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What is a Random Walk?
Given a graph G (V ,E )

1 random walk starts from a vertex v0
2 at each time step it moves to a uniformly random neighbor of the

current vertex in the graph

vt+1 ←R NG (vt)
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Given a graph G (V ,E )

1 random walk starts from a vertex v0
2 at each time step it moves to a uniformly random neighbor of the

current vertex in the graph
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What is a Random Walk?
Given a graph G (V ,E )

1 random walk starts from a vertex v0
2 at each time step it moves to a uniformly random neighbor of the

current vertex in the graph

vt+1 ←R NG (vt)

Basic questions involving random walks:

Stationary distribution: does the random walk converge to a “stable”
distribution? If it does, what is this distribution?
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What is a Random Walk?
Given a graph G (V ,E )

1 random walk starts from a vertex v0
2 at each time step it moves to a uniformly random neighbor of the

current vertex in the graph

vt+1 ←R NG (vt)

Basic questions involving random walks:

Stationary distribution: does the random walk converge to a “stable”
distribution? If it does, what is this distribution?

Mixing time: how long does it take for the walk to converge to the
stationary distribution?
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Stationary distribution: does the random walk converge to a “stable”
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stationary distribution?
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steps until it reaches a vertex vf ?
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What is a Random Walk?
Given a graph G (V ,E )

1 random walk starts from a vertex v0
2 at each time step it moves to a uniformly random neighbor of the

current vertex in the graph

vt+1 ←R NG (vt)

Basic questions involving random walks:

Stationary distribution: does the random walk converge to a “stable”
distribution? If it does, what is this distribution?

Mixing time: how long does it take for the walk to converge to the
stationary distribution?

Hitting time: starting from a vertex v0, what is expected number of
steps until it reaches a vertex vf ?

Cover time: how long does it take to reach every vertex of the graph
at least once?
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Random Walk: Example

Suppose G (V ,E ) = Kn, the complete graph, a, b ∈ V two vertices
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Random Walk: Example

Suppose G (V ,E ) = Kn, the complete graph, a, b ∈ V two vertices
1 What is expected number of steps to reach b in simple random walk

starting at a? (i.e., hitting time)
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Random Walk: Example

Suppose G (V ,E ) = Kn, the complete graph, a, b ∈ V two vertices
1 What is expected number of steps to reach b in simple random walk

starting at a? (i.e., hitting time)
2 Starting from a, what is expected number of steps to visit all vertices?

(i.e, cover time)
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Random Walk: Example

Suppose G (V ,E ) = Kn, the complete graph, a, b ∈ V two vertices
1 What is expected number of steps to reach b in simple random walk

starting at a? (i.e., hitting time)
2 Starting from a, what is expected number of steps to visit all vertices?

(i.e, cover time)
3 Stationary Distribution?
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Random Walk: Example

Suppose G (V ,E ) = Kn, the complete graph, a, b ∈ V two vertices
1 What is expected number of steps to reach b in simple random walk

starting at a? (i.e., hitting time)
2 Starting from a, what is expected number of steps to visit all vertices?

(i.e, cover time)
3 Stationary Distribution?
4 Mixing time? (we’ll do it later)
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Random Walk: Example

Suppose G (V ,E ) = Kn, the complete graph, a, b ∈ V two vertices
1 What is expected number of steps to reach b in simple random walk

starting at a? (i.e., hitting time)
2 Starting from a, what is expected number of steps to visit all vertices?

(i.e, cover time)
3 Stationary Distribution?
4 Mixing time? (we’ll do it later)

Practice question: Compare question 2 to coupon collector problem!
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What is a Markov Chain?

Random walk is a special kind of stochastic process:

Pr[Xt = vt | X0 = v0, . . . ,Xt−1 = vt−1] = Pr[Xt = vt | Xt−1 = vt−1]
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What is a Markov Chain?

Random walk is a special kind of stochastic process:

Pr[Xt = vt | X0 = v0, . . . ,Xt−1 = vt−1] = Pr[Xt = vt | Xt−1 = vt−1]

Probability that we are at vertex vt at time t only depends on the state of
our process at time t − 1.
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What is a Markov Chain?

Random walk is a special kind of stochastic process:

Pr[Xt = vt | X0 = v0, . . . ,Xt−1 = vt−1] = Pr[Xt = vt | Xt−1 = vt−1]

Probability that we are at vertex vt at time t only depends on the state of
our process at time t − 1.

Process is “forgetful”

Markov chain is characterized by this property.
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Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized
algorithms.
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algorithms.

Page Rank algorithm (today’s lecture)

Approximation algorithms for counting
problems [Karp, Luby & Madras]

Permanent of non-negative matrices [Jerrum, Vigoda & Sinclair] (great
final project topic!)

Sampling Problems

Gibbs sampling in statistical physics (great final project topic!)
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Probability amplification without too much randomness (efficient)

random walks on expander graphs (great final project topic!)

many more
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Representing Finite Markov Chains

Markov chain can be seen as weighted directed graph.
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Representing Finite Markov Chains

Markov chain can be seen as weighted directed graph.

Vertex is a state of Markov chain

edge (i , j) corresponds to transition probability from i to j
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Representing Finite Markov Chains

Markov chain can be seen as weighted directed graph.

Vertex is a state of Markov chain

edge (i , j) corresponds to transition probability from i to j

Markov Chain irreducible if underlying directed graph is strongly
connected (i.e. there is directed path from i to j for any pair i , j ∈ V )
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Representing Finite Markov Chains

Markov chain can be seen in weighted adjacency matrix format.

P ∈ Rn×n transition matrix

entry Pi ,j corresponds to transition probability from i to j

pt ∈ Rn probability vector: pt(i) := Pr[being at state i at time t]

Transition given by
pt+1 = pt · P
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Properties of Markov Chains

Period of a state i is:

gcd{t ∈ N | P t
i ,i > 0}

That is, gcd of all times t such that the probability of starting at
state i and being back at i at time t is positive
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Properties of Markov Chains

Period of a state i is:

gcd{t ∈ N | P t
i ,i > 0}

That is, gcd of all times t such that the probability of starting at
state i and being back at i at time t is positive

State i is aperiodic if its period is 1.
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Markov Chain aperiodic if all states are aperiodic (otherwise periodic)

Bipartite graphs yield periodic Markov Chains

31 / 87



Properties of Markov Chains

Period of a state i is:

gcd{t ∈ N | P t
i ,i > 0}

That is, gcd of all times t such that the probability of starting at
state i and being back at i at time t is positive

State i is aperiodic if its period is 1.

Markov Chain aperiodic if all states are aperiodic (otherwise periodic)

Bipartite graphs yield periodic Markov Chains

Lemma

For any finite, irreducible and aperiodic Markov Chain, there exists T < ∞
such that

Pt
i ,j > 0 for any i , j ∈ V and t ≥ T .
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Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
π ∈ Rn such that

πP = π.
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π ∈ Rn such that

πP = π.

Informally, π is an “equilibrium/fixed point” state, as we have
π = πP t for any t ≥ 0.
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Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
π ∈ Rn such that

πP = π.

Informally, π is an “equilibrium/fixed point” state, as we have
π = πP t for any t ≥ 0.
Intuition: If we run finite, irreducible and aperiodic Markov Chain
long enough, we will converge to a stationary distribution.
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Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
π ∈ Rn such that

πP = π.

Informally, π is an “equilibrium/fixed point” state, as we have
π = πP t for any t ≥ 0.
Intuition: If we run finite, irreducible and aperiodic Markov Chain
long enough, we will converge to a stationary distribution.

what do you mean by converge here?
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Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
π ∈ Rn such that

πP = π.

Informally, π is an “equilibrium/fixed point” state, as we have
π = πP t for any t ≥ 0.
Intuition: If we run finite, irreducible and aperiodic Markov Chain
long enough, we will converge to a stationary distribution.

what do you mean by converge here?

Given two distributions p, q ∈ Rn, their total variational distance is

ΔTV (p, q) =
1

2

n�

i=1

|pi − qi | =
1

2
· �p, q�1
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Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
π ∈ Rn such that

πP = π.

Informally, π is an “equilibrium/fixed point” state, as we have
π = πP t for any t ≥ 0.
Intuition: If we run finite, irreducible and aperiodic Markov Chain
long enough, we will converge to a stationary distribution.

what do you mean by converge here?

Given two distributions p, q ∈ Rn, their total variational distance is

ΔTV (p, q) =
1

2

n�

i=1

|pi − qi | =
1

2
· �p, q�1

pt converges to q iff lim
t→∞

ΔTV (pt , q) = 0
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Mixing Time of Markov Chains

Definition (Mixing Time)

The ε-mixing time of a Markov Chain is the smallest t such that

ΔTV (pt ,π) ≤ ε

regardless of the initial starting distribution p0.

39 / 87

Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira




Mixing Time of Markov Chains

Definition (Mixing Time)

The ε-mixing time of a Markov Chain is the smallest t such that

ΔTV (pt ,π) ≤ ε

regardless of the initial starting distribution p0.

Eigenvalues λ1 = 1,λ2 = · · · = λn = −1/(n − 1), corresponding
eigenvectors v1, . . . , vn (orthonormal)
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Fundamental Theorem of Markov Chains

The return time from state i to itself is defined as

Hi ,i := min{t ≥ 1 | Xt = i ,X0 = i}
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Fundamental Theorem of Markov Chains

The return time from state i to itself is defined as

Hi ,i := min{t ≥ 1 | Xt = i ,X0 = i}

Expected return time: defined as hi ,i := E[Hi ,i ].
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Fundamental Theorem of Markov Chains

The return time from state i to itself is defined as

Hi ,i := min{t ≥ 1 | Xt = i ,X0 = i}

Expected return time: defined as hi ,i := E[Hi ,i ].

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

1 There exists a unique stationary distribution π, where πi > 0 for all
i ∈ [n]

2 The sequence of distributions {pt}t≥0 will converge to π, no matter
what the initial distribution is

3

πi = lim
t→∞

Pt
i ,i =

1

hi ,i
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

1 There is unique stationary distribution π, where πi > 0 for all i ∈ [n]

2 For every distribution p0 ∈ Rn
≥0, lim

t→∞
p0 · Pt = π

3

πi = lim
t→∞

Pt
i ,i =

1

hi ,i

Intuition for proof of this theorem:

45 / 87



Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

1 There is unique stationary distribution π, where πi > 0 for all i ∈ [n]

2 For every distribution p0 ∈ Rn
≥0, lim

t→∞
p0 · Pt = π

3

πi = lim
t→∞

Pt
i ,i =

1

hi ,i

Intuition for proof of this theorem:

two random walks are “indistinguishable” after they “meet” at the
same vertex v at a particular time t
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

1 There is unique stationary distribution π, where πi > 0 for all i ∈ [n]

2 For every distribution p0 ∈ Rn
≥0, lim

t→∞
p0 · Pt = π

3

πi = lim
t→∞

Pt
i ,i =

1

hi ,i

Intuition for proof of this theorem:

two random walks are “indistinguishable” after they “meet” at the
same vertex v at a particular time t

By finiteness, irreducibility and aperiodicity, two walks will meet with
positive probability (and thus by Markov property) become same
distribution
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Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

1 There is unique stationary distribution π, where πi > 0 for all i ∈ [n]

2 For every distribution p0 ∈ Rn
≥0, lim

t→∞
p0 · Pt = π

3

πi = lim
t→∞

Pt
i ,i =

1

hi ,i

If our underlying graph is undirected:
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Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

1 There is unique stationary distribution π, where πi > 0 for all i ∈ [n]

2 For every distribution p0 ∈ Rn
≥0, lim

t→∞
p0 · Pt = π

3

πi = lim
t→∞

Pt
i ,i =

1

hi ,i

If our underlying graph is undirected:

If AG adjacency matrix of G (V ,E ) and D = diag(d1, d2, . . . , dn),
transition matrix:

P = AG · D−1
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

1 There is unique stationary distribution π, where πi > 0 for all i ∈ [n]

2 For every distribution p0 ∈ Rn
≥0, lim

t→∞
p0 · Pt = π

3

πi = lim
t→∞

Pt
i ,i =

1

hi ,i

If our underlying graph is undirected:

If AG adjacency matrix of G (V ,E ) and D = diag(d1, d2, . . . , dn),
transition matrix:

P = AG · D−1

Note that in this case, easy to guess stationary distribution:

πi =
di
2m

, m = |E |
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If our underlying graph is undirected:
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

In this case, easy to guess stationary distribution:

πi =
di
2m

, m = |E |
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

In this case, easy to guess stationary distribution:

πi =
di
2m

, m = |E |

If AG adjacency matrix of G (V ,E ) and D = diag(d1, d2, . . . , dn),
transition matrix:

P = AG · D−1
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

In this case, easy to guess stationary distribution:

πi =
di
2m

, m = |E |

If AG adjacency matrix of G (V ,E ) and D = diag(d1, d2, . . . , dn),
transition matrix:

P = AG · D−1

P not symmetric, but similar to a symmetric matrix:

D−1/2PD1/2 = D−1/2AGD
−1D1/2 = D−1/2AGD

−1/2 = P �
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

If AG adjacency matrix of G (V ,E ) and D = diag(d1, d2, . . . , dn),
transition matrix:

P = AG · D−1

P not symmetric, but similar to a symmetric matrix:

D−1/2PD1/2 = D−1/2AGD
−1D1/2 = D−1/2AGD

−1/2 = P �

P and P � has same eigenvalues! And P � has only real eigenvalues!
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

If AG adjacency matrix of G (V ,E ) and D = diag(d1, d2, . . . , dn),
transition matrix:

P = AG · D−1

P not symmetric, but similar to a symmetric matrix:

D−1/2PD1/2 = D−1/2AGD
−1D1/2 = D−1/2AGD

−1/2 = P �

P and P � has same eigenvalues! And P � has only real eigenvalues!
Eigenvectors of P are D−1/2vi where vi are eigenvectors of P �. And vi
can be taken to form orthonormal basis.
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Fundamental Theorem of Markov Chains

Stationary distribution: πi =
di
2m

, m = |E |
Transition matrix: P = AG · D−1

P similar to a symmetric matrix: P � = D−1/2AGD
−1/2

P and P � has same eigenvalues! And P � has only real eigenvalues!
Eigenvectors of P are D−1/2vi where vi are eigenvectors of P �. And vi
can be taken to form orthonormal basis.
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Fundamental Theorem of Markov Chains

Stationary distribution: πi =
di
2m

, m = |E |
Transition matrix: P = AG · D−1

P similar to a symmetric matrix: P � = D−1/2AGD
−1/2

P and P � has same eigenvalues! And P � has only real eigenvalues!
Eigenvectors of P are D−1/2vi where vi are eigenvectors of P �. And vi
can be taken to form orthonormal basis.
Graph strongly connected ⇒ Perron-Frobenius for irreducible
non-negative matrices
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Fundamental Theorem of Markov Chains

Stationary distribution: πi =
di
2m

, m = |E |
Transition matrix: P = AG · D−1

P similar to a symmetric matrix: P � = D−1/2AGD
−1/2

P and P � has same eigenvalues! And P � has only real eigenvalues!
Eigenvectors of P are D−1/2vi where vi are eigenvectors of P �. And vi
can be taken to form orthonormal basis.
Graph strongly connected ⇒ Perron-Frobenius for irreducible
non-negative matrices

unique eigenvector whose eigenvalue has max absolute value
eigenvector has all positive coordinates
eigenvalue is positive
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Fundamental Theorem of Markov Chains

Stationary distribution: πi =
di
2m

, m = |E |
Transition matrix: P = AG · D−1

P similar to a symmetric matrix: P � = D−1/2AGD
−1/2

P and P � has same eigenvalues! And P � has only real eigenvalues!
Eigenvectors of P are D−1/2vi where vi are eigenvectors of P �. And vi
can be taken to form orthonormal basis.
Graph strongly connected ⇒ Perron-Frobenius for irreducible
non-negative matrices

unique eigenvector whose eigenvalue has max absolute value
eigenvector has all positive coordinates
eigenvalue is positive

This eigenvector is π!
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Fundamental Theorem of Markov Chains

Stationary distribution: πi =
di
2m

, m = |E |
Transition matrix: P = AG · D−1

P similar to a symmetric matrix: P � = D−1/2AGD
−1/2

P and P � has same eigenvalues! And P � has only real eigenvalues!
Eigenvectors of P are D−1/2vi where vi are eigenvectors of P �. And vi
can be taken to form orthonormal basis.
Graph strongly connected ⇒ Perron-Frobenius for irreducible
non-negative matrices

unique eigenvector whose eigenvalue has max absolute value
eigenvector has all positive coordinates
eigenvalue is positive

This eigenvector is π!
All random walks converge to π, as we wanted to show.
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Page Rank

Setting: we have a directed graph describing relationships between
set of webpages.
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Goal: want algorithm to “rank” how important a page is.
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Intuition: if many other pages link to a particular page, then the
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Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i , j) if there is a link from page i to page j .

Goal: want algorithm to “rank” how important a page is.

Intuition: if many other pages link to a particular page, then the
linked page must be important!

Algorithm (Page Rank Algorithm)

1 Initially, each page has pagerank value 1
n
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Algorithm (Page Rank Algorithm)

1 Initially, each page has pagerank value 1
n

2 In each step, each page:
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Algorithm (Page Rank Algorithm)

1 Initially, each page has pagerank value 1
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2 In each step, each page:
1 divides its pagerank value equally to its outgoing link,
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Page Rank

Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i , j) if there is a link from page i to page j .

Goal: want algorithm to “rank” how important a page is.

Intuition: if many other pages link to a particular page, then the
linked page must be important!

Algorithm (Page Rank Algorithm)

1 Initially, each page has pagerank value 1
n

2 In each step, each page:
1 divides its pagerank value equally to its outgoing link,
2 sends these equal shares to the pages it points to,
3 updates its new pagerank value to be the sum of shares it receives.
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Page Rank - Example
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Page Rank

Algorithm (Page Rank Algorithm)

1 Initially, each page has pagerank value 1
n

2 In each step, each page:
1 divides its pagerank value equally to its outgoing link,
2 sends these equal shares to the pages it points to,
3 updates its new pagerank value to be the sum of shares it receives.
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Algorithm (Page Rank Algorithm)

1 Initially, each page has pagerank value 1
n

2 In each step, each page:
1 divides its pagerank value equally to its outgoing link,
2 sends these equal shares to the pages it points to,
3 updates its new pagerank value to be the sum of shares it receives.

Equilibrium of pagerank values equal to probabilities of stationary
distribution of random walk

P ∈ Rn×n, Pi ,j =
1

δout(i)
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Page Rank

Algorithm (Page Rank Algorithm)

1 Initially, each page has pagerank value 1
n

2 In each step, each page:
1 divides its pagerank value equally to its outgoing link,
2 sends these equal shares to the pages it points to,
3 updates its new pagerank value to be the sum of shares it receives.

Equilibrium of pagerank values equal to probabilities of stationary
distribution of random walk

P ∈ Rn×n, Pi ,j =
1

δout(i)

Pagerank values and transition probabilities satisfy same equations:

pt+1(i) =
�

i :(i ,j)∈E

pt(i)

δout(i)
⇒ pt+1 = pt · P
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Page Rank

Algorithm (Page Rank Algorithm)

1 Initially, each page has pagerank value 1
n

2 In each step, each page:
1 divides its pagerank value equally to its outgoing link,
2 sends these equal shares to the pages it points to,
3 updates its new pagerank value to be the sum of shares it receives.

Equilibrium of pagerank values equal to probabilities of stationary
distribution of random walk

P ∈ Rn×n, Pi ,j =
1

δout(i)

Pagerank values and transition probabilities satisfy same equations:

pt+1(i) =
�

i :(i ,j)∈E

pt(i)

δout(i)
⇒ pt+1 = pt · P

If graph finite, irreducible and aperiodic, fundamental theorem
guarantees stationary distribnution.
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Page Rank

In practice, directed graph may not satisfy fundamental theorem’s
conditions
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In practice, directed graph may not satisfy fundamental theorem’s
conditions

Modify original graph as follows:

Fix number 0 < s < 1
Divide s fraction of its pagerank value to its neighbors,
1− s fraction of its pagerank value to all nodes evenly
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Page Rank

In practice, directed graph may not satisfy fundamental theorem’s
conditions

Modify original graph as follows:

Fix number 0 < s < 1
Divide s fraction of its pagerank value to its neighbors,
1− s fraction of its pagerank value to all nodes evenly

Equivalent to the random walk:
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In practice, directed graph may not satisfy fundamental theorem’s
conditions

Modify original graph as follows:

Fix number 0 < s < 1
Divide s fraction of its pagerank value to its neighbors,
1− s fraction of its pagerank value to all nodes evenly

Equivalent to the random walk:

With probability s go to one of its neighbors (uniformly at random),
With probability 1− s go to random page (uniformly at random)
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Page Rank

In practice, directed graph may not satisfy fundamental theorem’s
conditions

Modify original graph as follows:

Fix number 0 < s < 1
Divide s fraction of its pagerank value to its neighbors,
1− s fraction of its pagerank value to all nodes evenly

Equivalent to the random walk:

With probability s go to one of its neighbors (uniformly at random),
With probability 1− s go to random page (uniformly at random)

Now resulting graph is strongly connected and aperiodic ⇒ unique
stationary distribution
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Page Rank

In practice, directed graph may not satisfy fundamental theorem’s
conditions

Modify original graph as follows:

Fix number 0 < s < 1
Divide s fraction of its pagerank value to its neighbors,
1− s fraction of its pagerank value to all nodes evenly

Equivalent to the random walk:

With probability s go to one of its neighbors (uniformly at random),
With probability 1− s go to random page (uniformly at random)

Now resulting graph is strongly connected and aperiodic ⇒ unique
stationary distribution

This modification does not change “relative importance” of vertices
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Conclusion

Markov Chains and Random Walks are ubiquitous in randomized
algorithms.

Page Rank algorithm (today’s lecture)

Approximation algorithms for counting
problems [Karp, Luby & Madras]

Permanent of non-negative matrices [Jerrum, Vigoda & Sinclair]

Sampling Problems

Gibbs sampling in statistical physics
many more places

Probability amplification without too much randomness (efficient)

Random walks on expander graphs

many more
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Potential Final Projects

Can we derandomize the perfect matching algorithms from class?

A lot of progress has been made in the past couple years on this
question in the works [?] and subsequently [?]

Survey of the above, or understanding these papers is a great final
project!
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Acknowledgement

Lecture based largely on:

Lap Chi’s notes
[Motwani & Raghavan 2007, Chapter 6]

See Lap Chi’s notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L11.pdf

Also see Lap Chi’s notes
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L14.pdf for a
proof of fundamental theorem of Markov chains for undirected graphs.
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