Lecture 16: Semidefinite Programming and Duality Theorems

Rafael Oliveira

University of Waterloo Cheriton School of Computer Science rafael.oliveira.teaching@gmail.com

November 9, 2020

Overview

- Part I
 - Why Semidefinite Programming?
 - Convex Algebraic Geometry
- Part II
 - Duality Theory
 - Application: Control Theory
- Conclusion
- Acknowledgements

Mathematical Programming deals with problems of the form

Mathematical Programming deals with problems of the form

```
minimize f(x)

subject to g_1(x) \ge 0

\vdots

g_m(x) \ge 0

x \in \mathbb{R}^n
```

Mathematical Programming deals with problems of the form

minimize
$$f(x)$$

subject to $g_1(x) \ge 0$
 \vdots
 $g_m(x) \ge 0$
 $x \in \mathbb{R}^n$

Very general family of problems.

Mathematical Programming deals with problems of the form

minimize
$$f(x)$$

subject to $g_1(x) \ge 0$
 \vdots
 $g_m(x) \ge 0$
 $x \in \mathbb{R}^n$

- Very general family of problems.
- Special case when all f, g_1, \ldots, g_m are *linear*. Linear Programming

Mathematical Programming deals with problems of the form

minimize
$$f(x)$$

subject to $g_1(x) \ge 0$
 \vdots
 $g_m(x) \ge 0$
 $x \in \mathbb{R}^n$

- Very general family of problems.
- Special case when all f, g_1, \dots, g_m are *linear*. Linear Programming
- More general case: Semidefinite Programming
 - **1** $A_1, \ldots, A_n, B \in \mathcal{S}^m$ are $m \times m$ symmetric matrices

Mathematical Programming deals with problems of the form

minimize
$$f(x)$$

subject to $g_1(x) \ge 0$
 \vdots
 $g_m(x) \ge 0$
 $x \in \mathbb{R}^n$

- Very general family of problems.
- Special case when all f, g_1, \ldots, g_m are *linear*. Linear Programming
- More general case:

Semidefinite Programming

- \bullet $A_1, \ldots, A_n, B \in \mathcal{S}^m$ are $m \times m$ symmetric matrices
- 2 Constraints:

$$x_1 \cdot A_1 + \cdots + x_n \cdot A_n \succeq B$$

3 Minimize linear function $c^T x$

• $S^m := S^m(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)

- $S^m := S^m(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)
- $A \in \mathcal{S}^m$ is *positive semidefinite* (PSD), denoted $A \succeq 0$ if

- $S^m := S^m(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)
- $A \in \mathcal{S}^m$ is *positive semidefinite* (PSD), denoted $A \succeq 0$ if
 - - $\bigcirc A = Y^T Y$ for some $Y \in \mathbb{R}^{d \times m}$ where $d \leq m$
 - 3 $z^T A z \ge 0$ for any $z \in \mathbb{R}^m$ and more...

$$\frac{\lambda_{1}(A(\bar{x})), \dots, \lambda_{m}(A(\bar{x})) \geq 0}{2\pi(\bar{x})}$$

- $\mathcal{S}^m := \mathcal{S}^m(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)
- $A \in \mathcal{S}^m$ is *positive semidefinite* (PSD), denoted $A \succeq 0$ if
 - **1** all eigenvalues of A are *non-negative*
 - ② $A = Y^T Y$ for some $Y \in \mathbb{R}^{d \times m}$ where $d \leq m$
 - **3** $z^T A z \ge 0$ for any $z \in \mathbb{R}^m$
 - 4 and more...

Semidefinite Programming deals with problems of the form

minimize
$$c^T x$$

subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$
 $x \in \mathbb{R}^n$

- $\mathcal{S}^m := \mathcal{S}^m(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)
- $A \in \mathcal{S}^m$ is *positive semidefinite* (PSD), denoted $A \succeq 0$ if
 - 1 all eigenvalues of A are non-negative
 - **2** $A = Y^T Y$ for some $Y \in \mathbb{R}^{d \times m}$ where $d \leq m$
 - $z^T A z \ge 0 for any z \in \mathbb{R}^m$
 - and more...

Semidefinite Programming deals with problems of the form

minimize
$$c^T x$$

subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$
 $x \in \mathbb{R}^n$

Where we use $C \succeq D$ to denote that $C - D \succeq 0$ (i.e., C - D is PSD).

How does it generalize Linear Programming?

Linear Programming

```
minimize a^T x
subject to Cx \ge b
x \in \mathbb{R}^n
```

How does it generalize Linear Programming?

Linear Programming

Semidefinite Programming

minimize
$$a^T x$$
 minimize $c^T x$
subject to $Cx \ge b$ subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \ge B$
 $x \in \mathbb{R}^n$ $x \in \mathbb{R}^n$

How does it generalize Linear Programming?

Linear Programming

Semidefinite Programming

minimize
$$a^Tx$$

subject to $Cx \ge b$

subject to $x_1 \cdot A_1 + \cdots + x_n \cdot A_n \ge B$

Set
$$A_i$$
's to be diagonal matrices, and $B = diag(b_1, ..., b_m)$

$$\sum_{i=1}^{N} C_{ki} \times_{i} \ge b_{k} \qquad (A_i)_{kk} = C_{ki} \qquad k^{th} \text{ diagnel entry}$$

$$\chi_{i} \left(\begin{array}{c} C_{11} \\ C_{21} \\ \end{array} \right) \qquad + \cdots + \chi_{n} \left(\begin{array}{c} C_{1n} \\ C_{2n} \\ \end{array} \right) \qquad (A_i)_{kk} = C_{ki} \qquad k^{th} \text{ diagnel entry}$$

$$\chi_{i} \left(\begin{array}{c} C_{11} \\ C_{21} \\ \end{array} \right) \qquad + \cdots + \chi_{n} \left(\begin{array}{c} C_{1n} \\ C_{2n} \\ \end{array} \right) \qquad (A_i)_{kk} = C_{ki} \qquad (A_i)_{kk} = C_{ki} \qquad (A_i)_{kk} \qquad (A_i)_{kk} \qquad (A_i)_{kk} \qquad (A_i)_{kk} = C_{ki} \qquad (A_i)_{kk} \qquad (A_$$

• Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Semidefinite Programming is no different!

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Semidefinite Programming is no different!
 - equilibrium analysis of dynamics and control (flight controls, robotics, etc.)
 - robust optimization
 - statistics and ML
 - continuous games
 - software verification
 - filter design
 - quantum computation and information
 - automated theorem proving
 - packing problems
 - many more

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Semidefinite Programming is no different!
 - equilibrium analysis of dynamics and control (flight controls, robotics, etc.)
 - robust optimization
 - statistics and ML
 - continuous games
 - software verification
 - filter design
 - quantum computation and information
 - automated theorem proving
 - packing problems
 - many more
- See more here

https://windowsontheory.org/2016/08/27/

proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/

minimize
$$c^T x$$

subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$
 $x \in \mathbb{R}^n$

minimize
$$c^T x$$

subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$
 $x \in \mathbb{R}^n$

- When is a Semidefinite Program *feasible*?
 - Is there a solution to the constraints at all?

minimize
$$c^T x$$

subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$
 $x \in \mathbb{R}^n$

- When is a Semidefinite Program *feasible*?
 - Is there a solution to the constraints at all?
- When is a Semidefinite Program bounded?
 - Is there a minimum? Is the minimum achievable? Or is the minimum $-\infty$?

minimize
$$c^T x$$

subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$
 $x \in \mathbb{R}^n$

- When is a Semidefinite Program feasible?
 - Is there a solution to the constraints at all?
- When is a Semidefinite Program bounded?
 - Is there a minimum? Is the minimum achievable? Or is the minimum $-\infty$?
- 3 Can we characterize optimality?
 - How can we know that we found a minimum solution?
 - Do these solutions have nice description?
 - Do the solutions have small bit complexity?

minimize
$$c^T x$$

subject to $x_1 \cdot A_1 + \dots + x_n \cdot A_n \succeq B$
 $x \in \mathbb{R}^n$

- When is a Semidefinite Program feasible?
 - Is there a solution to the constraints at all?
- When is a Semidefinite Program bounded?
 - Is there a minimum? Is the minimum achievable? Or is the minimum $-\infty$?
- Can we characterize optimality?
 - How can we know that we found a minimum solution?
 - Do these solutions have nice description?
 - Do the solutions have small bit complexity?
- How do we design efficient algorithms that find optimal solutions to Semidefinite Programs?

- Part I
 - Why Semidefinite Programming?
 - Convex Algebraic Geometry
- Part II
 - Duality Theory
 - Application: Control Theory
- Conclusion
- Acknowledgements

To understand SDPs, we need to understand their *feasible regions*, which are called *spectrahedra* and described as *Linear Matrix Inequalities* (LMIs).

To understand SDPs, we need to understand their *feasible regions*, which are called *spectrahedra* and described as *Linear Matrix Inequalities* (LMIs).

Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

$$A_0 + \sum_{i=1}^n A_i x_i (5) 0,$$

where A_0, \ldots, A_n are symmetric matrices.

To understand SDPs, we need to understand their *feasible regions*, which are called *spectrahedra* and described as *Linear Matrix Inequalities* (LMIs).

Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

$$A_0 + \sum_{i=1}^n A_i x_i \succeq 0,$$

where A_0, \ldots, A_n are symmetric matrices.

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMIs. In other words, it can be defined as:

$$S = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n A_i x_i \succeq B, \mid A_i, B \in \mathcal{S}^m \right\}$$

To understand SDPs, we need to understand their *feasible regions*, which are called *spectrahedra* and described as *Linear Matrix Inequalities* (LMIs).

If 5 defined by
$$\sum_{i=1}^{n} A_i \times_i + B_i$$
 and $\sum_{i=1}^{n} C_i \times_i \times_i B_z$ then 5 defined by $\sum_{i=1}^{n} x_i \begin{pmatrix} A_i & 0 \\ 0 & C_i \end{pmatrix} + \begin{pmatrix} B_i & 0 \\ 0 & B_z \end{pmatrix}$.

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMIs. In other words, it can be defined as:

$$S = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n A_i x_i \succeq B, \ A_i, B \in \mathcal{S}^m \right\}$$

To understand SDPs, we need to understand their *feasible regions*, which are called *spectrahedra* and described as *Linear Matrix Inequalities* (LMIs).

Spectrahedra are convex:
$$\frac{2\pi dx + (1-d)y}{x, y \in S}$$
 thun $\alpha \in [0,1]$ we have
$$\frac{1}{2\pi} A_i (\alpha x_i + (1-x)y_i) = \alpha \sum_{i=1}^{n} A_i x_i + (1-x)\sum_{i=1}^{n} A_i y_i \cdot x_i$$

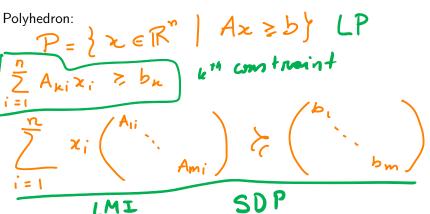
$$\alpha B + (1-x)B = B \therefore \alpha x_i + (1-x)y_i \in S.$$

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMIs. In other words, it can be defined as:

$$S = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n A_i x_i \succeq B, A_i, B \in \mathcal{S}^m \right\}$$

Example of Spectrahedron



Example of Spectrahedron

Circle:
$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} + y^{2} \leq 1$$

$$C = \frac{1}{2}(x,y) \in \mathbb{R}^{2} \quad x^{2} \in \mathbb{R}^{2} \quad$$

Example of Spectrahedron

$$\mathcal{H} = \left\{ (x,y) \in \mathbb{R}^2 \mid x,y \geq 0 \right\}$$

Example of Spectrahedron

Elliptic curve: (Ovel part)

$$E = \begin{cases} (x,y) \in \mathbb{R}^2 \\ A(x,y) = \begin{cases} x+1 & 0 & y \\ 2 & -x-1 \\ 2 & 0 \end{cases}$$

To see that execun negron

Consider pands to a need to show

$$Consider for the constant of the c$$

Projected Spectrahedron

For both LPs and SDPs, it is enough to obtain a *linear projection of spectrahedron* (or polyhedron, if in LP).

LP projections of polyhedra
one polyhedra

Projected Spectrahedron

For both LPs and SDPs, it is enough to obtain a *linear projection of spectrahedron* (or polyhedron, if in LP).

Definition (Projected Spectrahedron)

A set $S \in \mathbb{R}^n$ is a *projected spectrahedron* if it has the form:

$$S = \left\{ x \in \mathbb{R}^n \mid \exists y \in \mathbb{R}^t \text{ s.t.} \left[\sum_{i=1}^n A_i x_i + \sum_{j=1}^t B_j y_j \succeq C, A_i, B_j, C \in \mathcal{S}^m \right] \right\}$$

Projected Spectrahedron

For both LPs and SDPs, it is enough to obtain a linear projection of spectrahedron (or polyhedron, if in LP).

Definition (Projected Spectrahedron)

A set $S \in \mathbb{R}^n$ is a *projected spectrahedron* if it has the form:

$$S = \left\{ x \in \mathbb{R}^n \mid \exists y \in \mathbb{R}^t \text{ s.t. } \sum_{i=1}^n A_i x_i + \sum_{j=1}^t B_j y_j \succeq C, \quad A_i, B_j, C \in \mathcal{S}^m \right\}$$

minimize
$$c^{T}x$$
 $s.t.$ $\kappa \in S$
 $c^{T}x = (c^{T}, 0) \binom{\kappa}{3}$

minimize $c^{T}x$
 $s.t.$ $\kappa \in S$
 $s.t.$ $\kappa \in S$
 $s.t.$ $\kappa \in S$
 $s.t.$ $\kappa \in S$
 $s.t.$ $\kappa \in S$

Example of Experimentary Projection of Spectrohedron

Projection quadratic cone intersected with halfspace:

$$S = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R}^2 \mid \exists z \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in \mathbb{R} \text{ s.t.} \end{cases}$$

$$A = \begin{cases} (x,y) \in$$

Remark: unlike polytextral case, projection of spectrahedra MAY NOT be spectrahedra (this is an example)

• To be able to optimize, we must be able to test whether a given point $x \in \mathbb{R}^n$ is inside our spectrahedron

$$S = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n A_i x_i \succeq B, A_i, B \in \mathcal{S}^m \right\}.$$

• To be able to optimize, we must be able to test whether a given point $x \in \mathbb{R}^n$ is inside our spectrahedron

$$S = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n A_i x_i \succeq B, A_i, B \in \mathcal{S}^m \right\}.$$

• Note that $x \in S$ is (by definition) equivalent to

$$Z = \sum_{i=1}^{n} A_i x_i - B \succeq 0$$

ullet To be able to optimize, we must be able to test whether a given point $x \in \mathbb{R}^n$ is inside our spectrahedron

$$S = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n A_i x_i \succeq B, A_i, B \in \mathcal{S}^m \right\}.$$

• Note that $x \in S$ is (by definition) equivalent to

$$Z = \sum_{i=1}^{n} A_i x_i - B \succeq 0$$

• So, how do we efficiently check if $Z \succeq 0$?

• To be able to optimize, we must be able to test whether a given point $x \in \mathbb{R}^n$ is inside our spectrahedron

$$S = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n A_i x_i \succeq B, A_i, B \in \mathcal{S}^m \right\}.$$

• Note that $x \in S$ is (by definition) equivalent to

$$Z = \sum_{i=1}^{n} A_i x_i - B \succeq 0$$

- So, how do we efficiently check if $Z \succeq 0$?
- Symmetric Gaussian Elimination!

 To be able to optimize, we must be able to test whether a given point $x \in \mathbb{R}^n$ is inside our spectrahedron

$$S = \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^n A_i x_i \succeq B, A_i, B \in \mathcal{S}^m \right\}.$$

• Note that $x \in S$ is (by definition) equivalent to

$$Z = \sum_{i=1}^{n} A_i x_i - B \succeq 0$$
• So, how do we efficiently check if $Z \succeq 0$?
• Symmetric Caussian Elimination

- Symmetric Gaussian Elimination!
- We will use following characterizations of PSDness of symmetric $A \in \mathcal{S}^m$ $A \in \mathcal{S}^m$
 - 1 all eigenvalues of A are non-negative
 - ② $A = LDL^T$ for some L lower triangular and unit diagonal, D diagonal and non-negative
 - $z^T Az \geq 0$ for any $z \in \mathbb{R}^m$
 - Any principal minor of A has non-negative determinant.

- **Input:** symmetric matrix $A \in \mathcal{S}^m$
- **Output:** YES if $A \succeq 0$, NO otherwise (and output $z \in \mathbb{R}^m$ such that $z^T A z < 0$)

$$L_{1}A = \begin{pmatrix} \frac{1}{4} & 0 & 0 \\ \frac{1}{4} & 0 & 0 \\$$

- Input: symmetric matrix $A \in \mathcal{S}^m$
- **Output:** YES if $A \succeq 0$, NO otherwise (and output $z \in \mathbb{R}^m$ such that $z^T A z < 0$)

Similarly, clear out second now and column
$$L_2 L_1 A L_1^T L_2^T = \begin{pmatrix} * & 0 \\ \hline & * \end{pmatrix}$$

and so on ...

- **Input:** symmetric matrix $A \in \mathcal{S}^m$
- **Output:** YES if $A \succeq 0$, NO otherwise (and output $z \in \mathbb{R}^m$ such that $z^T A z < 0$

or, our algorithm halts if the following happen:

- Input: symmetric matrix $A \in \mathcal{S}^m$
- Output: YES if $A \succeq 0$, NO otherwise (and output $z \in \mathbb{R}^m$ such that $z^T A z < 0$)

If at any point we have LALT: (**)
with a > 0 then return NO

and z= LTe;

zTAz = e, T(LALT)e; = -a < 0.

If at any point we have LALT = i 0 - b
with b \$\neq\$0 then networn NO

Practice problem: what is a here?

- **Input:** symmetric matrix $A \in \mathcal{S}^m$
- **Output:** YES if $A \succeq 0$, NO otherwise (and output $z \in \mathbb{R}^m$ such that $z^T A z < 0$

If our Symmetric Gaussian Eliminetism runs until the end, we have that LALT = D with Dii ? O + ie[m] all other entries zero : D & o => A & o.

Our algorithm runs in time strongly polynomial.

- Part I
 - Why Semidefinite Programming?
 - Convex Algebraic Geometry
- Part II
 - Duality Theory
 - Application: Control Theory
- Conclusion
- Acknowledgements

Working with Symmetric Matrices

Definition (Frobenius Inner Product)

 $A, B \in \mathcal{S}^m$, define the *Frobenius inner product* as

$$\langle A,B \rangle := \operatorname{tr}[AB] = \sum_{i,j} A_{ij}B_{ij}$$

- This is the "usual inner product" if you think of the matrices as vectors
- Thus, have the norm

$$\|A\|\mathbf{F} = \sqrt{\langle A, A \rangle} = \sqrt{\sum_{i,j} A_{ij}^2}$$

• With this norm, can talk about the *polar dual* to a given spectrahedron $S \subseteq S^m$:

$$S^{\circ} = \{ Y \in \mathcal{S}^m \mid \langle Y, X \rangle \leq 1, \ \forall X \in S \}$$

Just like in Linear Programming, we can represent SDPs in standard form:

minimize
$$\langle C, X \rangle$$

subject to $\langle A_i, X \rangle = b_i$
 $X \succeq 0$ Voriable Combains

Just like in Linear Programming, we can represent SDPs in standard form:

minimize
$$\langle C, X \rangle$$

subject to $\langle A_i, X \rangle = b_i$
 $X \succeq 0$

Where now:

ullet the variables are encoded in a positive semidefinite matrix X,

Just like in Linear Programming, we can represent SDPs in standard form:

minimize
$$\langle C, X \rangle$$

subject to $\langle A_i, X \rangle = b_i$
 $X \succeq 0$

- ullet the variables are encoded in a positive semidefinite matrix X,
- ullet each constraint is given by an inner product $\langle A_i,X \rangle = b_i$

Just like in Linear Programming, we can represent SDPs in standard form:

minimize
$$\langle C, X \rangle$$
 $C^T X = \langle C, X \rangle$ subject to $\langle A_i, X \rangle = b_i$ $A X = b$ $X \succeq 0$

- ullet the variables are encoded in a positive semidefinite matrix X,
- ullet each constraint is given by an inner product $\langle A_i,X \rangle = b_i$
- Note the similarity with LP standard primal. Can obtain LP standard form by making X and A_i 's to be diagonal

Just like in Linear Programming, we can represent SDPs in standard form:

minimize
$$\langle C, X \rangle$$

subject to $\langle A_i, X \rangle = b_i$

- ullet the variables are encoded in a positive semidefinite matrix X,
- each constraint is given by an inner product $\langle A_i, X \rangle = b_i$
- Note the similarity with LP standard primal. Can obtain LP standard form by making X and A_i 's to be diagonal
- How is that an LMI though?

minimize
$$\langle C, X \rangle$$
subject to $\langle A_i, X \rangle = b_i$
 $X \succeq 0$
 $\langle A_i, X \rangle = b_i$
 $\langle A_i, X$

Example

Primal minimize
$$2x_{11} + 2x_{12}$$

Program

Subject to $x_{11} + x_{22} = 1$
 $A_1 = \begin{pmatrix} A & O \\ O & I \end{pmatrix}$
 $\begin{pmatrix} x_{11} & x_{12} \\ x_{12} & x_{22} \end{pmatrix} \succeq 0$
 $A_1 = \begin{pmatrix} A & O \\ O & I \end{pmatrix}$

Constraints so the field

 $C = \begin{pmatrix} 2 & I \\ I & O \end{pmatrix}$

iff $x_{i1} & x_{i2} & x_{i2} & x_{i1} > 0$

Feasible at: cloud dish

 $x_{11} & (I - x_{i1}) > x_{i2} > x$

Consider our SDP:

Consider our SDP:

Consider our SDP:

minimize
$$\langle C, X \rangle$$

subject to $\langle A_i, X \rangle = b_i$
 $X \succeq 0$

• If we look at what happens when we multiply i^{th} equality by a variable y_i :

$$\left(\sum_{i=1}^{t} y_{i} \cdot \langle A_{i} | X \rangle = \sum_{i=1}^{t} y_{i} \cdot b_{i} \quad \Rightarrow \quad \left\langle \sum_{i=1}^{t} y_{i} A_{i} , X \right\rangle = y^{T} b$$

Consider our SDP:

A
$$\forall$$
 B \Rightarrow \langle A, \times > minimize $\langle C, X \rangle$ subject to $\langle A_i, X \rangle = b_i$ $X \succ 0$

• If we look at what happens when we multiply i^{th} equality by a variable y_i :

$$\sum_{i=1}^{t} y_i \cdot \langle A_i, X \rangle = \sum_{i=1}^{t} y_i \cdot b_i \quad \Rightarrow \quad \left\langle \sum_{i=1}^{t} y_i A_i , X \right\rangle = y^T b$$

• Thus, if $\sum y_i A_i \leq C$, then we have:

$$y^T b = \left\langle \sum_{i=1}^t y_i A_i, X \right\rangle \leq \langle C, X \rangle$$

Consider our SDP:

minimize
$$\langle C, X \rangle$$

subject to $\langle A_i, X \rangle = b_i$
 $X \succ 0$

• If we look at what happens when we multiply ith equality by a variable *y_i*:

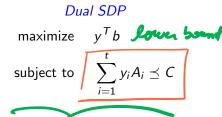
$$\sum_{i=1}^{t} y_i \cdot \langle A_i, X \rangle = \sum_{i=1}^{t} y_i \cdot b_i \quad \Rightarrow \quad \left\langle \sum_{i=1}^{t} y_i A_i , X \right\rangle = y^T b$$

• Thus, if
$$\sum_{i=1}^{t} y_i A_i \leq C$$
, then we have:
$$y^T b = \left\langle \sum_{i=1}^{t} y_i A_i , X \right\rangle \leq \langle C, X \rangle$$

y^Tb is a lower bound on the solution to our SDP!

Consider the following SDPs:

Primal SDP minimize $\langle C, X \rangle$ subject to $\langle A_i, X \rangle = b_i$ $X \succeq 0$



Consider the following SDPs:

Primal SDP minimize $\langle C, X \rangle$ subject to $\langle A_i, X \rangle = b_i$ $X \succeq 0$ Dual SDP maximize $y^T b$ subject to $\sum_{i=1}^t y_i A_i \preceq C$

From previous slide

$$\sum_{i=1}^{\tau} y_i A_i \leq C \Rightarrow y^T b \text{ is a lower bound on value of Primal}$$

Consider the following SDPs:

Primal SDP

minimize
$$\langle C, X \rangle$$

subject to $\langle A_i, X \rangle = b_i$
 $X \succeq 0$

Dual SDP

maximize $y^T b$

subject to $\sum_{i=1}^t y_i A_i \preceq C$

From previous slide

$$\sum_{i=1}^{\tau} y_i A_i \leq C \Rightarrow y^T b \text{ is a lower bound on value of Primal}$$

 Thus, the optimal (maximum) value of dual LP lower bounds the optimal (minimum) value of the Primal LP!

Consider the following SDPs:

Primal SDP

minimize
$$\langle C, X \rangle$$

subject to $\langle A_i, X \rangle = b_i$
 $X \succeq 0$

Dual SDP

maximize $y^T b$

subject to $\sum_{i=1}^t y_i A_i \preceq C$

From previous slide

$$\sum_{i=1}^{L} y_i A_i \leq C \Rightarrow y^T b \text{ is a lower bound on value of Primal}$$

 Thus, the optimal (maximum) value of dual LP lower bounds the optimal (minimum) value of the Primal LP!

Theorem (Weak Duality)

Let X be a feasible solution of the primal SDP and y be a feasible solution of the dual SDP. Then $y^Tb \leq \langle C, X \rangle$.

Remarks on Duality

Primal SDP		Dual SDP	
minimize	$\langle C, X \rangle$	maximize	y^Tb
subject to	$\langle A_i, X \rangle = b_i$ $X \succeq 0$	subject to	$\sum_{i=1}^t y_i A_i \preceq C$
			i—1

Remarks on Duality

Primal SDP Dual SDP minimize
$$\langle C, X \rangle$$
 maximize $y^T b$ subject to $\langle A_i, X \rangle = b_i$ $X \succeq 0$ subject to $\sum_{i=1}^t y_i A_i \preceq C$

$\mathsf{Theorem}$ ($\mathsf{Complementary}$ $\mathsf{Slackness}$)

Let X be a feasible solution of the primal SDP and y be a feasible solution of the dual SDP. If (X, y) satisfy the complementary slackness condition

$$\left(C - \sum_{i=1}^{t} y_i A_i\right) X = 0$$

Then (X, y) are primal and dual optimum solutions of the SDP problem.

Remarks on Duality

Primal SDPDual SDPminimize
$$\langle C, X \rangle$$
maximize $y^T b$ subject to $\langle A_i, X \rangle = b_i$ subject to $\sum_{i=1}^t y_i A_i \leq C$

Theorem (Complementary Slackness)

Let X be a feasible solution of the primal SDP and y be a feasible solution of the dual SDP. If (X, y) satisfy the complementary slackness condition

$$\left(C - \sum_{i=1}^{t} y_i A_i\right) X = 0$$

Then (X, y) are primal and dual optimum solutions of the SDP problem.

Complementary slackness gives us *sufficient* conditions to check optimality of our solutions.

Strong Duality

Primal SDP		Du	Dual SDP	
minimize	$\langle C, X \rangle$	maximize	$y^T b$	
subject to	$\langle A_i, X \rangle = b_i$ $X \succeq 0$	subject to	$\sum_{i=1}^t y_i A_i \preceq C$	

Strong Duality

OP D	Dual SDP	
$X\rangle$ maximize	y^Tb	
subject to	$\sum_{i=1}^t y_i A_i \preceq C$	
	$X\rangle$ maximize $X\rangle = b$:	

• Strong duality in SDPs is a bit more complex than in LPs.

Primal SDP		Du	Dual SDP	
minimize	$\langle C, X \rangle$	maximize	$y^T b$	
subject to	$\langle A_i, X \rangle = b_i$ $X \succ 0$	subject to	$\sum^t y_i A_i \preceq C$	
	, . <u>_</u> . <u>_</u>		i=1	

- Strong duality in SDPs is a bit more complex than in LPs.
- Both primal and dual may be feasible, and yet strong duality may not hold! (you will see this in Homework)

Dual SDP	
maximize $y^T b$	
subject to $\sum_{i=1}^{t} y_i A_i \leq C$	

- Strong duality in SDPs is a bit more complex than in LPs.
- Both primal and dual may be feasible, and yet strong duality may not hold!
- But under mild conditions, strong duality holds!

- Strong duality in SDPs is a bit more complex than in LPs.
- Both primal and dual may be feasible, and yet strong duality may not hold!
- But under mild conditions, strong duality holds!
- Primal SDP is strictly feasible if there is feasible solution $X \succ 0$.
- Dual SDP is *strictly feasible* if there is feasible $\sum_{i=1}^{t} y_i A_i \prec C$.

Slater conditions

- Strong duality in SDPs is a bit more complex than in LPs.
- Both primal and dual may be feasible, and yet strong duality may not hold!
- But under mild conditions, strong duality holds!
- Primal SDP is *strictly feasible* if there is feasible solution X > 0.
- Dual SDP is *strictly feasible* if there is feasible $\sum_{i=1}^{t} y_i A_i \prec C$.

Theorem (Strong Duality under Slater Conditions)

If primal SDP and dual SDP are both strictly feasible, then

max dual = min of primal.

- Part I
 - Why Semidefinite Programming?
 - Convex Algebraic Geometry
- Part II
 - Duality Theory
 - Application: Control Theory
- Conclusion
- Acknowledgements

Setup:

Linear difference equation

$$x(t+1) = Ax(t), \quad x(0) = x_0$$

Discrete-time dynamical system.¹

¹When A non-negative and x_0 non-negative we have Markov chains.

Setup:

$$x(t+1) = Ax(t), \quad x(0) = x_0$$

- Discrete-time dynamical system.¹
- Used to model time evolution of

Setup:

$$x(t+1) = Ax(t), \quad x(0) = x_0$$

- Discrete-time dynamical system.¹
- Used to model time evolution of
 - Temperatures of objects
 - Size of population
 - Voltage of electrical circuits
 - Concentration of chemical mixtures

Setup:

$$x(t+1) = Ax(t), \quad x(0) = x_0$$

- Discrete-time dynamical system.¹
- Used to model time evolution of
 - Temperatures of objects
 - Size of population
 - Voltage of electrical circuits
 - Concentration of chemical mixtures
- Question: when $b \to \infty$, under what conditions will x(t) remain bounded? Or go to zero?

¹When A non-negative and x_0 non-negative we have Markov chains.

Setup:

$$x(t+1) = Ax(t), \quad x(0) = x_0$$

- Discrete-time dynamical system.¹
- Used to model time evolution of
 - Temperatures of objects
 - Size of population
 - Voltage of electrical circuits
 - Concentration of chemical mixtures
- Question: when $k \to \infty$, under what conditions will x(t) remain bounded? Or go to zero?
- When system converges to zero, we say it is stable.

¹When A non-negative and x_0 non-negative we have Markov chains.

Setup:

$$x(t+1) = Ax(t), \quad x(0) = x_0$$

- Discrete-time dynamical system.¹
- Used to model time evolution of
 - Temperatures of objects
 - Size of population
 - Voltage of electrical circuits
 - Concentration of chemical mixtures
- Question: when $k \to \infty$, under what conditions will x(t) remain bounded? Or go to zero?
- When system converges to zero, we say it is stable.
- System is stable iff $|\lambda_i(A)| < 1$

 $^{^1}$ When A non-negative and x_0 non-negative we have Markov chains.

SDP viewpoint:

• Lyapunov functions (generalize *energy* in systems). Functions on x(t) decrease monotonically on trajectories of the system.

SDP viewpoint:

- Lyapunov functions (generalize *energy* in systems). Functions on x(t) decrease monotonically on trajectories of the system.
- For our discrete-time system, we have:

$$V(x(t)) = x(t)^T Px(t)$$

SDP viewpoint:

- Lyapunov functions (generalize *energy* in systems). Functions on x(t) decrease monotonically on trajectories of the system.
- For our discrete-time system, we have:

$$V(x(t)) = x(t)^T P x(t)$$

To make these monotonically decreasing, we need:

$$V(x(t+1)) \leq V(x(t)) \Leftrightarrow x(t+1)^T P x(t+1) - x(t)^T P x(t) \leq 0$$

$$\Leftrightarrow x(t)^T A^T P A x(t) - x(t)^T P x(t) \leq 0$$

$$\Leftrightarrow A^T P A - P \leq 0$$

SDP viewpoint:

- Lyapunov functions (generalize *energy* in systems). Functions on x(t)decrease monotonically on trajectories of the system.
- For our discrete-time system, we have:

$$V(x(t)) = x(t)^T P x(t)$$

• To make these monotonically decreasing, we need:

$$V(x(t+1)) \le V(x(t)) \Leftrightarrow x(t+1)^T P x(t+1) - x(t)^T P x(t) \le 0$$
 $\Leftrightarrow x(t)^T A^T P A x(t) - x(t)^T P x(t) \le 0$
 $\Leftrightarrow A^T P A - P \le 0$

Theorem

Given matrix $A \in \mathbb{R}^{m \times m}$, the following conditions are equivalent:

- **1** All eigenvalues of A are inside unit circle, i.e. $|\lambda_i(A)| < 1$
- There is $P \in \mathcal{S}^m$ such that

$$P \succ 0$$
, $A^T PA - P \prec 0$

Setup:

• Linear difference equation, with control input

$$x(t+1) = Ax(t) + Bu(t)$$
 $x(0) = x_0$ where $A \in \mathbb{R}^{m \times m}$, $B \in \mathbb{R}^{m \times k}$

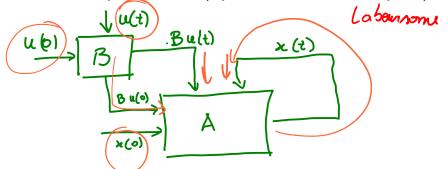
Setup:

Linear difference equation, with control input

$$x(t+1) = Ax(t) + Bu(t), \quad x(0) = x_0$$

where $A \in \mathbb{R}^{m \times m}$, $B \in \mathbb{R}^{m \times k}$

• If we properly choose control input u(t) we can make our system x(t) behave in a way that we want (say, to stabilize an unstable system)

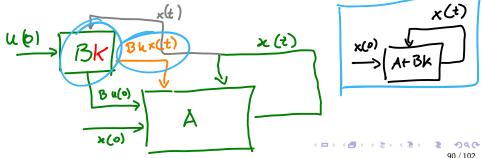


Setup:

Linear difference equation, with control input

$$x(t+1) = Ax(t) + Bu(t), \quad x(0) = x_0$$

- If we properly choose control input u(t) we can make our system x(t) behave in a way that we want (say, to stabilize an unstable system)
- Want to do it by setting the control input to be u(t) = K(t) for some fixed K (so that we use the system as its own feedback)



Setup:

Linear difference equation, with control input

$$x(t+1) = Ax(t) + Bu(t), \quad x(0) = x_0$$

- If we properly choose control input u(t) we can make our system x(t) behave in a way that we want (say, to stabilize an unstable system)
- Want to do it by setting the control input to be u(t) = Kx(t) for some fixed K (so that we use the system as its own feedback)
- Same thing as replacing $A \leftarrow A + BK$

Setup:

Linear difference equation, with control input

$$x(t+1) = Ax(t) + Bu(t), \quad x(0) = x_0$$

- If we properly choose control input u(t) we can make our system x(t) behave in a way that we want (say, to stabilize an unstable system)
- Want to do it by setting the control input to be u(t) = Kx(t) for some fixed K (so that we use the system as its own feedback)
- Same thing as replacing $A \leftarrow A + BK$
- Now this is harder to solve via simple eigenvalue description. But still solved the same way via Lyapunov functions!

Setup:

Linear difference equation, with control input

$$x(t+1) = Ax(t) + Bu(t), \quad x(0) = x_0$$

- If we properly choose control input u(t) we can make our system x(t) behave in a way that we want (say, to stabilize an unstable system)
- Want to do it by setting the control input to be u(t) = Kx(t) for some fixed K (so that we use the system as its own feedback)
- Same thing as replacing $A \leftarrow A + BK$
- Now this is harder to solve via simple eigenvalue description. But still solved the same way via Lyapunov functions!
- Want $P \succ 0$ such that

$$\frac{(A+BK)^T P(A+BK) - P < 0}{\text{not} \quad \text{LMI}'}$$

Setup:

Linear difference equation, with control input

$$x(t+1) = Ax(t) + Bu(t), \quad x(0) = x_0$$

where $A \in \mathbb{R}^{m \times m}$, $B \in \mathbb{R}^{m \times k}$

- If we properly choose control input u(t) we can make our system x(t) behave in a way that we want (say, to stabilize an unstable system)
- Want to do it by setting the control input to be u(t) = Kx(t) for some fixed K (so that we use the system as its own feedback)
- Same thing as replacing $A \leftarrow A + BK$
- Now this is harder to solve via simple eigenvalue description. But still solved the same way via Lyapunov functions!
- Want P > 0 such that

$$(A+BK)^T P(A+BK) - P \prec 0$$

 Wait, this ain't no SDP! But we can make it into SDP with some matrix manipulations.

 Mathematical programming - very general, and pervasive in Algorithmic life

- Mathematical programming very general, and pervasive in Algorithmic life
- General mathematical programming very hard

- Mathematical programming very general, and pervasive in Algorithmic life
- General mathematical programming very hard
- Special cases have very striking applications!
 - Linear Programming (previous lectures)
 - Today: Semidefinite Programming

- Mathematical programming very general, and pervasive in Algorithmic life
- General mathematical programming very hard
- Special cases have very striking applications!
 - Linear Programming (previous lectures)
 - Today: Semidefinite Programming
- Semidefinite Programming and Duality fundamental concepts, lots of applications!

- Mathematical programming very general, and pervasive in Algorithmic life
- General mathematical programming very hard
- Special cases have very striking applications!
 - Linear Programming (previous lectures)
 - Today: Semidefinite Programming
- Semidefinite Programming and Duality fundamental concepts, lots of applications!
 - Applications in Combinatorial Optimization (Max-Cut in next lecture!)
 - Applications in Control Theory (today)
 - many more!

- Mathematical programming very general, and pervasive in Algorithmic life
- General mathematical programming very hard
- Special cases have very striking applications!
 - Linear Programming (previous lectures)
 - Today: Semidefinite Programming
- Semidefinite Programming and Duality fundamental concepts, lots of applications!
 - Applications in Combinatorial Optimization (Max-Cut in next lecture!)
 - Applications in Control Theory (today)
 - many more!
- Check out connections to Sum of Squares and a **bold** attempt² to have one algorithm to solve all problems! (i.e., one algorithm to rule them all)

```
https://windowsontheory.org/2016/08/27/
```

proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/

Acknowledgement

- Lecture based largely on:
 - [Blekherman, Parrilo, Thomas 2012, Chapter 2]

Ryon O'Donnell lecture on SDPs

References I

Blekherman, Grigoriy and Parrilo, Pablo and Thomas, Rekha (2012)

Convex Algebraic Geometry