standard primal. Can obtain LP standard
form by making X and Ai ’s to be diagonal

How is that an LMI though?
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Standard Primal Form

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0
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Example

minimize 2x11 + 2x12

subject to x11 + x22 = 1
�
x11 x12
x12 x22

�
� 0
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Semidefinite Programming Duality
Consider our SDP:

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0
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Semidefinite Programming Duality
Consider our SDP:

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

If we look at what happens when we multiply i th equality by a
variable yi :

t�

i=1

yi · �Ai ,X � =
t�

i=1

yi · bi ⇒
�

t�

i=1

yiAi , X

�
= yTb
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Semidefinite Programming Duality
Consider our SDP:

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

If we look at what happens when we multiply i th equality by a
variable yi :

t�

i=1

yi · �Ai ,X � =
t�

i=1

yi · bi ⇒
�

t�

i=1

yiAi , X

�
= yTb

Thus, if
t�

i=1

yiAi � C , then we have:

yTb =

�
t�

i=1

yiAi , X

�
≤ �C ,X �
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Semidefinite Programming Duality
Consider our SDP:

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

If we look at what happens when we multiply i th equality by a
variable yi :

t�

i=1

yi · �Ai ,X � =
t�

i=1

yi · bi ⇒
�

t�

i=1

yiAi , X

�
= yTb

Thus, if
t�

i=1

yiAi � C , then we have:

yTb =

�
t�

i=1

yiAi , X

�
≤ �C ,X �

yTb is a lower bound on the solution to our SDP!
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Semidefinite Programming Duality
Consider the following SDPs:

Primal SDP

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Dual SDP

maximize yTb

subject to
t�

i=1

yiAi � C

64 / 102

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Semidefinite Programming Duality
Consider the following SDPs:

Primal SDP

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Dual SDP

maximize yTb

subject to
t�

i=1

yiAi � C

From previous slide
t�

i=1

yiAi � C ⇒ yTb is a lower bound on value of Primal
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Semidefinite Programming Duality
Consider the following SDPs:

Primal SDP

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Dual SDP

maximize yTb

subject to
t�

i=1

yiAi � C

From previous slide
t�

i=1

yiAi � C ⇒ yTb is a lower bound on value of Primal

Thus, the optimal (maximum) value of dual LP lower bounds the
optimal (minimum) value of the Primal LP!
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Semidefinite Programming Duality
Consider the following SDPs:

Primal SDP

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Dual SDP

maximize yTb

subject to
t�

i=1

yiAi � C

From previous slide
t�

i=1

yiAi � C ⇒ yTb is a lower bound on value of Primal

Thus, the optimal (maximum) value of dual LP lower bounds the
optimal (minimum) value of the Primal LP!

Theorem (Weak Duality)

Let X be a feasible solution of the primal SDP and y be a feasible solution
of the dual SDP. Then

yTb ≤ �C ,X �.
67 / 102

Rafael Oliveira




Remarks on Duality

Primal SDP

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Dual SDP

maximize yTb

subject to
t�

i=1

yiAi � C
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Remarks on Duality

Primal SDP

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Dual SDP

maximize yTb

subject to
t�

i=1

yiAi � C

Theorem (Complementary Slackness)

Let X be a feasible solution of the primal SDP and y be a feasible solution
of the dual SDP. If (X , y) satisfy the complementary slackness condition

�
C −

t�

i=1

yiAi

�
X = 0

Then (X , y) are primal and dual optimum solutions of the SDP problem.
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Remarks on Duality

Primal SDP

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Dual SDP

maximize yTb

subject to
t�

i=1

yiAi � C

Theorem (Complementary Slackness)

Let X be a feasible solution of the primal SDP and y be a feasible solution
of the dual SDP. If (X , y) satisfy the complementary slackness condition

�
C −

t�

i=1

yiAi

�
X = 0

Then (X , y) are primal and dual optimum solutions of the SDP problem.

Complementary slackness gives us sufficient conditions to check optimality
of our solutions.
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Strong Duality

Primal SDP

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Dual SDP

maximize yTb

subject to
t�

i=1

yiAi � C
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Strong Duality

Primal SDP

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Dual SDP

maximize yTb

subject to
t�

i=1

yiAi � C

Strong duality in SDPs is a bit more complex than in LPs.
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Strong Duality

Primal SDP

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Dual SDP

maximize yTb

subject to
t�

i=1

yiAi � C

Strong duality in SDPs is a bit more complex than in LPs.
Both primal and dual may be feasible, and yet strong duality may not
hold!
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Strong Duality

Primal SDP

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Dual SDP

maximize yTb

subject to
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yiAi � C

Strong duality in SDPs is a bit more complex than in LPs.
Both primal and dual may be feasible, and yet strong duality may not
hold!
But under mild conditions, strong duality holds!
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Strong Duality

Primal SDP

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Dual SDP

maximize yTb

subject to
t�

i=1

yiAi � C

Strong duality in SDPs is a bit more complex than in LPs.
Both primal and dual may be feasible, and yet strong duality may not
hold!
But under mild conditions, strong duality holds!
Primal SDP is strictly feasible if there is feasible solution X � 0.
Dual SDP is strictly feasible if there is feasible

�t
i=1 yiAi ≺ C .
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Strong Duality

Primal SDP

minimize �C ,X �
subject to �Ai ,X � = bi

X � 0

Dual SDP

maximize yTb

subject to
t�

i=1

yiAi � C

Strong duality in SDPs is a bit more complex than in LPs.
Both primal and dual may be feasible, and yet strong duality may not
hold!
But under mild conditions, strong duality holds!
Primal SDP is strictly feasible if there is feasible solution X � 0.
Dual SDP is strictly feasible if there is feasible

�t
i=1 yiAi ≺ C .

Theorem (Strong Duality under Slater Conditions)

If primal SDP and dual SDP are both strictly feasible, then

max dual = min of primal.
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Stability of Linear Systems

Setup:

Linear difference equation

x(t + 1) = Ax(t), x(0) = x0

Discrete-time dynamical system.1

1When A non-negative and x0 non-negative we have Markov chains.
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Setup:

Linear difference equation

x(t + 1) = Ax(t), x(0) = x0

Discrete-time dynamical system.1

Used to model time evolution of

Temperatures of objects
Size of population
Voltage of electrical circuits
Concentration of chemical mixtures

1When A non-negative and x0 non-negative we have Markov chains.
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x(t + 1) = Ax(t), x(0) = x0

Discrete-time dynamical system.1

Used to model time evolution of

Temperatures of objects
Size of population
Voltage of electrical circuits
Concentration of chemical mixtures

Question: when k → ∞, under what conditions will x(t) remain
bounded? Or go to zero?

1When A non-negative and x0 non-negative we have Markov chains.
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Setup:

Linear difference equation

x(t + 1) = Ax(t), x(0) = x0

Discrete-time dynamical system.1

Used to model time evolution of

Temperatures of objects
Size of population
Voltage of electrical circuits
Concentration of chemical mixtures

Question: when k → ∞, under what conditions will x(t) remain
bounded? Or go to zero?

When system converges to zero, we say it is stable.

1When A non-negative and x0 non-negative we have Markov chains.
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Stability of Linear Systems

Setup:

Linear difference equation

x(t + 1) = Ax(t), x(0) = x0

Discrete-time dynamical system.1

Used to model time evolution of

Temperatures of objects
Size of population
Voltage of electrical circuits
Concentration of chemical mixtures

Question: when k → ∞, under what conditions will x(t) remain
bounded? Or go to zero?

When system converges to zero, we say it is stable.

System is stable iff |λi (A)| < 1

1When A non-negative and x0 non-negative we have Markov chains.
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Stability of Linear Systems
SDP viewpoint:

Lyapunov functions (generalize energy in systems). Functions on x(t)
decrease monotonically on trajectories of the system.
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V (x(t)) = x(t)TPx(t)
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Stability of Linear Systems
SDP viewpoint:

Lyapunov functions (generalize energy in systems). Functions on x(t)
decrease monotonically on trajectories of the system.
For our discrete-time system, we have:

V (x(t)) = x(t)TPx(t)

To make these monotonically decreasing, we need:

V (x(t + 1)) ≤ V (x(t)) ⇔ x(t + 1)TPx(t + 1)− x(t)TPx(t) ≤ 0

⇔ x(t)TATPAx(t)− x(t)TPx(t) ≤ 0

⇔ ATPA− P � 0
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Stability of Linear Systems
SDP viewpoint:

Lyapunov functions (generalize energy in systems). Functions on x(t)
decrease monotonically on trajectories of the system.
For our discrete-time system, we have:

V (x(t)) = x(t)TPx(t)

To make these monotonically decreasing, we need:

V (x(t + 1)) ≤ V (x(t)) ⇔ x(t + 1)TPx(t + 1)− x(t)TPx(t) ≤ 0

⇔ x(t)TATPAx(t)− x(t)TPx(t) ≤ 0

⇔ ATPA− P � 0

Theorem

Given matrix A ∈ Rm×m, the following conditions are equivalent:

1 All eigenvalues of A are inside unit circle, i.e. |λi (A)| < 1

2 There is P ∈ Sm such that

P � 0, ATPA− P ≺ 0
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Setup:

Linear difference equation, with control input
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Setup:

Linear difference equation, with control input

x(t + 1) = Ax(t) + Bu(t), x(0) = x0

where A ∈ Rm×m, B ∈ Rm×k

If we properly choose control input u(t) we can make our system x(t)
behave in a way that we want (say, to stabilize an unstable system)

Want to do it by setting the control input to be u(t) = Kx(t) for
some fixed K (so that we use the system as its own feedback)

Same thing as replacing A ← A+ BK

Now this is harder to solve via simple eigenvalue description. But still
solved the same way via Lyapunov functions!

Want P � 0 such that

(A+ BK )TP(A+ BK )− P ≺ 0
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Where is the control?
Setup:

Linear difference equation, with control input

x(t + 1) = Ax(t) + Bu(t), x(0) = x0

where A ∈ Rm×m, B ∈ Rm×k

If we properly choose control input u(t) we can make our system x(t)
behave in a way that we want (say, to stabilize an unstable system)

Want to do it by setting the control input to be u(t) = Kx(t) for
some fixed K (so that we use the system as its own feedback)

Same thing as replacing A ← A+ BK

Now this is harder to solve via simple eigenvalue description. But still
solved the same way via Lyapunov functions!

Want P � 0 such that

(A+ BK )TP(A+ BK )− P ≺ 0

Wait, this ain’t no SDP! But we can make it into SDP with some
matrix manipulations.
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Conclusion

Mathematical programming - very general, and pervasive in
Algorithmic life

General mathematical programming very hard

Special cases have very striking applications!

Linear Programming (previous lectures)
Today: Semidefinite Programming

Semidefinite Programming and Duality - fundamental concepts, lots
of applications!

Applications in Combinatorial Optimization (Max-Cut in next lecture!)
Applications in Control Theory (today)
many more!

Check out connections to Sum of Squares and a bold attempt2 to
have one algorithm to solve all problems! (i.e., one algorithm to rule
them all)

https://windowsontheory.org/2016/08/27/

proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/
2pun intended
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