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Mathematical Programming
Mathematical Programming deals with problems of the form

minimize f (x)

subject to g1(x) ≤ 0

...

gm(x) ≤ 0

x ∈ Rn

Very general family of problems.

Special case is when all functions f , g1, . . . , gm are linear functions
(called Linear Programming - LP for short)

Traces of idea of LP in works of Fourier [Fourier 1823, Fourier 1824]

Formally studied & importance of LP recognized in 1940’s by
Dantzig, Kantorovich, Koopmans and von Neumann.
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What is a Linear Program?

A linear function f : Rn → R is given by

f (x) = c1 · x1 + . . .+ cn · xn = cT x
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What is a Linear Program?

A linear function f : Rn → R is given by

f (x) = c1 · x1 + . . .+ cn · xn = cT x

Linear Programming deals with problems of the form

minimize cT x

subject to AT
1 x ≤ 0

...

AT
mx ≤ 0

x ∈ Rn
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A linear function f : Rn → R is given by

f (x) = c1 · x1 + . . .+ cn · xn = cT x

Linear Programming deals with problems of the form

minimize cT x

subject to Ax ≤ 0

x ∈ Rn
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What is a Linear Program?

A linear function f : Rn → R is given by

f (x) = c1 · x1 + . . .+ cn · xn = cT x

Linear Programming deals with problems of the form

minimize cT x

subject to Ax ≤ 0

x ∈ Rn

We can always represent LPs in standard form:

minimize cT x

subject to Ax = b

x ≥ 0
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Why should I care?

Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!
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Why should I care?

Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!

Stock portfolio optimization:

n companies, stock of company i costs ci ∈ R
company i has expected profit pi ∈ R
our budget is B ∈ R

maximize p1 · x1 + · · ·+ pn · xn
subject to c1 · x1 + · · ·+ cn · xn ≤ B

x ≥ 0
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Why should I care?

Linear Programs appear everywhere in life: many problems of interest
(resource allocation problems) can be modelled as linear program!

Stock portfolio optimization:

n companies, stock of company i costs ci ∈ R
company i has expected profit pi ∈ R
our budget is B ∈ R

maximize p1 · x1 + · · ·+ pn · xn
subject to c1 · x1 + · · ·+ cn · xn ≤ B

x ≥ 0

Other problems, such as data fitting, linear classification can be
modelled as linear programs.
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Important Questions

minimize cT x

subject to Ax = b

x ≥ 0
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Important Questions

minimize cT x

subject to Ax = b

x ≥ 0

1 When is a Linear Program feasible?
Is there a solution to the constraints at all?

2 When is a Linear Program bounded?
Is there a minimum? Or is the minimum −∞?

3 Can we characterize optimality?
How can we know that we found a minimum solution?
Do these solutions have nice description?
Do the solutions have small bit complexity?

4 How do we design efficient algorithms that find optimal solutions to
Linear Programs?
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Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))

Let a1, . . . , am, b ∈ Rn, and t := rank{a1, . . . , am, b}. Then either

1 b is a non-negative linear combination of linearly independent vectors
from a1, . . . , am, or

2 there exists a hyperplane H := {x | cT x = 0} s.t.

cTb < 0
cTai ≥ 0
H contains t − 1 linearly independent vectors from a1, . . . , am
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Fundamental Theorem of Linear Inequalities

Theorem (Farkas (1894, 1898), Minkowski (1896))

Let a1, . . . , am, b ∈ Rn, and t := rank{a1, . . . , am, b}. Then either

1 b is a non-negative linear combination of linearly independent vectors
from a1, . . . , am, or

2 there exists a hyperplane H := {x | cT x = 0} s.t.

cTb < 0
cTai ≥ 0
H contains t − 1 linearly independent vectors from a1, . . . , am

Remark

The hyperplane H above is known as the separating hyperplane.
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Farkas’ Lemma

Lemma (Farkas Lemma)

Let A ∈ Rm×n and b ∈ Rm. The following are equivalent:

1 There exists x ∈ Rn such that x ≥ 0 and Ax = b

2 yTb ≥ 0 for each y ∈ Rm such that yTA ≥ 0
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Farkas’ Lemma

Lemma (Farkas Lemma)

Let A ∈ Rm×n and b ∈ Rm. The following are equivalent:

1 There exists x ∈ Rn such that x ≥ 0 and Ax = b

2 yTb ≥ 0 for each y ∈ Rm such that yTA ≥ 0

Equivalent formulation

Lemma (Farkas Lemma)

Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following statements
hold:

1 There exists x ∈ Rn such that x ≥ 0 and Ax = b

2 There exists y ∈ Rm such that yTb > 0 and yTA ≤ 0
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Linear Programming Duality

Consider our linear program:

minimize cT x

subject to Ax = b

x ≥ 0
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Linear Programming Duality

Consider our linear program:

minimize cT x

subject to Ax = b

x ≥ 0

From Farkas’ lemma, we saw that Ax = b and x ≥ 0 has a solution iff
yTb ≥ 0 for each y ∈ Rm such that yTA ≥ 0.

If we look at what happens when we multiply yTA, note the following:

yTA ≤ cT ⇒ yTAx ≤ cT x

⇒ yTb ≤ cT x
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Linear Programming Duality

Consider our linear program:

minimize cT x

subject to Ax = b

x ≥ 0

From Farkas’ lemma, we saw that Ax = b and x ≥ 0 has a solution iff
yTb ≥ 0 for each y ∈ Rm such that yTA ≥ 0.

If we look at what happens when we multiply yTA, note the following:

yTA ≤ cT ⇒ yTAx ≤ cT x

⇒ yTb ≤ cT x

Thus, if yTA ≤ cT , then we have that yTb is a lower bound on the
solution to our linear program!
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Linear Programming Duality
Consider the following linear programs:

Primal LP

minimize cT x

subject to Ax = b

x ≥ 0

Dual LP

maximize yTb

subject to yTA ≤ cT
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Linear Programming Duality
Consider the following linear programs:

Primal LP

minimize cT x

subject to Ax = b

x ≥ 0

Dual LP

maximize yTb

subject to yTA ≤ cT

From previous slide

yTA ≤ cT ⇒ yTb is a lower bound on value of Primal
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subject to Ax = b
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Dual LP

maximize yTb

subject to yTA ≤ cT

From previous slide

yTA ≤ cT ⇒ yTb is a lower bound on value of Primal

Thus, the optimal (maximum) value of dual LP lower bounds the
optimal (minimum) value of the Primal LP!
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Linear Programming Duality
Consider the following linear programs:

Primal LP

minimize cT x

subject to Ax = b

x ≥ 0

Dual LP

maximize yTb

subject to yTA ≤ cT

From previous slide

yTA ≤ cT ⇒ yTb is a lower bound on value of Primal

Thus, the optimal (maximum) value of dual LP lower bounds the
optimal (minimum) value of the Primal LP!

Theorem (Weak Duality)

Let x be a feasible solution of the primal LP and y be a feasible solution
of the dual LP. Then

yTb ≤ cT x .
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Remarks on Duality

Primal LP

minimize cT x

subject to Ax = b

x ≥ 0

Dual LP

maximize yTb

subject to yTA ≤ cT
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Remarks on Duality

Primal LP

minimize cT x

subject to Ax = b

x ≥ 0

Dual LP

maximize yTb

subject to yTA ≤ cT

Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!
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Remarks on Duality

Primal LP

minimize cT x

subject to Ax = b

x ≥ 0

Dual LP

maximize yTb

subject to yTA ≤ cT

Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!

If α∗,β∗ ∈ R are the optimal values for primal and dual, respectively.
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Remarks on Duality

Primal LP

minimize cT x

subject to Ax = b

x ≥ 0

Dual LP

maximize yTb

subject to yTA ≤ cT

Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!

If α∗,β∗ ∈ R are the optimal values for primal and dual, respectively.
We showed that when both primal and dual are feasible, we have

max dual = β∗ ≤ α∗ = min of primal
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Primal LP

minimize cT x

subject to Ax = b

x ≥ 0

Dual LP

maximize yTb

subject to yTA ≤ cT

Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!

If α∗,β∗ ∈ R are the optimal values for primal and dual, respectively.
We showed that when both primal and dual are feasible, we have

max dual = β∗ ≤ α∗ = min of primal

if primal unbounded (α∗ = −∞) then dual infeasible (β∗ = −∞)
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Remarks on Duality

Primal LP

minimize cT x

subject to Ax = b

x ≥ 0

Dual LP

maximize yTb

subject to yTA ≤ cT

Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!

If α∗,β∗ ∈ R are the optimal values for primal and dual, respectively.
We showed that when both primal and dual are feasible, we have

max dual = β∗ ≤ α∗ = min of primal

if primal unbounded (α∗ = −∞) then dual infeasible (β∗ = −∞)
if dual unbounded (β∗ = ∞) then primal infeasible (α∗ = ∞)
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Remarks on Duality

Primal LP

minimize cT x

subject to Ax = b

x ≥ 0

Dual LP

maximize yTb

subject to yTA ≤ cT

Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!

If α∗,β∗ ∈ R are the optimal values for primal and dual, respectively.
We showed that when both primal and dual are feasible, we have

max dual = β∗ ≤ α∗ = min of primal

if primal unbounded (α∗ = −∞) then dual infeasible (β∗ = −∞)
if dual unbounded (β∗ = ∞) then primal infeasible (α∗ = ∞)

Practice problem: show that dual of the dual LP is the primal LP!

43 / 100

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Remarks on Duality

Primal LP

minimize cT x

subject to Ax = b

x ≥ 0

Dual LP

maximize yTb

subject to yTA ≤ cT

Optimal (maximum) value of dual LP lower bounds the optimal
(minimum) value of the Primal LP!

If α∗,β∗ ∈ R are the optimal values for primal and dual, respectively.
We showed that when both primal and dual are feasible, we have

max dual = β∗ ≤ α∗ = min of primal

if primal unbounded (α∗ = −∞) then dual infeasible (β∗ = −∞)
if dual unbounded (β∗ = ∞) then primal infeasible (α∗ = ∞)

Practice problem: show that dual of the dual LP is the primal LP!

When is the above inequality tight?
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Strong Duality

Primal LP
minimize cT x

subject to Ax = b

x ≥ 0

Dual LP
maximize yTb

subject to yTA ≤ cT

let α∗,β∗ ∈ R be optimal values for primal and dual, respectively.
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Strong Duality

Primal LP
minimize cT x

subject to Ax = b

x ≥ 0

Dual LP
maximize yTb

subject to yTA ≤ cT

let α∗,β∗ ∈ R be optimal values for primal and dual, respectively.

Theorem (Strong Duality)

If primal LP or dual LP is feasible, then

max dual = β∗ = α∗ = min of primal.
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Proof of Strong Duality

Theorem (Strong Duality)

If primal LP or dual LP is feasible, then

max dual = β∗ = α∗ = min of primal.
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Proof of Strong Duality

Theorem (Strong Duality)

If primal LP or dual LP is feasible, then

max dual = β∗ = α∗ = min of primal.

1 Let x∗ be such that cT x∗ = α∗. Can assume that α∗ �= −∞.
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Proof of Strong Duality

Theorem (Strong Duality)

If primal LP or dual LP is feasible, then

max dual = β∗ = α∗ = min of primal.

1 Let x∗ be such that cT x∗ = α∗. Can assume that α∗ �= −∞.

2 Let B =

�
A

−cT

�
and v(ε) =

�
b

−α∗ + ε

�
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Proof of Strong Duality

Theorem (Strong Duality)

If primal LP or dual LP is feasible, then

max dual = β∗ = α∗ = min of primal.

1 Let x∗ be such that cT x∗ = α∗. Can assume that α∗ �= −∞.

2 Let B =

�
A

−cT

�
and v(ε) =

�
b

−α∗ + ε

�

3 Apply Farkas’ lemma on Bx = v(0) and x ≥ 0. This system has a
solution, so we get:
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Proof of Strong Duality

Theorem (Strong Duality)

If primal LP or dual LP is feasible, then

max dual = β∗ = α∗ = min of primal.

1 Let x∗ be such that cT x∗ = α∗. Can assume that α∗ �= −∞.

2 Let B =

�
A

−cT

�
and v(ε) =

�
b

−α∗ + ε

�

3 Apply Farkas’ lemma on Bx = v(0) and x ≥ 0. This system has a
solution, so we get:

4 Now, if ε > 0, applying Farkas’ lemma on system Bx = v(ε) and
x ≥ 0 we get:
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Proof of Strong Duality

Theorem (Strong Duality)

If primal LP or dual LP is feasible, then

max dual = β∗ = α∗ = min of primal.

1 Let x∗ be such that cT x∗ = α∗. Can assume that α∗ �= −∞.

2 Let B =

�
A

−cT

�
and v(ε) =

�
b

−α∗ + ε

�

3 Apply Farkas’ lemma on Bx = v(0) and x ≥ 0. This system has a
solution, so we get:

4 Now, if ε > 0, applying Farkas’ lemma on system Bx = v(ε) and
x ≥ 0 we get:

5 Thus, for any ε > 0 there is y ∈ Rm such that yTA ≤ cT and
β∗ ≥ yTb > α∗ − ε.
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Affine form of Farkas’ Lemma

A consequence of LP duality is the following lemma:

Lemma (Affine Farkas’ Lemma)

Let the system
Ax ≤ b

have at least one solution, and suppose that inequality

cT x ≤ δ

holds whenever x satisfies Ax ≤ b. Then, for some δ� ≤ δ the linear
inequality

cT x ≤ δ�

is a non-negative linear combination of the inequalities of Ax ≤ b.

53 / 100

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Affine form of Farkas’ Lemma

A consequence of LP duality is the following lemma:

Lemma (Affine Farkas’ Lemma)

Let the system
Ax ≤ b

have at least one solution, and suppose that inequality

cT x ≤ δ

holds whenever x satisfies Ax ≤ b. Then, for some δ� ≤ δ the linear
inequality

cT x ≤ δ�

is a non-negative linear combination of the inequalities of Ax ≤ b.

Practice problem: use LP duality and Farkas’ lemma to prove this
lemma!
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Two-player games

Setup:

Two players (Alice and Bob)

Each player has a (finite) set of strategies SA = {1, . . . ,m} and
SB = {1, . . . , n}
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Two-player games

Setup:

Two players (Alice and Bob)

Each player has a (finite) set of strategies SA = {1, . . . ,m} and
SB = {1, . . . , n}
Payoff matrices A,B ∈ Rm×n for Alice and Bob, respectively
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Two-player games

Setup:

Two players (Alice and Bob)

Each player has a (finite) set of strategies SA = {1, . . . ,m} and
SB = {1, . . . , n}
Payoff matrices A,B ∈ Rm×n for Alice and Bob, respectively

If Alice plays i and Bob plays j , then
Alice gets Aij

Bob gets Bij
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Two-player games

Setup:

Two players (Alice and Bob)

Each player has a (finite) set of strategies SA = {1, . . . ,m} and
SB = {1, . . . , n}
Payoff matrices A,B ∈ Rm×n for Alice and Bob, respectively

If Alice plays i and Bob plays j , then
Alice gets Aij

Bob gets Bij

Example: battle of the sexes game
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Two-player games

Setup:

Two players (Alice and Bob)

Each player has a (finite) set of strategies SA = {1, . . . ,m} and
SB = {1, . . . , n}
Payoff matrices A,B ∈ Rm×n for Alice and Bob, respectively

If Alice plays i and Bob plays j , then
Alice gets Aij

Bob gets Bij

Example: battle of the sexes game

Football Opera

Football (2,1) (0,0)

Opera (0,0) (1,2)

Table: Battle of the sexes payoff matrices
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Nash Equilibrium
Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition (Nash Equilibrium)

A strategy profile (i , j) is called a Nash equilibrium if the strategy played
by each player is optimal, given the strategy of the other player. That is:

1 Aij ≥ Akj for all k ∈ SA
2 Bij ≥ Bi� for all � ∈ SB
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Nash Equilibrium
Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition (Nash Equilibrium)

A strategy profile (i , j) is called a Nash equilibrium if the strategy played
by each player is optimal, given the strategy of the other player. That is:

1 Aij ≥ Akj for all k ∈ SA
2 Bij ≥ Bi� for all � ∈ SB

Football Opera

Football (2,1) (0,0)

Opera (0,0) (1,2)

Table: Battle of the sexes payoff matrices
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Nash Equilibrium
Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition (Nash Equilibrium)

A strategy profile (i , j) is called a Nash equilibrium if the strategy played
by each player is optimal, given the strategy of the other player. That is:

1 Aij ≥ Akj for all k ∈ SA
2 Bij ≥ Bi� for all � ∈ SB

Football Opera

Football (2,1) (0,0)

Opera (0,0) (1,2)

Table: Battle of the sexes payoff matrices

Silent Snitch

Silent (-1,-1) (-10,0)

Snitch (0,-10) (-5,-5)

Table: Prisoner’s dilemma 63 / 100
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Mixed Strategies

Definition (Mixed Strategy)

A mixed strategy is a probability distribution over a set of pure strategies
S . If Alice’s strategies are SA = {1, . . . , n}, her mixed strategies are:

ΔA := {x ∈ Rn | x ≥ 0 and �x�1 = 1}
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Mixed Strategies

Definition (Mixed Strategy)

A mixed strategy is a probability distribution over a set of pure strategies
S . If Alice’s strategies are SA = {1, . . . , n}, her mixed strategies are:

ΔA := {x ∈ Rn | x ≥ 0 and �x�1 = 1}

Models situation where players choose their strategy “at random”
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Mixed Strategies

Definition (Mixed Strategy)

A mixed strategy is a probability distribution over a set of pure strategies
S . If Alice’s strategies are SA = {1, . . . , n}, her mixed strategies are:

ΔA := {x ∈ Rn | x ≥ 0 and �x�1 = 1}

Models situation where players choose their strategy “at random”

Payoffs for each player defined as expected gain. That is, (x , y) is the
profile of mixed strategies used by Alice and Bob, we have:
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Mixed Strategies

Definition (Mixed Strategy)

A mixed strategy is a probability distribution over a set of pure strategies
S . If Alice’s strategies are SA = {1, . . . , n}, her mixed strategies are:

ΔA := {x ∈ Rn | x ≥ 0 and �x�1 = 1}

Models situation where players choose their strategy “at random”

Payoffs for each player defined as expected gain. That is, (x , y) is the
profile of mixed strategies used by Alice and Bob, we have:

vA(x , y) =
�

(i ,j)∈SA×SB

Aijxiyj = xTAy

vB(x , y) =
�

(i ,j)∈SA×SB

Bijxiyj = xTBy
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Nash Equilibrium Mixed Strategies
Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition ((Mixed) Nash Equilibrium)

A strategy profile x ∈ ΔA, y ∈ ΔB is called a (mixed) Nash equilibrium if
the strategy played by each player is optimal, given the strategy of the
other player. That is:

1 xTAy ≥ zTAy for all z ∈ ΔA

2 xTBy ≥ xTBw for all w ∈ ΔB
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Nash Equilibrium Mixed Strategies
Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition ((Mixed) Nash Equilibrium)

A strategy profile x ∈ ΔA, y ∈ ΔB is called a (mixed) Nash equilibrium if
the strategy played by each player is optimal, given the strategy of the
other player. That is:

1 xTAy ≥ zTAy for all z ∈ ΔA

2 xTBy ≥ xTBw for all w ∈ ΔB

Jump left Jump right

kick left (-1,1) (1,-1)

kick right (1,-1) (-1,1)

Table: Penalty Kick
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Nash Equilibrium Mixed Strategies
Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition ((Mixed) Nash Equilibrium)

A strategy profile x ∈ ΔA, y ∈ ΔB is called a (mixed) Nash equilibrium if
the strategy played by each player is optimal, given the strategy of the
other player. That is:

1 xTAy ≥ zTAy for all z ∈ ΔA

2 xTBy ≥ xTBw for all w ∈ ΔB

Jump left Jump right

kick left (-1,1) (1,-1)

kick right (1,-1) (-1,1)

Table: Penalty Kick

Zero-Sum Game: payoff matrices satisfy A = −B
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Nash Equilibrium Mixed Strategies
Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition ((Mixed) Nash Equilibrium)

A strategy profile x ∈ ΔA, y ∈ ΔB is called a (mixed) Nash equilibrium if
the strategy played by each player is optimal, given the strategy of the
other player. That is:

1 xTAy ≥ zTAy for all z ∈ ΔA

2 xTBy ≥ xTBw for all w ∈ ΔB

Jump left Jump right

kick left (-1,1) (1,-1)

kick right (1,-1) (-1,1)

Table: Penalty Kick

Zero-Sum Game: payoff matrices satisfy A = −B
No pure Nash Equilibrium!
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Nash Equilibrium Mixed Strategies
Assuming players are rational, i.e. want to maximize their payoffs, we have:

Definition ((Mixed) Nash Equilibrium)

A strategy profile x ∈ ΔA, y ∈ ΔB is called a (mixed) Nash equilibrium if
the strategy played by each player is optimal, given the strategy of the
other player. That is:

1 xTAy ≥ zTAy for all z ∈ ΔA

2 xTBy ≥ xTBw for all w ∈ ΔB

Jump left Jump right

kick left (-1,1) (1,-1)

kick right (1,-1) (-1,1)

Table: Penalty Kick

Zero-Sum Game: payoff matrices satisfy A = −B
No pure Nash Equilibrium!
One mixed Nash equilibrium: x = y = (1/2, 1/2)
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Von Neumann’s Minimax Theorem

Theorem

In a zero-sum game, for any payoff matrix A ∈ Rm×n:

max
x∈ΔA

min
y∈ΔB

xTAy = min
y∈ΔB

max
x∈ΔA

xTAy
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Von Neumann’s Minimax Theorem

Theorem

In a zero-sum game, for any payoff matrix A ∈ Rm×n:

max
x∈ΔA

min
y∈ΔB

xTAy = min
y∈ΔB

max
x∈ΔA

xTAy

For given x ∈ ΔA:

min
y∈ΔB

xTAy = min
j∈SB

(xTA)j
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Von Neumann’s Minimax Theorem

Theorem

In a zero-sum game, for any payoff matrix A ∈ Rm×n:

max
x∈ΔA

min
y∈ΔB

xTAy = min
y∈ΔB

max
x∈ΔA

xTAy

For given x ∈ ΔA:

min
y∈ΔB

xTAy = min
j∈SB

(xTA)j

Left hand side can be written as

max s

s.t. s ≤ (xTA)j for j ∈ SB�

i∈SA
xi = 1

x ≥ 0 75 / 100
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Von Neumann’s Minimax Theorem

Theorem

In a zero-sum game, for any payoff matrix A ∈ Rm×n:

max
x∈ΔA

min
y∈ΔB

xTAy = min
y∈ΔB

max
x∈ΔA

xTAy

For given x ∈ ΔA:

min
y∈ΔB

xTAy = min
j∈SB

(xTA)j

Left hand side can be written as

max s

s.t. s ≤ (xTA)j for j ∈ SB�

i∈SA
xi = 1

x ≥ 0

For given y ∈ ΔB :

max
x∈ΔA

xTAy = max
i∈SA

(Ay)i
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Von Neumann’s Minimax Theorem

Theorem

In a zero-sum game, for any payoff matrix A ∈ Rm×n:

max
x∈ΔA

min
y∈ΔB

xTAy = min
y∈ΔB

max
x∈ΔA

xTAy

For given x ∈ ΔA:

min
y∈ΔB

xTAy = min
j∈SB

(xTA)j

Left hand side can be written as

max s

s.t. s ≤ (xTA)j for j ∈ SB�

i∈SA
xi = 1

x ≥ 0

For given y ∈ ΔB :

max
x∈ΔA

xTAy = max
i∈SA

(Ay)i

Right hand side can be written as

min t

s.t. t ≥ (Ay)i for i ∈ SA�

j∈SB
yj = 1

y ≥ 0
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Von Neumann’s Minimax Theorem

Theorem

In a zero-sum game, for any payoff matrix A ∈ Rm×n:

max
x∈ΔA

min
y∈ΔB

xTAy = min
y∈ΔB

max
x∈ΔA

xTAy

Left hand side can be written as

max s

s.t. s ≤ (xTA)j for j ∈ SB�

i∈SA
xi = 1

x ≥ 0

Right hand side can be written as

min t

s.t. t ≥ (Ay)i for i ∈ SA�

j∈SB
yj = 1

y ≥ 0
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Learning Theory

Consider classification problem over X :
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Consider classification problem over X :

Set of hypothesis H := {h : X → {0, 1}}
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Learning Theory

Consider classification problem over X :

Set of hypothesis H := {h : X → {0, 1}}
Each x ∈ X has a correct value c(x) ∈ {0, 1}
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Learning Theory

Consider classification problem over X :

Set of hypothesis H := {h : X → {0, 1}}
Each x ∈ X has a correct value c(x) ∈ {0, 1}
Data is sampled from unknown distribution q ∈ ΔX
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Learning Theory

Consider classification problem over X :

Set of hypothesis H := {h : X → {0, 1}}
Each x ∈ X has a correct value c(x) ∈ {0, 1}
Data is sampled from unknown distribution q ∈ ΔX
Weak learning assumption:

For any distribution q ∈ ΔX , there is a hypothesis h ∈ H which is
wrong less than half the time.

∃γ > 0, ∀q ∈ ΔX , ∃h ∈ H, Pr
x∼q

[h(x) �= c(x)] ≤ 1− γ

2

84 / 100

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Learning Theory

Consider classification problem over X :

Set of hypothesis H := {h : X → {0, 1}}
Each x ∈ X has a correct value c(x) ∈ {0, 1}
Data is sampled from unknown distribution q ∈ ΔX
Weak learning assumption:

For any distribution q ∈ ΔX , there is a hypothesis h ∈ H which is
wrong less than half the time.

∃γ > 0, ∀q ∈ ΔX , ∃h ∈ H, Pr
x∼q

[h(x) �= c(x)] ≤ 1− γ

2

Surprisingly, weak learning assumption implies something much
stronger: it is possible to combine classifiers in H to construct a
classifier that is always right (known as strong learning).
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Boosting

Theorem

Let H be a set of hypotheses satisfying weak learning assumption. Then
there is distribution p ∈ ΔH such that the weighed majority classifier

cp(x) :=




1, if

�

h∈H
ph · h(x) ≥ 1/2

0, otherwise

is always correct. That is, cp(x) = c(x) for all x ∈ X
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Boosting

Theorem

Let H be a set of hypotheses satisfying weak learning assumption. Then
there is distribution p ∈ ΔH such that the weighed majority classifier

cp(x) :=




1, if

�

h∈H
ph · h(x) ≥ 1/2

0, otherwise

is always correct. That is, cp(x) = c(x) for all x ∈ X

Let M ∈ {−1, 1}m×n, where m = |X | and n = |H|.

Mij =

�
+1, if classifier hj wrong on xi

−1, otherwise

87 / 100

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Boosting

Theorem

Let H be a set of hypotheses satisfying weak learning assumption. Then
there is distribution p ∈ ΔH such that the weighed majority classifier

cp(x) :=




1, if

�

h∈H
ph · h(x) ≥ 1/2

0, otherwise

is always correct. That is, cp(x) = c(x) for all x ∈ X

Let M ∈ {−1, 1}m×n, where m = |X | and n = |H|.

Mij =

�
+1, if classifier hj wrong on xi

−1, otherwise

Weak learning: �

1≤i≤n

qj · δhj (xi )�=c(xi ) ≤
1− γ

2
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Boosting - Proof

Let M ∈ {−1, 1}m×n,
where m = |X | and n = |H|.

Mij =

�
+1, if hj wrong on xi

−1, otherwise

Weak learning:
�

1≤i≤n

qj · δhj (xi )�=c(xi ) ≤
1− γ

2
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Boosting - Proof

Let M ∈ {−1, 1}m×n,
where m = |X | and n = |H|.

Mij =

�
+1, if hj wrong on xi

−1, otherwise

Weak learning:
�

1≤i≤n

qj · δhj (xi )�=c(xi ) ≤
1− γ

2

Note that Mij = 2 · δhj (xi )�=c(xi ) − 1

qTMej ≤ −γ ⇒ qTMp ≤ −γ

for any p ∈ ΔH.
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Boosting - Proof

Let M ∈ {−1, 1}m×n,
where m = |X | and n = |H|.

Mij =

�
+1, if hj wrong on xi

−1, otherwise

Weak learning:
�

1≤i≤n

qj · δhj (xi )�=c(xi ) ≤
1− γ

2

Note that Mij = 2 · δhj (xi )�=c(xi ) − 1

qTMej ≤ −γ ⇒ qTMp ≤ −γ

for any p ∈ ΔH.
By minimax, we have:

max
q∈ΔX

min
p∈ΔH

qTMp = min
p∈ΔH

max
q∈ΔX

qTMp ≤ −γ
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Boosting - Proof

Let M ∈ {−1, 1}m×n,
where m = |X | and n = |H|.

Mij =

�
+1, if hj wrong on xi

−1, otherwise

Weak learning:
�

1≤i≤n

qj · δhj (xi )�=c(xi ) ≤
1− γ

2

Note that Mij = 2 · δhj (xi )�=c(xi ) − 1

qTMej ≤ −γ ⇒ qTMp ≤ −γ

for any p ∈ ΔH.
By minimax, we have:

max
q∈ΔX

min
p∈ΔH

qTMp = min
p∈ΔH

max
q∈ΔX

qTMp ≤ −γ

In particular, right hand side implies weighted classifier always correct.
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Conclusion

Mathematical programming - very general, and pervasive in
Algorithmic life
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Conclusion

Mathematical programming - very general, and pervasive in
Algorithmic life

General mathematical programming very hard (how hard do you think
it is?)

Special cases have very striking applications!

Today: Linear Programming

Linear Programming and Duality - fundamental concepts, lots of
applications!

Applications in Combinatorial Optimization (a lot of it happened here
at UW!)
Applications in Game Theory (minimax theorem)
Applications in Learning Theory (boosting)
many more
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Lectures 3-6 of Yarom Singer’s Advanced Optimization class
[Schrijver 1986, Chapter 7]
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~yaron/AM221-S16/schedule.html
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