Lecture 16: Semidefinite Programming and Duality Theorems

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

November 9, 2020

Overview

- Part I
- Why Semidefinite Programming?
- Convex Algebraic Geometry
- Part II
- Duality Theory
- Application: Control Theory
- Conclusion
- Acknowledgements

Mathematical Programming

Mathematical Programming deals with problems of the form

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \geq 0 \\
& \vdots \\
& g_{m}(x) \geq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \geq 0 \\
& \vdots \\
& g_{m}(x) \geq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \geq 0 \\
& \vdots \\
& g_{m}(x) \geq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.
- Special case when all f, g_{1}, \ldots, g_{m} are linear. Linear Programming

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \geq 0 \\
& \vdots \\
& g_{m}(x) \geq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.
- Special case when all f, g_{1}, \ldots, g_{m} are linear. Linear Programming
- More general case: Semidefinite Programming
(1) $A_{1}, \ldots, A_{n}, B \in \mathcal{S}^{m}$ are $m \times m$ symmetric matrices

Mathematical Programming

Mathematical Programming deals with problems of the form

$$
\begin{aligned}
\text { minimize } & f(x) \\
\text { subject to } & g_{1}(x) \geq 0 \\
& \vdots \\
& g_{m}(x) \geq 0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

- Very general family of problems.
- Special case when all f, g_{1}, \ldots, g_{m} are linear. Linear Programming
- More general case: Semidefinite Programming
(1) $A_{1}, \ldots, A_{n}, B \in \mathcal{S}^{m}$ are $m \times m$ symmetric matrices
(2) Constraints:

$$
x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B
$$

(3) Minimize linear function $c^{\top} x$

What is a Semidefinite Program?

- $\mathcal{S}^{m}:=\mathcal{S}^{m}(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)

What is a Semidefinite Program?

- $\mathcal{S}^{m}:=\mathcal{S}^{m}(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)
- $A \in \mathcal{S}^{m}$ is positive semidefinite (PSD), denoted $A \succeq 0$ if

$$
A_{i j}=A_{j i} \quad \forall \quad i, j \in[m]
$$

What is a Semidefinite Program?

- $\mathcal{S}^{m}:=\mathcal{S}^{m}(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)
- $A \in \mathcal{S}^{m}$ is positive semidefinite (PSD), denoted $A \succeq 0$ if
(1) All eigenvalues of A are non-negative
$A=Y^{T} Y$ for some $Y \in \mathbb{R}^{d \times m}$ where $d \leq m$
$z^{T} A z \geq 0$ for any $z \in \mathbb{R}^{m}$
and more...

$$
\begin{gathered}
x_{1} A_{1}+\cdots+x_{n} A_{n} \xi_{c} B \\
A\left(x_{1}, \cdots, x_{n}\right)=x_{1} A_{1}+\cdots+x_{n} A_{n}-B \text { in } P S D \Leftrightarrow \frac{\lambda_{m}(A(\bar{\pi}))}{\left.\frac{\lambda_{1}(A(n)}{g_{1}(i)}\right)}, \cdots 0
\end{gathered}
$$

What is a Semidefinite Program?

- $\mathcal{S}^{m}:=\mathcal{S}^{m}(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)
- $A \in \mathcal{S}^{m}$ is positive semidefinite (PSD), denoted $A \succeq 0$ if
(1) all eigenvalues of A are non-negative
(2) $A=Y^{T} Y$ for some $Y \in \mathbb{R}^{d \times m}$ where $d \leq m$
(3) $z^{T} A z \geq 0$ for any $z \in \mathbb{R}^{m}$
(9) and more...

Semidefinite Programming deals with problems of the form

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

What is a Semidefinite Program?

- $\mathcal{S}^{m}:=\mathcal{S}^{m}(\mathbb{R})$ space of all $m \times m$ symmetric matrices (real entries)
- $A \in \mathcal{S}^{m}$ is positive semidefinite (PSD), denoted $A \succeq 0$ if
(1) all eigenvalues of A are non-negative
(2) $A=Y^{T} Y$ for some $Y \in \mathbb{R}^{d \times m}$ where $d \leq m$
(3) $z^{T} A z \geq 0$ for any $z \in \mathbb{R}^{m}$
(9) and more...

Semidefinite Programming deals with problems of the form

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

Where we use $C \succeq D$ o denote that $C-D \succeq 0$ (i.e., $C-D$ is PSD).

How does it generalize Linear Programming?

Linear Programming

minimize $a^{T} x$
subject to $C x \geq b$
$x \in \mathbb{R}^{n}$

How does it generalize Linear Programming?

Linear Programming

Semidefinite Programming

$$
\begin{array}{rlrl}
\operatorname{minimize} & a^{T} x & \text { minimize } & c^{T} x \\
\text { subject to } & C x \geq b & \text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n} & x \in \mathbb{R}^{n}
\end{array}
$$

How does it generalize Linear Programming?

$$
\begin{array}{lll}
\text { Linear Programming } & \\
& a^{T} x & \text { Semidefinite Programming } \\
\text { minimize } & \left.\begin{array}{l}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)_{\text {minimize }} & c^{T} x \\
\text { subject to } & C x \geq b & \text { subject to } \\
x \in \mathbb{R}^{n} & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n}
\end{array}
$$

Set A_{i} 's to be diagonal matrices, and $B=\operatorname{diag}\left(b_{1}, \ldots, b_{m}\right)$

$$
\begin{aligned}
& \sum_{i=1}^{n} C_{k i} x_{i} \geqslant b_{k} \\
& \mid\left(A_{i}\right)_{k k}=\overline{C_{k i}} \\
& \begin{array}{c}
k^{t h} \text { diagonal } \\
\text { entry }
\end{array}
\end{aligned}
$$

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Semidefinite Programming is no different!

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Semidefinite Programming is no different!
- equilibrium analysis of dynamics and control (flight controls, robotics, etc.) TODAY
- robust optimization
- statistics and ML
- continuous games
- software verification
- filter design
- quantum computation and information
- automated theorem proving
- packing problems
- many more

Why should I care?

- Linear Programs appear everywhere in life: many problems of interest (resource allocation problems) can be modelled as linear program!
- Semidefinite Programming is no different!
- equilibrium analysis of dynamics and control (flight controls, robotics, etc.)
- robust optimization
- statistics and ML
- continuous games
- software verification
- filter design
- quantum computation and information
- automated theorem proving
- packing problems
- many more
- See more here

```
            https://windowsontheory.org/2016/08/27/
proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/
```


Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

(1) When is a Semidefinite Program feasible?

- Is there a solution to the constraints at all?

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

(1) When is a Semidefinite Program feasible?

- Is there a solution to the constraints at all?
(2) When is a Semidefinite Program bounded?
- Is there a minimum? Is the minimum achievable? Or is the minimum $-\infty$?

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

(1) When is a Semidefinite Program feasible?

- Is there a solution to the constraints at all?
(2) When is a Semidefinite Program bounded?
- Is there a minimum? Is the minimum achievable? Or is the minimum $-\infty$?
(3) Can we characterize optimality?
- How can we know that we found a minimum solution?
- Do these solutions have nice description?
- Do the solutions have small bit complexity?

Important Questions

$$
\begin{aligned}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & x_{1} \cdot A_{1}+\cdots+x_{n} \cdot A_{n} \succeq B \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

(1) When is a Semidefinite Program feasible?

- Is there a solution to the constraints at all?
(2) When is a Semidefinite Program bounded?
- Is there a minimum? Is the minimum achievable? Or is the minimum $-\infty$?
(3) Can we characterize optimality?
- How can we know that we found a minimum solution?
- Do these solutions have nice description?
- Do the solutions have small bit complexity?
(9) How do we design efficient algorithms that find optimal solutions to Semidefinite Programs?
－Part I
－Why Semidefinite Programming？
－Convex Algebraic Geometry
－Part II
－Duality Theory
－Application：Control Theory
－Conclusion
－Acknowledgements

Spectrahedra

To understand SDPs, we need to understand their feasible regions, which are called spectrahedra and described as Linear Matrix Inequalities (LMIs).

Spectrahedra

To understand SDPs, we need to understand their feasible regions, which are called spectrahedra and described as Linear Matrix Inequalities (LMIs).

Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

$$
A_{0}+\sum_{i=1}^{n} A_{i} x_{i}(\succeq)
$$

where A_{0}, \ldots, A_{n} are symmetric matrices.

Spectrahedra

To understand SDPs, we need to understand their feasible regions, which are called spectrahedra and described as Linear Matrix Inequalities (LMIs).

Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

$$
A_{0}+\sum_{i=1}^{n} A_{i} x_{i} \succeq 0
$$

where A_{0}, \ldots, A_{n} are symmetric matrices.

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMIs. In other words, it can be defined as:

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sqrt{\sum_{i=1}^{n} A_{i} x_{i} \succeq B}, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

Spectrahedra
To understand SDPs, we need to understand their feasible regions, which are called spectrahedra and described as Linear Matrix Inequalities (LMIs). if 5 defined by $\frac{\sum_{i=1}^{n} A_{i} x_{i} \& B_{1}}{S \text { define } b y}$

Definition (Spectrahedron)
A spectrahedron is a set defined by finitely many LMIs. In other words, it can be defined as:

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq B, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

Spectrahedra $\quad A, B \succcurlyeq 0 \quad Z^{\top}(A+B) z=\frac{Z^{\top} A r}{\sum_{0}}+\frac{\tau^{\top} B T}{\zeta_{0}} \geqslant 0$
To understand SDPs, we need to understand their feasible regions, which are called spectrahedra and described as Linear Matrix Inequalities (LIs). Spectrahedra are convex: $z=\alpha x+(1-\alpha) y$
$x, y \in S$ then $\alpha \in[0,1]$ we have

$$
\begin{aligned}
& \sum_{i=1}^{n} A_{i} \underbrace{\left(\alpha x_{i}+(1-\alpha) y_{i}\right.}_{z_{i}})=\alpha \sum_{i 0}^{n} d_{i=1}^{n} x_{i}+(1-\alpha) \sum_{30}^{n} A_{i} y_{i} \zeta_{i=1}^{\sum_{i}(-\alpha) B} \\
& \alpha B+(1-\alpha) B=B \quad \therefore \alpha x+(1-\alpha) y \in S .
\end{aligned}
$$

Definition (Spectrahedron)
A spectrahedron is a set defined by finitely many LIs. In other words, it can be defined as:

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq B, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

Example of Spectrahedron
Polyhedron:
$P=\left\{x \in \mathbb{R}^{n} \mid A x \geqslant b\right\} \quad L P$
$\sum_{i=1}^{n} A_{k i} x_{i} \geqslant b_{n} \quad k^{n h}$ constraint

$$
\frac{\sum_{i=1}^{\frac{\sum_{i=1}^{n}}{} x_{i}\left(\begin{array}{lll}
A_{k i} & & \\
& \ddots & \\
& & A_{m i}
\end{array}\right) \succ_{c}\left(\begin{array}{lll}
b_{1} & & \\
& \ddots & \\
& & b_{m}
\end{array}\right)}}{\text { SDI }}
$$

Example of Spectrahedron

$$
\begin{aligned}
& \text { Circle: } e=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\} \\
& e=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, \frac{\frac{11+x}{y \sqrt{1-x}}}{z}<0\right.\right\} \\
& \left.\begin{array}{l}
1+x \geq 0 \\
1-x<0
\end{array} \left\lvert\, \frac{\operatorname{det}(z) \geq 0}{(1+x)(1-x)-y^{2}}\right.\right\} \Rightarrow \begin{array}{c}
z \\
1-1 \leq x \leq 1 \\
1-x^{2}-y^{2} \geq 0
\end{array} \\
& \Rightarrow \begin{array}{l}
-1 \leqslant x \leqslant 1 \\
x^{2}+y^{2} \leqslant 1
\end{array}
\end{aligned}
$$

Example of Spectrahedron

$$
\begin{aligned}
& \mathcal{H}=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, \begin{array}{l}
x, y \geqslant 0 \\
x y \geqslant 1
\end{array}\right.\right\} \\
& \mathcal{H}=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, \begin{array}{cc}
(x) 1 \\
l & (y)
\end{array}\right.\right\} \\
& \left.\begin{array}{l}
x \geqslant 0 \\
y \geqslant 0 \\
\operatorname{det}\left(\begin{array}{ll}
x & 1 \\
1 & y
\end{array}\right) \geqslant 0
\end{array}\right\} \Rightarrow \begin{array}{l}
x, y \geqslant 0 \\
x y \geqslant 1
\end{array} \\
& x y-1
\end{aligned}
$$

Example of Spectrahedron

$$
\begin{aligned}
& \xi=\left\{(x, y) \in \mathbb{R}^{2} \mid\right. \\
& A(x, y)=\left[\begin{array}{ccc}
x+1 & 0 & y \\
0 & 2 & -x-1 \\
y & -x-1 & 2
\end{array}\right] \& 0
\end{aligned}
$$

To see that green region corusponds to $\%$ need to show

$$
0=\frac{-2 y^{2}-x^{3}-3 x^{2}+x+3}{\operatorname{det}(A(x, y))}
$$ that oval corresponds to λ_{1} being in in $\xi\left(t-\lambda_{3}\right)=t^{3}-\left(\lambda_{1}, \lambda_{2}, \lambda_{1}\right) t^{2}$

$A(x, y)$ \&, 0 if $\operatorname{det}(t I-A(x, y))$ has only $\geqslant 0$ roots

$$
\begin{aligned}
& A(x, y) \varepsilon_{0} 0 \text { if } \frac{\operatorname{det}(t I-A(x, y))}{\left.t^{3}-(x+5) t^{2}+\left(-x^{2}+2 x-y^{2}+7\right) t-\operatorname{det}(A(x, y))\right)} \\
& \geqslant 0 \text { ret }(t I-A(x, y))
\end{aligned}
$$

extra inequalities inflate component

Projected Spectrahedron
For both LPs and SDPs, it is enough to obtain a linear projection of spectrahedron (or polyhedron, if in LP).
LP projection of polyhedre ore poly hedra

Projected Spectrahedron
For both LPs and SDPs, it is enough to obtain a linear projection of spectrahedron (or polyhedron, if in LP).

Definition (Projected Spectrahedron)
A set $S \in \mathbb{R}^{n}$ is a projected spectrahedron if it has the form:

$$
S=\left\{x \in \mathbb{R}^{n} \mid \exists y \in \mathbb{R}^{t} \text { s.t. } \sum_{i=1}^{n} A_{i} x_{i}+\sum_{j=1}^{t} B_{j} y_{j} \succeq C, A_{i}, B_{j}, C \in \mathcal{S}^{m}\right\}
$$

S projection of:

$$
\begin{aligned}
& \text { projection of: } \\
& \left.T:=\left\{\underline{(x, y)} \in \mathbb{R}^{n+t} \mid \sqrt{\sum_{i} A_{i} x_{i}+\sum_{j} B_{j} y_{j} r_{c} c}\right\}\right\}
\end{aligned}
$$

5 projection of T to firs n cordinets

Projected Spectrahedron
For both LPs and SDPs, it is enough to obtain a linear projection of spectrahedron (or polyhedron, if in LP).

Definition (Projected Spectrahedron)
A set $S \in \mathbb{R}^{n}$ is a projected spectrahedron if it has the form:

$$
\begin{aligned}
& S=\left\{x \in \mathbb{R}^{n} \mid \exists y \in \mathbb{R}^{t} \text { set. } \sum_{i=1}^{n} A_{i} x_{i}+\sum_{j=1}^{t} B_{j} y_{j} \succeq C, \quad A_{i}, B_{j}, C \in \mathcal{S}^{m}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& c^{\top} x=\frac{\left(c^{\top}, 0\right)}{\hat{c}}\binom{x}{y}
\end{aligned}
$$

Example of Projection of Spectrahedron
Projection quadratic cone intersected with halfspace:

$$
\begin{aligned}
S= & \left\{\begin{array}{l}
(x, y) \in \mathbb{R}^{2} \mid \exists z \in \mathbb{R} \text { a.t. } \\
\left.A\left(\begin{array}{ll}
\frac{z+y}{2 z-x} & 2 z-x \\
2 z-y
\end{array}\right) \& 0, z \leq \perp\right\}
\end{array}\right.
\end{aligned}
$$

In $\mathbb{R}^{3},(x, y, t)$ would be given by $\uparrow \operatorname{det}(A) \geqslant 0$ $z \leq 1$ intersect with cone $z^{2} \geqslant y^{2}+(2 z-x)^{2}$ and equations $z+y \geqslant 0, z-y \geqslant 0 \quad(\therefore z \geqslant 0)$ (convince yourself that we will on have $x \geqslant 0$) Remark: unlike polytiedinal case, projection of spectrahedre MAY NOT be spectrahedre (this is an example)

How do we test membership in the Spectrahedron?

- To be able to optimize, we must be able to test whether a given point $x \in \mathbb{R}^{n}$ is inside our spectrahedron

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq B, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

How do we test membership in the Spectrahedron?

- To be able to optimize, we must be able to test whether a given point $x \in \mathbb{R}^{n}$ is inside our spectrahedron

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq B, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

- Note that $x \in S$ is (by definition) equivalent to

$$
Z=\sum_{i=1}^{n} A_{i} x_{i}-B \succeq 0
$$

How do we test membership in the Spectrahedron?

- To be able to optimize, we must be able to test whether a given point $x \in \mathbb{R}^{n}$ is inside our spectrahedron

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq B, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

- Note that $x \in S$ is (by definition) equivalent to

$$
Z=\sum_{i=1}^{n} A_{i} x_{i}-B \succeq 0
$$

- So, how do we efficiently check if $Z \succeq 0$?

How do we test membership in the Spectrahedron?

- To be able to optimize, we must be able to test whether a given point $x \in \mathbb{R}^{n}$ is inside our spectrahedron

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq B, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

- Note that $x \in S$ is (by definition) equivalent to

$$
Z=\sum_{i=1}^{n} A_{i} x_{i}-B \succeq 0
$$

- So, how do we efficiently check if $Z \succeq 0$?
- Symmetric Gaussian Elimination!

How do we test membership in the Spectrahedron?

- To be able to optimize, we must be able to test whether a given point $x \in \mathbb{R}^{n}$ is inside our spectrahedron

$$
S=\left\{x \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} A_{i} x_{i} \succeq B, \quad A_{i}, B \in \mathcal{S}^{m}\right\}
$$

- Note that $x \in S$ is (by definition) equivalent to

$$
Z=\sum_{i=1}^{n} A_{i} x_{i}-B \succeq 0
$$

- So, how do we efficiently check if $Z \succeq 0$?
- Symmetric Gaussian Elimination!
- We will use following characterizations of PSDness of symmetric $A \in \mathcal{S}^{m}$
(1) all eigenvalues of A are non-negative
(2) $A=L D L^{T}$ for some L lower triangular and unit diagonal, D diagonal anđ non-negative
(3) $z^{T} A z \geq 0$ for any $z \in \mathbb{R}^{m}$
(9) Any principal minor of A has non-negative determinant

How do we test membership in the Spectrahedron?

- Input: symmetric matrix $A \in \mathcal{S}^{m}$
- Output: YES if $A \succeq 0$, NO otherwise (and output $z \in \mathbb{R}^{m}$ such that $\left.z^{T} A z<0\right)$
Clear out first column of A by left multiplication (row operations)

$$
\text { A symmetric } \Rightarrow \underline{L_{1} A L_{1}^{\top}}=\left(\begin{array}{cccc}
* & 0 & - & 0 \\
0 & * & * & * \\
0 & * & \cdots & \vdots \\
\vdots & * & \cdots & *
\end{array}\right)
$$

How do we test membership in the Spectrahedron?

- Input: symmetric matrix $A \in \mathcal{S}^{m}$
- Output: YES if $A \succeq 0$, NO otherwise (and output $z \in \mathbb{R}^{m}$ such that $\left.z^{T} A z<0\right)$
Similarly, clear out second row and colunin

$$
L_{2} L_{1} A L_{1}^{\top} L_{2}^{\top}=\binom{*}{0}
$$

and so on...

How do we test membership in the Spectrahedron?

- Input: symmetric matrix $A \in \mathcal{S}^{m}$
- Output: YES if $A \succeq 0$, NO otherwise (and output $z \in \mathbb{R}^{m}$ such that $\left.z^{T} A z<0\right)$
Our algorithm enols when

$$
\begin{aligned}
& L_{L} L_{m-1}-L_{2} L_{1}
\end{aligned} \underbrace{A L_{1}^{\top} L_{2}^{\top}-L_{m}^{\top}}_{L^{\top}}=\underbrace{\left(\begin{array}{cc}
* & 0 \\
0^{*} & \ddots \\
L^{\top} & =D
\end{array}\right)}_{D \text { diagonal }}
$$

Product of L_{i} 's still same shape $\left(\begin{array}{ll}1 & 0 \\ \vdots & 1\end{array}\right)$.
or, our algorithm halts if the following happen:

How do we test membership in the Spectrahedron?

- Input: symmetric matrix $A \in \mathcal{S}^{m}$
- Output: YES if $A \succeq 0$, NO otherwise (and output $z \in \mathbb{R}^{m}$ such that $\left.z^{T} A z<0\right)$
If at any point we have $L A L^{\top}=\left(\begin{array}{c}\pi_{*}^{* *} \\ (-a) \\ 0^{2}\end{array}\right)<i$
with $a>0$ then return No
and $z=L^{\top} e_{i}$

$$
z^{\top} A z=e_{i}^{\top}\left(L A L^{\top}\right) e_{i}=-a<0
$$

If at any point we have with $b \neq 0$ then return NO

Practice problem: what is z here?

How do we test membership in the Spectrahedron?

- Input: symmetric matrix $A \in \mathcal{S}^{m}$
- Output: YES if $A \succeq 0$, NO otherwise (and output $z \in \mathbb{R}^{m}$ such that $\left.z^{T} A z<0\right)$
If our Symmetric Gaussian ELimination runs until the end, we here that
$L A L^{\top}=D$ with $D_{i i} \geqslant 0 \quad \forall i \in[m]$ all other entries zero $\therefore D$ re $\Rightarrow A \& 0$.
\# iterations depends on combine.
- Our algorithm runs in time strongly polynomial. totial size of problem
－Part I
－Why Semidefinite Programming？
－Convex Algebraic Geometry
－Part II
－Duality Theory
－Application：Control Theory
－Conclusion
－Acknowledgements

Working with Symmetric Matrices

Definition (Frobenius Inner Product)

$A, B \in \mathcal{S}^{m}$, define the Frobenius inner product as

$$
\langle A, B\rangle:=\operatorname{tr}[A B]=\sum_{i, j} A_{i j} B_{i j}
$$

- This is the "usual inner product" if you think of the matrices as vectors
- Thus, have the norm

$$
\|A\|_{\boldsymbol{F}}=\sqrt{\langle A, A\rangle}=\sqrt{\sum_{i, j} A_{i j}^{2}}
$$

- With this norm, can talk about the polar dual to a given spectrahedron $S \subseteq \mathcal{S}^{m}$:

$$
S^{\circ}=\left\{Y \in \mathcal{S}^{m} \mid\langle Y, X\rangle \leq 1, \forall X \in S\right\}
$$

Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0 \text { Varisble Comtraint }
\end{aligned}
$$

Where now:

Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Where now:

- the variables are encoded in a positive semidefinite matrix X,

Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Where now:

- the variables are encoded in a positive semidefinite matrix X,
- each constraint is given by an inner product $\left\langle A_{i}, X\right\rangle=b_{i}$

Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

$$
\begin{array}{rll}
\operatorname{minimize} & \langle C, X\rangle & \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} & A x=b \\
& X \succeq 0 & x \geqslant 0
\end{array}
$$

Where now:

- the variables are encoded in a positive semidefinite matrix X,
- each constraint is given by an inner product $\left\langle A_{i}, X\right\rangle=b_{i}$
- Note the similarity with LP standard primal. Can obtain LP standard form by making X and A_{i} 's to be diagonal

Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \leftarrow \\
& X \succeq 0
\end{aligned}
$$

Where now:

- the variables are encoded in a positive semidefinite matrix X,
- each constraint is given by an inner product $\left\langle A_{i}, X\right\rangle=b_{i}$
- Note the similarity with LP standard primal. Can obtain LP standard form by making X and A_{i} 's to be diagonal
- How is that an LMI though?

Standard Primal Form

$$
\begin{aligned}
& \text { minimize }\langle C, X\rangle \\
& \text { subject to }\left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0 \\
& \left\langle A_{i}, X\right\rangle=b_{i} \quad \sum_{k_{1} \ell}\left(A_{i}\right)_{k e} x_{k l}=b_{i} \Rightarrow \\
& \sum_{k, l} x_{k l}\left(\begin{array}{llll}
\left(A_{1}\right)_{k l} & & \\
& \ddots & \\
& & \left(A_{t}\right)_{k l}
\end{array}\right)=\left(\begin{array}{llll}
b_{1} & & \\
& \ddots & \\
& & & b_{t}
\end{array}\right) \\
& X \& O
\end{aligned}
$$

are the two LMIs defining our set.

Semidefinite Programming Duality

Consider our SDP:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Semidefinite Programming Duality

Consider our SDP:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Semidefinite Programming Duality

Consider our SDP:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

- If we look at what happens when we multiply $i^{t h}$ equality by a variable y_{i} :

$$
\left.\sum_{i=1}^{t} y_{i} \cdot\left\langle A_{i}\right\rangle X\right\rangle=\sum_{i=1}^{t} y_{i} \cdot b_{i} \Rightarrow\left\langle\sum_{i=1}^{t} y_{i} A_{i}, X\right\rangle=y^{T} b
$$

Semidefinite Programming Duality

Consider our SDP:

$A \preccurlyeq B \Rightarrow\langle A, x\rangle$ minimize $\langle C, X\rangle$

$$
\begin{array}{ll}
\leqslant\langle B, X\rangle \text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{array}
$$

- If we look at what happens when we multiply $i^{t h}$ equality by a variable y_{i} :

$$
\sum_{i=1}^{t} y_{i} \cdot\left\langle A_{i}, X\right\rangle=\sum_{i=1}^{t} y_{i} \cdot b_{i} \Rightarrow\left\langle\sum_{i=1}^{t} y_{i} A_{i}, X\right\rangle=y^{T} b
$$

- Thus, if $\sum_{i=1}^{t} y_{i} A_{i} \preceq C$, then we have:

$$
y^{\top} b=\left\langle\sum_{i=1}^{t} y_{i} A_{i}, x\right\rangle \leq\langle C, x\rangle
$$

Semidefinite Programming Duality

Consider our SDP:

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

- If we look at what happens when we multiply $i^{\text {th }}$ equality by a variable y_{i} :

$$
\sum_{i=1}^{t} y_{i} \cdot\left\langle A_{i}, X\right\rangle=\sum_{i=1}^{t} y_{i} \cdot b_{i} \Rightarrow\left\langle\sum_{i=1}^{t} y_{i} A_{i}, X\right\rangle=y^{T} b
$$

- Thus, if $\sum_{i=1}^{t} y_{i} A_{i} \preceq C$, then we have:

$$
y^{T} b=\left\langle\sum_{i=1}^{t} y_{i} A_{i}, X\right\rangle \leq\langle C, X\rangle
$$

- $y^{T} b$ is a lower bound on the solution to our SDP!

Semidefinite Programming Duality

Consider the following SDPs:

Primal SDP

minimize	$\langle C, X\rangle$
subject to	$\left\langle A_{i}, X\right\rangle=b_{i}$
	$X \succeq 0$

Dual SDP

Semidefinite Programming Duality

Consider the following SDPs:

$$
\begin{array}{cl}
\text { Primal } S D P \\
\text { minimize } & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{array}
$$

- From previous slide

$$
\sum_{i=1}^{t} y_{i} A_{i} \preceq C \Rightarrow y^{T} b \text { is a lower bound on value of Primal }
$$

Semidefinite Programming Duality

Consider the following SDPs:

Primal SDP

$\operatorname{minimize}$	$\langle C, X\rangle$
subject to	$\left\langle A_{i}, X\right\rangle=b_{i}$
	$X \succeq 0$

Dual SDP
maximize $\quad y^{\top} b$
subject to $\quad \sum_{i=1}^{t} y_{i} A_{i} \preceq C$

- From previous slide

$$
\sum_{i=1}^{t} y_{i} A_{i} \preceq C \Rightarrow y^{T} b \text { is a lower bound on value of Primal }
$$

- Thus, the optimal (maximum) value of dual LP lower bounds the optimal (minimum) value of the Primal LP!

Semidefinite Programming Duality

Consider the following SDPs:

Primal SDP

- From previous slide

$$
\sum_{i=1}^{t} y_{i} A_{i} \preceq C \Rightarrow y^{T} b \text { is a lower bound on value of Primal }
$$

- Thus, the optimal (maximum) value of dual $L P$ lower bounds the optimal (minimum) value of the Primal LP!

Theorem (Weak Duality)

Let X be a feasible solution of the primal SDP and y be a feasible solution of the dual SDP. Then

$$
y^{\top} b \leq\langle C, X\rangle .
$$

Remarks on Duality

Primal SDP
minimize $\langle C, X\rangle$
subject to $\left\langle A_{i}, X\right\rangle=b_{i}$
$X \succeq 0$

Dual SDP
maximize $\quad y^{\top} b$
subject to $\quad \sum_{i=1}^{t} y_{i} A_{i} \preceq C$

Remarks on Duality

Primal SDP

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Dual SDP
maximize $\quad y^{\top} b$
subject to $\quad \sum_{i=1}^{t} y_{i} A_{i} \preceq C$

Theorem (Complementary Slackness)

Let X be a feasible solution of the primal SDP and y be a feasible solution of the dual SDP. If (X, y) satisfy the complementary slackness condition

$$
\left(C-\sum_{i=1}^{t} y_{i} A_{i}\right) X=0
$$

Then (X, y) are primal and dual optimum solutions of the SDP problem.

Remarks on Duality

Primal SDP

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Dual SDP
maximize $y^{\top} b$
subject to $\quad \sum_{i=1}^{t} y_{i} A_{i} \preceq C$

Theorem (Complementary Slackness)

Let X be a feasible solution of the primal SDP and y be a feasible solution of the dual SDP. If (X, y) satisfy the complementary slackness condition

$$
\left(C-\sum_{i=1}^{t} y_{i} A_{i}\right) X=0
$$

Then (X, y) are primal and dual optimum solutions of the SDP problem.
Complementary slackness gives us sufficient conditions to check optimality of our solutions.

Strong Duality

Primal SDP
minimize $\langle C, X\rangle$
subject to $\left\langle A_{i}, X\right\rangle=b_{i}$
$X \succeq 0$

Dual SDP
maximize $\quad y^{\top} b$
subject to $\quad \sum_{i=1}^{t} y_{i} A_{i} \preceq C$

Strong Duality

- Strong duality in SDPs is a bit more complex than in LPs.

Strong Duality

Primal SDP

$\begin{aligned} \operatorname{minimize} & \langle C, X\rangle \\ \text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\ & X \succeq 0\end{aligned}$

Dual SDP
maximize $\quad y^{\top} b$
subject to $\quad \sum_{i=1}^{t} y_{i} A_{i} \preceq C$

- Strong duality in SDPs is a bit more complex than in UPs.
- Both primal and dual may be feasible, and yet strong duality may not hold! (you will see this in Hornewre)

Strong Duality

Primal SDP
\(\begin{aligned} \operatorname{minimize} \& \langle C, X\rangle
subject to \& \left\langle A_{i}, X\right\rangle=b_{i}
\& X \succeq 0\end{aligned}\)

Dual SDP
maximize $\quad y^{\top} b$
subject to $\quad \sum_{i=1}^{t} y_{i} A_{i} \preceq C$

- Strong duality in SDPs is a bit more complex than in LPs.
- Both primal and dual may be feasible, and yet strong duality may not hold!
- But under mild conditions, strong duality holds!

Strong Duality

Primal SDP

$\begin{aligned} \operatorname{minimize} & \langle C, X\rangle \\ \text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\ & X \succeq 0\end{aligned}$

Dual SDP
maximize $\quad y^{\top} b$
subject to $\quad \sum_{i=1}^{t} y_{i} A_{i} \preceq C$

- Strong duality in SDPs is a bit more complex than in LPs.
- Both primal and dual may be feasible, and yet strong duality may not hold!
- But under mild conditions, strong duality holds!
- Primal SDP is strictly feasible if there is feasible solution $X \succ 0$.
- Dual SDP is strictly feasible if there is feasible $\sum_{i=1}^{t} y_{i} A_{i} \prec C$.

> Slater conditions

Strong Duality

Primal SDP

$$
\begin{aligned}
\operatorname{minimize} & \langle C, X\rangle \\
\text { subject to } & \left\langle A_{i}, X\right\rangle=b_{i} \\
& X \succeq 0
\end{aligned}
$$

Dual SDP
maximize $\quad y^{\top} b$
subject to $\quad \sum_{i=1}^{t} y_{i} A_{i} \preceq C$

- Strong duality in SDPs is a bit more complex than in LPs.
- Both primal and dual may be feasible, and yet strong duality may not hold!
- But under mild conditions, strong duality holds!
- Primal SDP is strictly feasible if there is feasible solution $X \succ 0$.
- Dual SDP is strictly feasible if there is feasible $\sum_{i=1}^{t} y_{i} A_{i} \prec C$.

Theorem (Strong Duality under Slater Conditions)

If primal SDP and dual SDP are both strictly feasible, then

$$
\text { max dual }=\text { min of primal. }
$$

－Part I
－Why Semidefinite Programming？
－Convex Algebraic Geometry
－Part II
－Duality Theory
－Application：Control Theory
－Conclusion
－Acknowledgements

Stability of Linear Systems

Setup:

- Linear difference equation

$$
x(t+1)=A x(t), \quad x(0)=x_{0}
$$

- Discrete-time dynamical system. ${ }^{1}$

Stability of Linear Systems

Setup:

- Linear difference equation

$$
x(t+1)=A x(t), \quad x(0)=x_{0}
$$

- Discrete-time dynamical system. ${ }^{1}$
- Used to model time evolution of

Stability of Linear Systems

Setup:

- Linear difference equation

$$
x(t+1)=A x(t), \quad x(0)=x_{0}
$$

- Discrete-time dynamical system. ${ }^{1}$
- Used to model time evolution of
- Temperatures of objects
- Size of population
- Voltage of electrical circuits
- Concentration of chemical mixtures

Stability of Linear Systems

Setup:

- Linear difference equation

$$
x(t+1)=A x(t), \quad x(0)=x_{0}
$$

- Discrete-time dynamical system. ${ }^{1}$
- Used to model time evolution of
- Temperatures of objects
- Size of population
- Voltage of electrical circuits
- Concentration of chemical mixtures
- Question: when $\stackrel{\boldsymbol{t}}{\rightarrow}$, under what conditions will $x(t)$ remain bounded? Or go to zero?

Stability of Linear Systems

Setup:

- Linear difference equation

$$
x(t+1)=A x(t), \quad x(0)=x_{0}
$$

- Discrete-time dynamical system. ${ }^{1}$
- Used to model time evolution of
- Temperatures of objects
- Size of population
- Voltage of electrical circuits
- Concentration of chemical mixtures
- Question: when $k \rightarrow \infty$, under what conditions will $x(t)$ remain bounded? Or go to zero?
- When system converges to zero, we say it is stable.

Stability of Linear Systems

Setup:

- Linear difference equation

$$
x(t+1)=A x(t), \quad x(0)=x_{0}
$$

- Discrete-time dynamical system. ${ }^{1}$
- Used to model time evolution of
- Temperatures of objects
- Size of population
- Voltage of electrical circuits
- Concentration of chemical mixtures
- Question: when $k \rightarrow \infty$, under what conditions will $x(t)$ remain bounded? Or go to zero?
- When system converges to zero, we say it is stable.
- System is stable iff $\left|\lambda_{i}(A)\right|<1$

Stability of Linear Systems

SDP viewpoint:

- Lyapunov functions (generalize energy in systems). Functions on $x(t)$ decrease monotonically on trajectories of the system.

Stability of Linear Systems

SDP viewpoint:

- Lyapunov functions (generalize energy in systems). Functions on $x(t)$ decrease monotonically on trajectories of the system.
- For our discrete-time system, we have:

$$
V(x(t))=x(t)^{T} P x(t)
$$

Stability of Linear Systems

SDP viewpoint:

- Lyapunov functions (generalize energy in systems). Functions on $x(t)$ decrease monotonically on trajectories of the system.
- For our discrete-time system, we have:

$$
V(x(t))=x(t)^{T} P x(t)
$$

- To make these monotonically decreasing, we need:

$$
\begin{aligned}
V(x(t+1)) \leq V(x(t)) & \Leftrightarrow x(t+1)^{T} P x(t+1)-x(t)^{T} P x(t) \leq 0 \\
f r \text { any } x(t) \longrightarrow & \Leftrightarrow x(t)^{\top}\left(A^{T} P A x(t)-x(t)^{\top} P x(t) \leq 0\right. \\
& \Leftrightarrow A^{T} P A-P \preceq 0
\end{aligned}
$$

Stability of Linear Systems

SDP viewpoint:

- Lyapunov functions (generalize energy in systems). Functions on $x(t)$ decrease monotonically on trajectories of the system.
- For our discrete-time system, we have:

$$
V(x(t))=x(t)^{T} P x(t)
$$

- To make these monotonically decreasing, we need:

$$
\begin{aligned}
V(x(t+1)) \leq V(x(t)) & \Leftrightarrow x(t+1)^{T} P x(t+1)-x(t)^{T} P x(t) \leq 0 \\
\text { use SDP to } \quad & \Leftrightarrow x(t)^{T} A^{T} P A x(t)-x(t)^{T} P x(t) \leq 0 \\
\text { find P! } & \Leftrightarrow A^{T} P A-P \preceq 0
\end{aligned}
$$

Theorem
Given matrix $A \in \mathbb{R}^{m \times m}$, the following conditions are equivalent:
(1) All eigenvalues of A are inside unit circle, i.e. $\left|\lambda_{i}(A)\right|<1$
(2) There is $P \in \mathcal{S}^{m}$ such that

$$
P \succ 0, \quad A^{\top} P A-P \prec 0
$$

Where is the control?

Setup:

- Linear difference equation, with control input

$$
x(t+1)=\underset{i x m}{A x}(t)+B \in \mathbb{R}^{m \times k} \quad \frac{B u(t)}{\uparrow} \quad x(0)=x_{0}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times k}$

$$
u(t) \in \mathbb{R}^{k}
$$

Where is the control?
Setup:

- Linear difference equation, with control input

$$
x(t+1)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times k}$

- If we properly choose control input $u(t)$ we can make our system $x(t)$ behave in a way that we want (say, to stabilize an unstable system)

Where is the control?

Setup:

- Linear difference equation, with control input

$$
x(t+1)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times k}$

- If we properly choose control input $u(t)$ we can make our system $x(t)$ behave in a way that we want (say, to stabilize an unstable system)
- Want to do it by setting the control input to be $u(t)=\mathbb{K}(t)$ for some fixed K (so that we use the system as its own feedback)

Where is the control?

Setup:

- Linear difference equation, with control input

$$
x(t+1)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times k}$

- If we properly choose control input $u(t)$ we can make our system $x(t)$ behave in a way that we want (say, to stabilize an unstable system)
- Want to do it by setting the control input to be $u(t)=K x(t)$ for some fixed K (so that we use the system as its own feedback)
- Same thing as replacing $A \leftarrow A+B K$

Where is the control?

Setup:

- Linear difference equation, with control input

$$
x(t+1)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times k}$

- If we properly choose control input $u(t)$ we can make our system $x(t)$ behave in a way that we want (say, to stabilize an unstable system)
- Want to do it by setting the control input to be $u(t)=K x(t)$ for some fixed K (so that we use the system as its own feedback)
- Same thing as replacing $A \leftarrow A+B K$
- Now this is harder to solve via simple eigenvalue description. But still solved the same way via Lyapunov functions!

Where is the control?

Setup:

- Linear difference equation, with control input

$$
x(t+1)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times k}$

- If we properly choose control input $u(t)$ we can make our system $x(t)$ behave in a way that we want (say, to stabilize an unstable system)
- Want to do it by setting the control input to be $u(t)=K x(t)$ for some fixed K (so that we use the system as its own feedback)
- Same thing as replacing $A \leftarrow A+B K$
- Now this is harder to solve via simple eigenvalue description. But still solved the same way via Lyapunov functions!
- Want $P \succ 0$ such that

$$
\frac{(A+B K)^{T}}{\text { not } P(A+B K)}-P \prec 0
$$

Where is the control?

Setup:

- Linear difference equation, with control input

$$
x(t+1)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times k}$

- If we properly choose control input $u(t)$ we can make our system $x(t)$ behave in a way that we want (say, to stabilize an unstable system)
- Want to do it by setting the control input to be $u(t)=K x(t)$ for some fixed K (so that we use the system as its own feedback)
- Same thing as replacing $A \leftarrow A+B K$
- Now this is harder to solve via simple eigenvalue description. But still solved the same way via Lyapunov functions!
- Want $P \succ 0$ such that

$$
(A+B K)^{T} P(A+B K)-P \prec 0
$$

- Wait, this ain't no SDP! But we can make it into SDP with some matrix manipulations.

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard
- Special cases have very striking applications!
- Linear Programming (previous lectures)
- Today: Semidefinite Programming

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard
- Special cases have very striking applications!
- Linear Programming (previous lectures)
- Today: Semidefinite Programming
- Semidefinite Programming and Duality - fundamental concepts, lots of applications!

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard
- Special cases have very striking applications!
- Linear Programming (previous lectures)
- Today: Semidefinite Programming
- Semidefinite Programming and Duality - fundamental concepts, lots of applications!
- Applications in Combinatorial Optimization (Max-Cut in next lecture!)
- Applications in Control Theory (today)
- many more!

Conclusion

- Mathematical programming - very general, and pervasive in Algorithmic life
- General mathematical programming very hard
- Special cases have very striking applications!
- Linear Programming (previous lectures)
- Today: Semidefinite Programming
- Semidefinite Programming and Duality - fundamental concepts, lots of applications!
- Applications in Combinatorial Optimization (Max-Cut in next lecture!)
- Applications in Control Theory (today)
- many more!
- Check out connections to Sum of Squares and a bold attempt ${ }^{2}$ to have one algorithm to solve all problems! (i.e., one algorithm to rule them all)

```
            https://windowsontheory.org/2016/08/27/
    proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/

Acknowledgement
- Lecture based largely on:
- [Blekherman, Parrilo, Thomas 2012, Chapter 2]

Ryan \(O^{\prime}\) 'Donnell lecture on SIPP

\section*{References I}

Blekherman, Grigoriy and Parrilo, Pablo and Thomas, Rekha (2012) Convex Algebraic Geometry```

