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Overview

o Part |
o Why Semidefinite Programming?
o Convex Algebraic Geometry

o Part Il
e Duality Theory
e Application: Control Theory

@ Conclusion

@ Acknowledgements
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Mathematical Programming
Mathematical Programming deals with problems of the form
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minimize  f(x)
subject to  gi(x) >0

gm(X) >0
xeR"
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Mathematical Programming
Mathematical Programming deals with problems of the form

minimize  f(x)
subject to  gi(x) >0

gm(X) >0
xeR"

@ Very general family of problems.

@ Special case when all f, g1,...,gn are linear. Linear Programming
@ More general case: Semidefinite Programming
Q A, ...,A,, B S™are mx msymmetric matrices
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Mathematical Programming
Mathematical Programming deals with problems of the form

minimize  f(x)

subject to  gi(x) >0

gm(X) >0
xeR"

@ Very general family of problems.

@ Special case when all f, g1,...,gn are linear. Linear Programming

@ More general case: Semidefinite Programming
Q A, ...,A,, B S™are mx msymmetric matrices

@ Constraints:

© Minimize linear function ¢7 x
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What is a Semidefinite Program?

@ 8™ :=S8™(R) space of all m x m symmetric matrices (real entries)
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What is a Semidefinite Program?

e 8™ :=S8™(R) space of all m x m symmetric matrices (real entries)
e Ae S8™is positive semidefinite (PSD), denoted IA >0 !'f

A.‘3'—/4J'i Y i) e (m)
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What is a Semidefinite Program?

@ 8™ :=S8™(R) space of all m x m symmetric matrices (real entries)

e Ac S8™is positive semidefinite (PSD), denoted A > 0 if

Il eigenvalues of A are non-negative
Q@ A=YTY for some Y € R¥*™ where d < m
Q@ z"Az>0forany z€ R™
@ and more...

Y|A| + -+ ann ;; B
B xa ) YA+ F A= B in PSD &

AAGY) ), Ag(AG) 20
ch,(i) %n(h
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What is a Semidefinite Program?

o 8™ :=S™(R) space of all m x m symmetric matrices (real entries)
e A e S8™is positive semidefinite (PSD), denoted A > 0 if

@ all eigenvalues of A are non-negative

Q@ A=YTY for some Y € R¥*™ where d < m
Q z"Az >0 for any z € R™

@ and more...

Semidefinite Programming deals with problems of the form

minimize ¢’ x
subjectto x3-Ai1+---+x,- A, =B
x eR"
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What is a Semidefinite Program?

o 8™ :=S™(R) space of all m x m symmetric matrices (real entries)
e A e S8™is positive semidefinite (PSD), denoted A > 0 if

@ all eigenvalues of A are non-negative

Q@ A=YTY for some Y € R¥*™ where d < m
Q z"Az >0 for any z € R™

@ and more...

Semidefinite Programming deals with problems of the form
minimize ¢’ x

subjectto x3-Ai1+---+x,- A, =B
x €R"

C»=D }o denote that C — D = 0 (i.e., C — D is PSD).
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How does it generalize Linear Programming?

Linear Programming
minimize a'x
subjectto Cx>b
x e R"”
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How does it generalize Linear Programming?

Linear Programming
minimize  a’ x
subjectto Cx>b
x e R"

Semidefinite Programming

minimize

subject to

CTX

x1 AL+t xp-Ap = B

x eR"
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How does it generalize Linear Programming?

Linear Programming ¢~ % Semidefinite Programming

(2)
minimize a'x o minimize ¢’ x
subject to lezb l subjectto x3- A1+ +x, A= B
-—_—_— ‘ -—
xeR" xeR"
Set A;'s to be diagonal matrices, and_B = diag(bs, ..., bm)
n L diagnad
g — w‘-%
(- | k
Cu O b'
Ca O s'r 0
Ml 0 ~. 0 boﬂ
Cwm " _—
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Why should | care?

@ Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!
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@ Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!

@ Semidefinite Programming is no different!
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Why should | care?

@ Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!

@ Semidefinite Programming is no different!

equilibrium analysis of dynamics and control (flight controls, robotics,
and contio’

ete.) T TODAY

robust optimization

statistics and ML

continuous games

software verification

filter design

quantum computation and information

automated theorem proving

packing problems

many more
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Why should | care?

@ Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!

@ Semidefinite Programming is no different!

@ See

equilibrium analysis of dynamics and control (flight controls, robotics,
etc.)

robust optimization

statistics and ML

continuous games

software verification

filter design

quantum computation and information
automated theorem proving

packing problems

many more

more here

https://windowsontheory.org/2016/08/27/

proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/
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Important Questions

minimize ¢’ x

subjectto x3 A1 +---+x,- Ay =B
x eR"
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Important Questions

minimize ¢’ x

subjectto x3 A1 +---+x,- Ay =B
x € R"

@ When is a Semidefinite Program feasible?
o Is there a solution to the constraints at all?
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Important Questions

minimize ¢’ x

subjectto x3 A1 +---+x,- Ay =B
x € R"

@ When is a Semidefinite Program feasible?
o Is there a solution to the constraints at all?
@ When is a Semidefinite Program bounded?

o Is there a minimum? Is the minimum achievable? Or is the minimum
—007?
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Important Questions

minimize ¢’ x

subjectto x3 A1 +---+x,- Ay =B
x € R"

@ When is a Semidefinite Program feasible?
o Is there a solution to the constraints at all?
@ When is a Semidefinite Program bounded?
o Is there a minimum? Is the minimum achievable? Or is the minimum
—00?
© Can we characterize optimality?
e How can we know that we found a minimum solution?

@ Do these solutions have nice description?
e Do the solutions have small bit complexity?
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Important Questions

minimize ¢’ x

subjectto x3 A1 +---+x,- Ay =B
x € R"

@ When is a Semidefinite Program feasible?
o Is there a solution to the constraints at all?
@ When is a Semidefinite Program bounded?
o Is there a minimum? Is the minimum achievable? Or is the minimum
—00?
© Can we characterize optimality?
e How can we know that we found a minimum solution?
@ Do these solutions have nice description?
e Do the solutions have small bit complexity?
@ How do we design efficient algorithms that find optimal solutions to
Semidefinite Programs?
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Part |

o Convex Algebraic Geometry

Part Il

Conclusion

Acknowledgements
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Spectrahedra

To understand SDPs, we need to understand their feasible regions, which
are called spectrahedra and described as Linear Matrix Inequalities (LMls).
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Spectrahedra

To understand SDPs, we need to understand their feasible regions, which
are called spectrahedra and described as Linear Matrix Inequalities (LMls).

Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

Ao + Zn: Aixi®0a
=l

where Ay, ..., A, are symmetric matrices.
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Spectrahedra

To understand SDPs, we need to understand their feasible regions, which
are called spectrahedra and described as Linear Matrix Inequalities (LMls).

Definition (Linear Matrix Inequalities)

A linear matrix inequality is an inequality of the form:

Ao + zn:AiXi = 0,
il

where Ay, ..., A, are symmetric matrices.

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMls. In other words, it
can be defined as:

n
SZ{XGRH | ZA,‘X,'EB, A,'7B€Sm}

i=1
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Spectrahedra

To understand SDPs, we need to understand their feasible regions, which
are called spectrahedra and descrlbed as Linear Matrix Inequalities (LMls).

{ S c‘e{»lﬂui by Z,. Ai x; & D, and

v =t

~
Z,C"‘ Bz Hhem S da&netf bg

Z ( o) & (8%) <

I bl«:k

Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMls. In other words, it
can be defined as:

n
SZ{XERH | ZA,‘X,'EB, A,-,BES"’}

i=1
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i - ol T
Spectrahedra A, Bro TVGig)z - AT 11 >,

E XS BN
To understand SDPs, we need to understand their feasible regions, which

are called spectrahedra and described as Linear Matrix Inequalities (LMls).

50‘2&2* nohedna ete COMyex . 27 olx+ (,__‘)’
X)g 65 +‘\J/Y'L ‘o&é/“ !Ol\ou(, ha e
n P ”
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Definition (Spectrahedron)

A spectrahedron is a set defined by finitely many LMls. In other words, it
can be defined as:

n
SZ{XERH | ZA,‘X,'EB, A,-,BES"’}

i=1
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Example of Spectrahedron

dehe/f;n__:}xc? | Ax = >b) LP
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Example of Spectrahedron

e = 6 R | ’3*52"‘.42@
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Example of Spectrahedron )1(2 3)6112 { §>L }

Hyperbola:

x=L4/ %

Y \ ’—\/ Q{,%(ng)eml,@r %
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Example of Spectrahedron

Elliptic curv:e:(OJd PM*) f: { 6‘37 élﬁ\l

i) o 3
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Projected Spectrahedron

For both LPs and SDPs, it is enough to obtain a linear projection of
spectrahedron (or polyhedron, if in LP).

L? Pﬂa\"ecl.‘yvm o{ Pa(':’ hedne
ot Py hedya,
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Projected Spectrahedron

For both LPs and SDPs, it is enough to obtain a linear projection of
spectrahedron (or polyhedron, if in LP).

Definition (Projected Spectrahedron)

A set S € R" is a projected spectrahedron if it has the form:

S={xeR" | JyeR st ZAx,+ZB,yJ>C Ai, B, CecS™
——
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Projected Spectrahedron

For both LPs and SDPs, it is enough to obtain a linear projection of
spectrahedron (or polyhedron, if in LP).

Definition (Projected Spectrahedron)

A set S € R" is a projected spectrahedron if it has the form:

n t
@{XER” | yeR st Y Axi+ > By = C, A;,Bj,CES’"}

i=1 j=1
\&, T e, T, V
S Yinimite X &) minimige CX s
AT e A G €T

c'x = C_{:’:)(;D SDF
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Example of ppuiratrrres Pngec tiom o( Spectnahedtom

Projection quadratic cone intersected with halfspace:
— ~

( 5=—3Qr,_pelﬂzl JzeR 4.t

" lﬂ Z22-%
( A - @)&O,E‘SL&

Q det(A) 2.0

Jo R, (regid) woudd be ,szl»\g : -
‘l%<| 'iv\\-u-r/»ccl— withcme 272 4 + (z2-x)

ond equatiows 2t 20 T-H20 (. #z20)
(comvinee Smd{ $het we Wil ofNs have x20)

. 'u-'-!
Remaxk: unlike 'P*‘%""‘h“‘ Cax , PAY -.me( L)

Afechm\tdru MAY NoT be spectnehudre (th.‘naia on c:tm: ’
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How do we test membership in the Spectrahedron?

@ To be able to optimize, we must be able to test whether a given point
x € R" is inside our spectrahedron

n
S:{XER" ‘ ZA,‘X,‘EB, A,‘,BGSm}.
i=1

f?
){.cs '
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How do we test membership in the Spectrahedron?

@ To be able to optimize, we must be able to test whether a given point
x € R" is inside our spectrahedron

n

S = {XER" ‘ ZA,‘X,‘E B, A,‘,BESm}.
i=1

o Note that x € S is (by definition) equivalent to

/ ZziA,'Xi—Bin
i=1
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How do we test membership in the Spectrahedron?

@ To be able to optimize, we must be able to test whether a given point
x € R" is inside our spectrahedron

n

S = {xeR” \ ZA,‘X,‘E B, A,-,BES’"}.
i=1

o Note that x € S is (by definition) equivalent to

Z:iA,‘X,'—BEO
i=1

@ So, how do we efficiently check if Z > 07
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How do we test membership in the Spectrahedron?

@ To be able to optimize, we must be able to test whether a given point
x € R" is inside our spectrahedron

n

S = {xeR” \ ZA,‘X,‘E B, A;,BES’"}.
i=1

o Note that x € S is (by definition) equivalent to

Z:iA,‘X,'—BEO
i=1

@ So, how do we efficiently check if Z > 07
@ Symmetric Gaussian Elimination!
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How do we test membership in the Spectrahedron?

@ To be able to optimize, we must be able to test whether a given point
x € R" is inside our spectrahedron

n
S:{XER" \ ZA,'X,'EB, A,-,BES’"}.

i=1

o Note that x € S is (by definition) equivalent to ol‘- 0
7= ZA xi—B =0 A d,
1O
@ So, how do we efficiently check if Z =07 A X d
@ Symmetric Gaussian Elimination!
@ We will use following characterizations of PSDness of symmetnc( )
Aec ST

@ all eigenvalues of A are non-negative
@ |A=LDL" for some L lower triangular and unit diagonal, D diagonal
a on-negative
Q z"Az >0 for any z € R™
@ Any principal minor of A has non-negative determinant
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How do we test membership in the Spectrahedron?

o Input: symmetric matrix A € ™

@ Output: YES if A= 0, NO otherwise (and output z € R™ such that
zTAz < 0)

Cleat eut -ﬁ[rw“’ cumn BK A bé.
Left waltiplication (x50 opna Hizwn)
LA = é (. O

. T ¥o9 -- ©
AAémmfmf- =>\)_IAL, =<o -\t‘*f
/ Y ;
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How do we test membership in the Spectrahedron?

o Input: symmetric matrix A € ™

@ Output: YES if A= 0, NO otherwise (and output z € R™ such that
zTAz < 0)

Simidordy , Clear et Accond X

T _ |
L2L|AL|L1 - o * l;

ond A0 en -




How do we test membership in the Spectrahedron?

o Input: symmetric matrix A € ™
@ Output: YES if A= 0, NO otherwise (and output z € R™ such that

zTAz < 0)
Owt q,a_ggz(l«hm enola where
Lenlm-t™ LLALLZ"L"“_< >
—_—
L
L_ALT B D dt“ﬂ’“’e

Procduct C{ Li'r ot ﬂ Aame Ahef'\f C“ j_)

e, ewt o,,ﬂga'll'l"hrﬂ hoﬁfo l£ +[U- MM”J
hO.P‘OaUH = T E QX
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How do we test membership in the Spectrahedron?

o Input: symmetric matrix A € ™

o Output: YES if A= 0, NO otherwise (and output z € R™ such that
zTAz < 0) ¢!

e O )
:H at owy ?eiﬂ{' @we lave LALT:<O4:
with faz o) then retwtn Ao

.
OLYlO\ z - L e i
Ar = ¢ (AL ) e = —a <O

=
* 10
.j’f at any getat we hew LAL = O@*@‘
A" (B
with bZ 0 then netwm NO f “i

d

1
Practice (nablum: what va ARt L e
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How do we test membership in the Spectrahedron?

o Input: symmetric matrix A € ™

@ Output: YES if A= 0, NO otherwise (and output z € R™ such that
zTAz < 0)

33 G sgmm(,{')l((_ ga,uM,'gm IEL(.WII'V\GHM
v um R e end , we have {het
LA =D cwi Hn {'D,-;;o)*d (e fnm)

oll sthan entriy wd . D &Ko D /m\

bt ne

. o fon g nl-mq\.m dcf:::(’-\ A 8(
@ Our algorithm runs in time strongly polynomial. P,(Bblyw\

49 /102


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira



Part |

Part Il
e Duality Theory

Conclusion

Acknowledgements

50 /102



Working with Symmetric Matrices

Definition (Frobenius Inner Product)

A, B € 8™, define the Frobenius inner product as

(A, B) := tr[AB] = ZAUBU

@ This is the “usual inner product” if you think of the matrices as
vectors

@ Thus, have the norm
|Alg= ZA

@ With this norm, can talk about the polar dual to a given
spectrahedron S C §™:

S5°={yesS™ | (YV,X)<1, ¥VXeS}
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Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

(C, X
<Ai7X> = bi

‘Xto Vori<ble Cowrl 2a)1hy

~

minimize

subject to

Where now:
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Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

minimize  (C, X)
subject to  (A;, X) = b;
X =0

Where now:

@ the variables are encoded in a positive semidefinite matrix X,
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Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:
minimize  (C, X)
subject to  (A;, X) = b;
X =0
Where now:

@ the variables are encoded in a positive semidefinite matrix X,

@ each constraint is given by an inner product (A;, X) = b;
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Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

minimize  (C, X) e'x -«¢, %>
subject to  (A;, X) = b; Ax =4
X=0 %3 0

Where now:
@ the variables are encoded in a positive semidefinite matrix X,
@ each constraint is given by an inner product (A;, X) = b;

@ Note the similarity with LP standard primal. Can obtain LP standard
form by making X and A;’s to be diagonal
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Standard Primal Form

Just like in Linear Programming, we can represent SDPs in standard form:

minimize  (C, X)
subject to  (A;, X) = b; (4

X0

@ the variables are encoded in a positive semidefinite matrix X,

Where now:

@ each constraint is given by an inner product (A;, X) = b;

@ Note the similarity with LP standard primal. Can obtain LP standard
form by making X and A;’s to be diagonal

@ How is that an LMI though?
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Standard Primal Form

minimize  (C, X
subject to Ai, X) = b;
X =0

<Al‘jxs =by ;Zl_l (Al')y.z ka = bl' =S

— CAI)“I ) 5, .
u.ZI L < . (A':)uj = < . be)

X & O
ore +ha dws LMIs  defining s set-

= = T E ] E 9ae
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T l - 1]
Example Velue: )\ -UZ [ opT = Z—,;'F BT
L L 2T
'?Jl . QL minimize ~ 2x11 + 2x12 T [
. /
Pro griom subject x11 + X2 = 1 .) ‘ AT ‘RAHS‘“L
X11  X12

11}

<4 o ( <0
X12  X22
0\

Ay

O | :
b =4 Ce’v\bhta.ir\*): satia f,,g,&
Z ) . .
C = | O) (# Wy Kzn % X 7&:};1
& N
Fepaible amt: clond disk Klt@:fuﬂz Kz
¥ "
4-—.‘ -+ qxl("‘(‘(“ ?, Hxn,
&E— 2
o Lx" D 2 (_zx.._) + (2% - V)

=A £ * ¥ 9ae
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Semidefinite Programming Duality
Consider our SDP:
minimize  (C, X)
subject to  (A;, X) = b;
X>=0

59 /102



Semidefinite Programming Duality
Consider our SDP:
minimize  (C, X)
subject to  (A;, X) = b;
X>=0
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Semidefinite Programming Duality
Consider our SDP:
minimize  (C, X)
subject to  (A;, X) = b;
X>=0

o If we look at what happens when we multiply it" equality by a
variable y;:

t t
Doy (AYX) =D yi-bi = <ZYIAI’ X>=}’Tb
' =1 = i=1 .
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Semidefinite Programming Duality
Consider our SDP:

o5 LAXD minimize  (C, X)
A‘<B < ;(E,X) subject to  (A;, X) = b;

X>0
o If we look at what happens when we multiply it" equality by a
variable y;:
t t t
Doy (AX) = yi-b = <ZY;A; ; X> =y'b
i=1 i=1 i=1

t
@ Thus, if Zy,-A,- < C, then we have: -\< c

i=1

y'b= <zt:}’iAi : X> < (¢, X)

i=1
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Semidefinite Programming Duality
Consider our SDP:
minimize  (C, X)
subject to  (A;, X) = b;
X =0
o If we look at what happens when we multiply it" equality by a
variable y;:

t t t
S yi(ALX) =D yibi = <Zy;Ai, X>=yTb
i=1 i=1 i=1

@ Thus, if Zy,-A,- < C, then we have:
i=1 13“’“ !Nlt \/o.,‘u{ PT"M
yTb= <ZYIAi ; X> <(C,X)
i=1

o yTbis a lower bound on the solution to our SDP!
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Semidefinite Programming Duality
Consider the following SDPs:
Primal SDP Dual SDP

minimize  (C, X) maximize y'b Lower boand

subject to  (A;, X) = b; ) -
X =0 subject to z;yiAi =C

/V—m
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Semidefinite Programming Duality
Consider the following SDPs:

Primal SDP Dual SDP
minimize  (C, X) maximize y'b
subject to  (A;, X) = b;

X =0 subject to

@ From previous slide
t
Zy,-A,- <C= yTb is a lower bound on value of Primal
i=1

65 /102


Rafael Oliveira


Rafael Oliveira



Semidefinite Programming Duality
Consider the following SDPs:

Primal SDP Dual SDP
minimize  (C, X) maximize y'b
subject to  (A;, X) = b;

X =0 subject to Zt:y,-A,- <C
@ From previous slide -
iy,-A,- < C = yTbis a lower bound on value of Primal
i=1
@ Thus, ;he optimal (maximum) value of dual LP lower bounds the
optimal (minimum) value of the Primal LP!
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Semidefinite Programming Duality
Consider the following SDPs:

Primal SDP Dual SDP
minimize  (C, X) maximize y'b
subject to  (A;, X) = b;

t
X =0 subject to Zy,-A,- <C
i=1

@ From previous slide
t
Zy,'A,' < C = y"bis a lower bound on value of Primal
i=1
@ Thus, the optimal (maximum) value of dual LP lower bounds the
optimal (minimum) value of the Primal LP!

Theorem (Weak Duality)

Let X be a feasible solution of the primal SDP and y be a feasible solution

of the dual SDP. Then
GTb < (C, X).
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Remarks on Duality

Primal SDP Dual SDP
minimize  (C, X) maximize y'b
subject to  (A;, X) = b;

t
X =0 subject to Zy,-A,- <C
i=1
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Remarks on Duality

Primal SDP Dual SDP
minimize  (C, X) maximize y'b
subject to  (A;, X) = b; t
X =0 subject to Zy,-A,- <C
i=1

Theorem (Complementary Slackness)

Let X be a feasible solution of the primal SDP and y be a feasible solution
of the dual SDP. If (X,y) satisfy the complementary slackness condition

t
(C—Zy;A;)X:O
i=1

Then (X,y) are primal and dual optimum solutions of the SDP problem.
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Remarks on Duality

Primal SDP Dual SDP
minimize  (C, X) maximize y'b
subject to  (A;, X) = b;

t
X =0 subject to Zy,-A,- <C
i=1

Theorem (Complementary Slackness)

Let X be a feasible solution of the primal SDP and y be a feasible solution
of the dual SDP. If (X,y) satisfy the complementary slackness condition

t
(C—Zy;A;)X:O
i=1

Then (X,y) are primal and dual optimum solutions of the SDP problem.

Complementary slackness gives us sufficient conditions to check optimality

of our solutions. 70,102



Strong Duality

Primal SDP Dual SDP
minimize  (C, X) maximize y'b
subject to  (A;, X) = b;

t
X =0 subject to Zy,-A,- <C
i=1
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Strong Duality

Primal SDP
minimize  (C, X)

subject to  (A;, X) = b;
X >0

@ Strong duality in SDPs is a bit

Dual SDP

maximize y'b
t

subject to Zy,-A,- <C
i=1

more complex than in LPs.
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Strong Duality

Primal SDP Dual SDP
minimize  (C, X) maximize y'b
subject to  (A;, X) = b;

t
X =0 subject to Zy,-A,- <C
i=1

@ Strong duality in SDPs is a bit more complex than in LPs.
@ Both primal and dual may be feasible, and yet strong duality may not

hold! (ygn Wil Aee thin in thew e worlc )
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Strong Duality

Primal SDP Dual SDP
minimize  (C, X) maximize y'b
subject to  (A;, X) = b;

t
X =0 subject to Zy,-A,- <C
i=1

@ Strong duality in SDPs is a bit more complex than in LPs.

@ Both primal and dual may be feasible, and yet strong duality may not
hold!

@ But under mild conditions, strong duality holds!
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Strong Duality

Primal SDP Dual SDP
minimize  (C, X) maximize y'b
subject to  (A;, X) = b;

t
X =0 subject to Zy,-A,- <C
i=1

Strong duality in SDPs is a bit more complex than in LPs.

Both primal and dual may be feasible, and yet strong duality may not
hold!

But under mild conditions, strong duality holds!
Primal SDP is strictly feasible if there is feasi ioff X > 0.
Dual SDP is strictly feasible if there is feasibl Zle yiAi < C.

Sloter cenditrioms
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Strong Duality

Primal SDP Dual SDP
minimize  (C, X) maximize y'b
subject to  (A;, X) = b;

t
X =0 subject to Zy,-A,- <C
i=1

Strong duality in SDPs is a bit more complex than in LPs.

Both primal and dual may be feasible, and yet strong duality may not
hold!

But under mild conditions, strong duality holds!

Primal SDP is strictly feasible if there is feasible solution X > 0.

Dual SDP is strictly feasible if there is feasible Zle yiA; < C.

Theorem (Strong Duality under Slater Conditions)
If primal SDP and dual SDP are both strictly feasible, then

max dual = min of primal.
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o Application: Control Theory

Conclusion
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Stability of Linear Systems

Setup:

@ Linear difference equation
x(t+1)=Ax(t), x(0)=xo

o Discrete-time dynamical system.?

"When A non-negative and xp non-negative we have Markov chains.
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Stability of Linear Systems

Setup:

@ Linear difference equation
x(t+1)=Ax(t), x(0)=xo

o Discrete-time dynamical system.?
@ Used to model time evolution of

"When A non-negative and xp non-negative we have Markov chains.
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Stability of Linear Systems

Setup:

@ Linear difference equation
x(t+1)=Ax(t), x(0)=xo

o Discrete-time dynamical system.?

@ Used to model time evolution of
Temperatures of objects

Size of population

Voltage of electrical circuits
Concentration of chemical mixtures

"When A non-negative and xp non-negative we have Markov chains.
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Stability of Linear Systems

Setup:

@ Linear difference equation
x(t+1)=Ax(t), x(0)=xo

o Discrete-time dynamical system.?
@ Used to model time evolution of
Temperatures of objects

Size of population

Voltage of electrical circuits
Concentration of chemical mixtures

@ Question: when bt—> 00, under what conditions will x(t) remain
bounded? Or go to zero?

"When A non-negative and xp non-negative we have Markov chains.
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Stability of Linear Systems

Setup:

@ Linear difference equation
x(t+1)=Ax(t), x(0)=xo

o Discrete-time dynamical system.?
@ Used to model time evolution of
Temperatures of objects

Size of population

o
o Voltage of electrical circuits
e Concentration of chemical mixtures

@ Question: when k — oo, under what conditions will x(t) remain
bounded? Or go to zero?

@ When system converges to zero, we say it is stable.

"When A non-negative and xp non-negative we have Markov chains.
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Stability of Linear Systems

Setup:

@ Linear difference equation

x(t+1)=Ax(t), x(0)=xo

Discrete-time dynamical system.!
Used to model time evolution of
Temperatures of objects

Size of population

o
o Voltage of electrical circuits
e Concentration of chemical mixtures

Question: when k — oo, under what conditions will x(t) remain
bounded? Or go to zero?

When system converges to zero, we say it is stable.
System is stable iff |\;(A)| <1

"When A non-negative and xp non-negative we have Markov chains.
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Stability of Linear Systems
SDP viewpoint:
@ Lyapunov functions (generalize energy in systems). Functions on x(t)
decrease monotonically on trajectories of the system.
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Stability of Linear Systems
SDP viewpoint:
@ Lyapunov functions (generalize energy in systems). Functions on x(t)
decrease monotonically on trajectories of the system.
@ For our discrete-time system, we have:

V(x(t)) = x(t) Px(t)

Pe&o
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Stability of Linear Systems
SDP viewpoint:
@ Lyapunov functions (generalize energy in systems). Functions on x(t)
decrease monotonically on trajectories of the system.
@ For our discrete-time system, we have:

V(x(t)) = x(t) T Px(t)
@ To make these monotonically decreasing, we need:
V(x(t+1)) < V(x(t)) & x(t + 1) Px(t +1) — x(t) " Px(t) <0
‘,1 oy ult) — < x(O)TATPAK(Y) —x(1)7Pd(1) <0
@ATPA—Pjﬂp(AI

86 /102


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira



Stability of Linear Systems
SDP viewpoint:
@ Lyapunov functions (generalize energy in systems). Functions on x(t)
decrease monotonically on trajectories of the system.
@ For our discrete-time system, we have:

V(x(t)) = x(t) T Px(t)
@ To make these monotonically decreasing, we need:
V(x(t+1)) < V(x(t)) & x(t+1)TPx(t +1) — x(t) " Px(t) <0
une SDP t ’ & x(t)TAT PAx(t) — x(t) T Px(t) < 0
d P. S ATPA—P =<0

Given matrix A € R™*™ the following conditions are equivalent:

© Al eigenvalues of A are inside unit circle, i.e. |X\ij(A)| <1

@ Thereis P € 8™ such that ) wM
rP_;,_ ATPA—P <0
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Where is the control?
Setup:
@ Linear difference equation, with control input

x(t +1) = Ax(t) HBu(t)]  x(0) = xo
where A € Rm*xm B ¢ RMxk

@) 13
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Where is the control?
Setup:
@ Linear difference equation, with control input
x(t+1) = Ax(t) + Bu(t), x(0)=xo

where A € Rm*xm B ¢ RMxk
e If we properly choose control input u(t) we can make our system x(t)
behave in a way that we want (say, to stabilize an unstable system)

4/ Lo 66w:ow

Buld) s (D
@ El [
~J

® u(v)

(G

A
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Where is the control?
Setup:
@ Linear difference equation, with control input
x(t+1) = Ax(t) + Bu(t), x(0)=xo

where A € Rm*xm B ¢ RMxk
e If we properly choose control input u(t) we can make our system x(t)
behave in a way that we want (say, to stabilize an unstable system)

e Want to do it by setting the control input to be u(t) =(Kk(t) for
some fixed K (so that we use the system as |ts own feedback
x)
wb) < Buxdt) x ()

B u(v)

e

90 /102


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira



Where is the control?
Setup:
@ Linear difference equation, with control input

x(t+1) = Ax(t) + Bu(t), x(0)=xo

where A € Rm*xm B ¢ RMxk

e If we properly choose control input u(t) we can make our system x(t)
behave in a way that we want (say, to stabilize an unstable system)

e Want to do it by setting the control input to be u(t) = Kx(t) for
some fixed K (so that we use the system as its own feedback)

@ Same thing as replacing A+ A+ BK
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Where is the control?
Setup:
@ Linear difference equation, with control input
x(t+1) = Ax(t) + Bu(t), x(0)=xo
where A € Rm*xm B ¢ RMxk
e If we properly choose control input u(t) we can make our system x(t)
behave in a way that we want (say, to stabilize an unstable system)
e Want to do it by setting the control input to be u(t) = Kx(t) for
some fixed K (so that we use the system as its own feedback)
@ Same thing as replacing A+ A+ BK

@ Now this is harder to solve via simple eigenvalue description. But still
solved the same way via Lyapunov functions!
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Where is the control?
Setup:
@ Linear difference equation, with control input
x(t+1) = Ax(t) + Bu(t), x(0)=xo
where A € Rm*xm B ¢ RMxk
e If we properly choose control input u(t) we can make our system x(t)
behave in a way that we want (say, to stabilize an unstable system)
e Want to do it by setting the control input to be u(t) = Kx(t) for
some fixed K (so that we use the system as its own feedback)
@ Same thing as replacing A+ A+ BK
@ Now this is harder to solve via simple eigenvalue description. But still

solved the same way via Lyapunov functions!
e Want P > 0 such that

vesia hle (A+ BK)TP(A+ BK)— P <0

?%O,h et (MT !
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Where is the control?
Setup:
@ Linear difference equation, with control input

x(t+1) = Ax(t) + Bu(t), x(0)=xo

where A € Rm*xm B ¢ RMxk

e If we properly choose control input u(t) we can make our system x(t)
behave in a way that we want (say, to stabilize an unstable system)

e Want to do it by setting the control input to be u(t) = Kx(t) for
some fixed K (so that we use the system as its own feedback)

@ Same thing as replacing A+ A+ BK

@ Now this is harder to solve via simple eigenvalue description. But still
solved the same way via Lyapunov functions!

e Want P > 0 such that

(A+BK)"P(A+BK)—P <0

e Wait, this ain't no SDP! But we can make it into SDP with some
matrix manipulations.
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Conclusion

o Mathematical programming - very general, and pervasive in
Algorithmic life

2pun intended
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Conclusion

o Mathematical programming - very general, and pervasive in
Algorithmic life

@ General mathematical programming very hard

@ Special cases have very striking applications!

o Linear Programming (previous lectures)
e Today: Semidefinite Programming

2pun intended
97 /102



Conclusion

o Mathematical programming - very general, and pervasive in
Algorithmic life

@ General mathematical programming very hard

@ Special cases have very striking applications!
o Linear Programming (previous lectures)
e Today: Semidefinite Programming
@ Semidefinite Programming and Duality - fundamental concepts, lots
of applications!
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Conclusion

o Mathematical programming - very general, and pervasive in
Algorithmic life
@ General mathematical programming very hard
@ Special cases have very striking applications!
o Linear Programming (previous lectures)
e Today: Semidefinite Programming
@ Semidefinite Programming and Duality - fundamental concepts, lots
of applications!
e Applications in Combinatorial Optimization (Max-Cut in next lecture!)
o Applications in Control Theory (today)
e many more!
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Conclusion

o Mathematical programming - very general, and pervasive in
Algorithmic life

General mathematical programming very hard

Special cases have very striking applications!
o Linear Programming (previous lectures)
e Today: Semidefinite Programming
Semidefinite Programming and Duality - fundamental concepts, lots
of applications!
e Applications in Combinatorial Optimization (Max-Cut in next lecture!)
o Applications in Control Theory (today)
e many more!

e Check out connections to Sum of Squares and a bold attempt? to
have one algorithm to solve all problems! (i.e., one algorithm to rule
them all)

https://windowsontheory.org/2016/08/27/

proofs-beliefs-and-algorithms-through-the-lens-of-sum-of-squares/

2pun intended
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@ Lecture based largely on:
o [Blekherman, Parrilo, Thomas 2012, Chapter 2]

R‘don 0 'Dvnl) Jeehie on S)Ps
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