Lecture 11: Markov Chains, Random Walks, Mixing Time, Page Rank

Rafael Oliveira
University of Waterloo
Cheriton School of Computer Science
rafael.oliveira.teaching@gmail.com

October 21, 2020

Overview

- Introduction
- Why Random Walks \& Markov Chains?
- Basics on Theory of (finite) Markov Chains
- Main Topics
- Fundamental Theorem of Markov Chains
- Page Rank
- Conclusion
- Acknowledgements

What is a Random Walk?
Given a graph $G(V, E)$
(1) random walk starts from a vertex v_{0}
(2) at each time step it moves to a uniformly random neighbor of the current vertex in the graph

$$
\frac{v_{t+1}}{R} \frac{N_{G}\left(v_{t}\right)}{\text { neighbres of current }} \begin{gathered}
\text { vertex }
\end{gathered}
$$

What is a Random Walk?

Given a graph $G(V, E)$
(1) random walk starts from a vertex v_{0}
(3) at each time step it moves to a uniformly random neighbor of the current vertex in the graph

$$
v_{t+1} \leftarrow_{R} N_{G}\left(v_{t}\right)
$$

Basic questions involving random walks:

What is a Random Walk?
Given a graph $G(V, E) \quad|V|=n \quad|E|=m$
(1) random walk starts from a vertex $v_{0}(=L)$
(2) at each time step it moves to a uniformly random neighbor of the current vertex in the graph

$$
v_{t+1} \leftarrow_{R} N_{G}\left(v_{t}\right)
$$

Basic questions involving random walks:

- Stationary distribution: does the random walk converge to a "stable" distribution? If it does, what is this distribution?

$$
\begin{aligned}
& P_{z} \in \mathbb{R}_{\geqslant 0}^{n} \quad \begin{array}{r}
\text { probability distribution } \\
\text { over } V
\end{array} \\
& P_{0}=(1,0,0, \ldots, 0) \quad N_{G}(1)=\{2,3\} \\
& P_{1}=(0,1 / 2,1 / 2,0, \ldots, 0) \quad\left\{P_{t}\right\}_{t \geqslant 0} \rightarrow \pi \text { ? }
\end{aligned}
$$

What is a Random Walk?

Given a graph $G(V, E)$
(1) random walk starts from a vertex v_{0}
(2) at each time step it moves to a uniformly random neighbor of the current vertex in the graph

$$
v_{t+1} \leftarrow_{R} N_{G}\left(v_{t}\right)
$$

Basic questions involving random walks:

- Stationary distribution: does the random walk converge to a "stable" distribution? If it does, what is this distribution?
- Mixing time: how long does it take for the walk to converge to the stationary distribution?

todocy's lectur

What is a Random Walk?

Given a graph $G(V, E)$
(1) random walk starts from a vertex v_{0}
(2) at each time step it moves to a uniformly random neighbor of the current vertex in the graph

$$
v_{t+1} \leftarrow_{R} N_{G}\left(v_{t}\right)
$$

Basic questions involving random walks:

- Stationary distribution: does the random walk converge to a "stable" distribution? If it does, what is this distribution?
- Mixing time: how long does it take for the walk to converge to the stationary distribution?
- Hitting time: starting from a vertex v_{0}, what is expected number of steps until it reaches a vertex v_{f} ?

What is a Random Walk?

Given a graph $G(V, E)$
(1) random walk starts from a vertex v_{0}
(2) at each time step it moves to a uniformly random neighbor of the current vertex in the graph

$$
v_{t+1} \leftarrow_{R} N_{G}\left(v_{t}\right)
$$

Basic questions involving random walks:

- Stationary distribution: does the random walk converge to a "stable" distribution? If it does, what is this distribution?
- Mixing time: how long does it take for the walk to converge to the stationary distribution?
- Hitting time: starting from a vertex v_{0}, what is expected number of steps until it reaches a vertex v_{f} ?
- Cover time: how long does it take to reach every vertex of the graph at least once?

Random Walk: Example

- Suppose $G(V, E)=K_{n}$, the complete graph, $a, b \in V$ two vertices

Random Walk: Example

- Suppose $G(V, E)=K_{n}$, the complete graph, $a, b \in V$ two vertices
(1) What is expected number of steps to reach b in simple random walk starting at a ? (ie., hitting time)
$r_{t}=P_{r}$ [reach b first time at time t starting at a]
$r_{t}=\underbrace{\left(\frac{n-2}{n-1}\right)^{t-1}} \cdot \frac{\frac{1}{n-1}}{n}$ reaching b at $t^{\text {th }}$ step
net reaching b in first $t-1$ steps

$$
\begin{aligned}
& \mathbb{E}[\text { 在 steps }]=\sum_{t=1} \frac{t \cdot x_{t}}{}=\sum_{t=1}^{n} \frac{t}{n-1} \cdot\left(\frac{n-2}{n-1}\right)^{t-1}=\frac{1}{n-1} \sum_{t \geqslant 1} t \cdot\left(\frac{n-2}{n-1}\right)^{t-1} \\
& =\frac{1}{n-1} \frac{d}{d x} \underbrace{n}_{\left.\sum_{t=1} x^{t}\right)\left.\right|_{x=\frac{n-2}{n-1}}=\left.\frac{1}{n-1} \frac{d}{d x}\left(\frac{x}{1-x}\right)\right|_{x=\frac{n-2}{n-1}}=\frac{1}{n-1}\left(\left.\frac{1}{(1-x)^{2}}\right|_{n=0} ^{n-1}\right.} \\
& =\frac{1}{n-1} \cdot(n-1)^{2}=n-1
\end{aligned}
$$

Random Walk: Example

- Suppose $G(V, E)=K_{n}$, the complete graph, $a, b \in V$ two vertices
(1) What is expected number of steps to reach b in simple random walk starting at a? (i.e., hitting time)
(2) Starting from a, what is expected number of steps to visit all vertices? (i.e, cover time)

Practice problem

Random Walk: Example

- Suppose $G(V, E)=K_{n}$, the complete graph, $a, b \in V$ two vertices
(1) What is expected number of steps to reach b in simple random walk starting at a? (i.e., hitting time)
(2) Starting from a, what is expected number of steps to visit all vertices? (ie, cover time)
Stationary Distribution?

$$
\begin{aligned}
& \pi=(1 / n, 1 / n, \ldots, 1 / n) \\
& P_{r}[a \text { in next sky] }]=\sum_{i=1}^{n} \operatorname{Pr}[\text { currently at i] } \operatorname{Pr}[i-a] \\
& =\sum_{i=1}^{n} \frac{1}{n} \cdot \underbrace{\left(1-\delta_{i \theta}\right)}_{\substack{\frac{1}{n-1} \\
\frac{1}{n-1} \text { if } i \neq a}})=\frac{1}{n} \cdot \frac{n-1}{n-1}=\frac{1}{n}
\end{aligned}
$$

Random Walk: Example

- Suppose $G(V, E)=K_{n}$, the complete graph, $a, b \in V$ two vertices
(1) What is expected number of steps to reach b in simple random walk starting at a? (i.e., hitting time)
(2) Starting from a, what is expected number of steps to visit all vertices? (i.e, cover time)
(3) Stationary Distribution?
(9) Mixing time? (we'll do it later)

Random Walk: Example

- Suppose $G(V, E)=K_{n}$, the complete graph, $a, b \in V$ two vertices
(1) What is expected number of steps to reach b in simple random walk starting at a? (i.e., hitting time)
(2) Starting from a, what is expected number of steps to visit all vertices? (i.e, cover time)
(3) Stationary Distribution?
(9) Mixing time? (we'll do it later)
- Practice question: Compare question 2 to coupon collector problem!
$(n-1) \underbrace{(n-1}_{\text {harmonic number }}$

What is a Markov Chain?
history of random wealth
Random walk is a special kind of stochastic process:

$$
\begin{aligned}
& \underbrace{\operatorname{Pr}\left[X_{t}=v_{t} \mid x_{0}=v_{0}, \ldots, X_{t-1}=v_{t-1}\right]}_{\begin{array}{l}
\text { in step } \\
\text { I am at } \\
\text { vert tex } x_{t}
\end{array}}=\underbrace{\operatorname{Pr}\left[X_{t}=v_{t} \mid\right.}_{\begin{array}{c}
\text { only useful } \\
\text { information in }
\end{array}} \underbrace{}_{\left.X_{t-1}=v_{t-1}\right]} \\
& \text { the vertex at } \\
& \text { time } t-1
\end{aligned}
$$

What is a Markov Chain?

Random walk is a special kind of stochastic process:

$$
\operatorname{Pr}\left[X_{t}=v_{t} \mid X_{0}=v_{0}, \ldots, X_{t-1}=v_{t-1}\right]=\operatorname{Pr}\left[X_{t}=v_{t} \mid X_{t-1}=v_{t-1}\right]
$$

Probability that we are at vertex v_{t} at time t only depends on the state of our process at time $t-1$.

What is a Markov Chain?

Random walk is a special kind of stochastic process:

$$
\operatorname{Pr}\left[X_{t}=v_{t} \mid X_{0}=v_{0}, \ldots, X_{t-1}=v_{t-1}\right]=\operatorname{Pr}\left[X_{t}=v_{t} \mid X_{t-1}=v_{t-1}\right]
$$

Probability that we are at vertex v_{t} at time t only depends on the state of our process at time $t-1$.

Process is "forgetful"

Markov chain is characterized by this property.

Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized algorithms.

Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized algorithms.

- Page Rank algorithm (today's lecture)

Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized algorithms.

- Page Rank algorithm (today's lecture)
- Approximation algorithms for counting problems [Karp, Luby \& Madras]
- Permanent of non-negative matrices [Jerrum, Vigoda \& Sinclair] (great final project topic!)

Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized algorithms.

- Page Rank algorithm (today's lecture)
- Approximation algorithms for counting problems [Karp, Luby \& Madras]
- Permanent of non-negative matrices [Jerrum, Vigoda \& Sinclair] (great final project topic!)
- Sampling Problems
- Gibbs sampling in statistical physics (great final project topic!)
- many more places

Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized algorithms.

- Page Rank algorithm (today's lecture)
- Approximation algorithms for counting problems [Karp, Luby \& Madras]
- Permanent of non-negative matrices [Jerrum, Vigoda \& Sinclair] (great final project topic!)
- Sampling Problems
- Gibbs sampling in statistical physics (great final project topic!)
- many more places
- Probability amplification without too much randomness (efficient)
- random walks on expander graphs (great final project topic!)

Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized algorithms.

- Page Rank algorithm (today's lecture)
- Approximation algorithms for counting problems [Karp, Luby \& Madras]
- Permanent of non-negative matrices [Jerrum, Vigoda \& Sinclair] (great final project topic!)
- Sampling Problems
- Gibbs sampling in statistical physics (great final project topic!)
- many more places
- Probability amplification without too much randomness (efficient)
- random walks on expander graphs (great final project topic!)
- many more

Representing Finite Markov Chains

Markov chain can be seen as weighted directed graph.

Representing Finite Markov Chains

Markov chain can be seen as weighted directed graph.

- Vertex is a state of Markov chain
- edge (i, j) corresponds to transition probability from i to j

Representing Finite Markov Chains

Markov chain can be seen as weighted directed graph.

- Vertex is a state of Markov chain
- edge (i, j) corresponds to transition probability from i to j

- Markov Chain irreducible if underlying directed graph is strongly connected (i.e. there is directed path from i to j for any pair $i, j \in V$)

Representing Finite Markov Chains
Markov chain can be seen in weighted adjacency matrix format.

- $P \in \mathbb{R}^{n \times n}$ transition matrix
each row sums to 1 (and
- entry $P_{i, j}$ corresponds to transition probability from i to j
- $p_{t} \in \mathbb{R}^{n}$ probability vector: $p_{t}(i):=\operatorname{Pr}[$ being at state i at time $t]$
- Transition given by
now rector

$$
p_{t+1}=p_{t} \cdot P
$$

Properties of Markov Chains

- Period of a state i is:

$$
\operatorname{gcd}\left\{t \in \mathbb{N} \| P_{i, i}^{t} \gg 0\right\}
$$

That is, god of all times t such that the probability of starting at state i and being back at i at time t is positive
$P_{i i}^{1}$ probability that 1 stay at i

$$
\text { (1) Probability that } \frac{1 \rightarrow v \rightarrow i}{\text { amati often }}
$$

Properties of Markov Chains

- Period of a state i is:

$$
\operatorname{gcd}\left\{t \in \mathbb{N} \mid P_{i, i}^{t}>0\right\}
$$

That is, gcd of all times t such that the probability of starting at state i and being back at i at time t is positive

- State i is aperiodic if its period is 1 .

Properties of Markov Chains

- Period of a state i is:

$$
\operatorname{gcd}\left\{t \in \mathbb{N} \mid P_{i, i}^{t}>0\right\}
$$

That is, gcd of all times t such that the probability of starting at state i and being back at i at time t is positive

- State i is aperiodic if its period is 1 .
- Markov Chain aperiodic if all states are aperiodic (otherwise periodic)

Properties of Markov Chains

- Period of a state i is:

$$
\operatorname{gcd}\left\{t \in \mathbb{N} \mid P_{i, i}^{t}>0\right\}
$$

That is, gcd of all times t such that the probability of starting at state i and being back at i at time t is positive

- State i is aperiodic if its period is 1 .
- Markov Chain aperiodic if all states are aperiodic (otherwise periodic)
- Bipartite graphs yield periodic Markov Chains

Properties of Markov Chains

- Period of a state i is:

$$
\operatorname{gcd}\left\{t \in \mathbb{N} \mid P_{i, i}^{t}>0\right\}
$$

That is, god of all times t such that the probability of starting at state i and being back at i at time t is positive

- State i is aperiodic if its period is 1 .
- Markov Chain aperiodic if all states are aperiodic (otherwise periodic)
- Bipartite graphs yield periodic Markov Chains

Lemma

For any finite, irreducible and aperiodic Markov Chain, there exists $T<\infty$ such that

$$
P_{i, j}^{t}>0 \text { for any } i, j \in V \text { and } t \geq T
$$

That is: at some point we will reach every vertex

Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution $\pi \in \mathbb{R}^{n}$ such that

$$
\pi P=\pi
$$

Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution $\pi \in \mathbb{R}^{n}$ such that

$$
\pi P=\pi
$$

- Informally, π is an "equilibrium/fixed point" state, as we have $\pi=\pi P^{t}$ for any $t \geq 0$.

Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution $\pi \in \mathbb{R}^{n}$ such that

$$
\pi P=\pi
$$

- Informally, π is an "equilibrium/fixed point" state, as we have $\pi=\pi P^{t}$ for any $t \geq 0$.
- Intuition: If we run finite, irreducible and aperiodic Markov Chain long enough, we will converge to a stationary distribution.

Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution $\pi \in \mathbb{R}^{n}$ such that

$$
\pi P=\pi
$$

- Informally, π is an "equilibrium/fixed point" state, as we have $\pi=\pi P^{t}$ for any $t \geq 0$.
- Intuition: If we run finite, irreducible and aperiodic Markov Chain long enough, we will converge to a stationary distribution.
- what do you mean by converge here?

Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution $\pi \in \mathbb{R}^{n}$ such that

$$
\pi P=\pi
$$

- Informally, π is an "equilibrium/fixed point" state, as we have $\pi=\pi P^{t}$ for any $t \geq 0$.
- Intuition: If we run finite, irreducible and aperiodic Markov Chain long enough, we will converge to a stationary distribution.
- what do you mean by converge here?
- Given two distributions $p, q \in \mathbb{R}^{n}$, their total variational distance is

$$
\Delta_{T V}(p, q)=\frac{1}{2} \sum_{i=1}^{n}\left|p_{i}-q_{i}\right|=\frac{1}{2} \cdot\left\|p_{i}-q\right\|_{1}
$$

Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution $\pi \in \mathbb{R}^{n}$ such that

$$
\pi P=\pi
$$

- Informally, π is an "equilibrium/fixed point" state, as we have $\pi=\pi P^{t}$ for any $t \geq 0$.
- Intuition: If we run finite, irreducible and aperiodic Markov Chain long enough, we will converge to a stationary distribution.
- what do you mean by converge here?
- Given two distributions $p, q \in \mathbb{R}^{n}$, their total variational distance is

$$
\Delta_{T V}(p, q)=\frac{1}{2} \sum_{i=1}^{n}\left|p_{i}-q_{i}\right|=\frac{1}{2} \cdot\left\|p_{\mathbf{k}} q\right\|_{1}
$$

- p_{t} converges to q iff $\lim _{t \rightarrow \infty} \Delta_{T V}\left(p_{t}, q\right)=0$

Mixing Time of Markov Chains
Definition (Mixing Time)
The ε-mixing time of a Markov Chain is the smallest t such that

$$
\Delta_{T V}\left(p_{t}, \pi\right) \leq \varepsilon
$$

regardless of the initial starting distribution p_{0}.
For complete graph k_{n} :

$$
\begin{aligned}
& \text { eigenvalues of } J_{n}: \alpha_{1}=n \quad \alpha_{2}=\alpha_{3}=\cdots=\alpha_{n}=0 \\
& \text { eigenvectors of } J_{n}: v_{1}, v_{2}, v_{n} \text { (rrthonsmal) } \\
& \frac{1}{\sigma}(1,1, \cdots, 1) \quad \lambda_{1}=1 \\
& \therefore \text { eigenvalues of } P: 1+(n-1) \lambda_{i}=\alpha_{i} \quad \therefore \quad \lambda_{1}=1 \quad \lambda_{2}=\cdots=\lambda_{n}=-1 / n-1 \\
& \text { eigenvectors of } p: v_{1}, v_{2}, \ldots, v_{n}
\end{aligned}
$$

Mixing Time of Markov Chains
Definition (Mixing Time)
The ε-mixing time of a Markov Chain is the smallest t such that

$$
\Delta_{T V}\left(p_{t}, \pi\right) \leq \varepsilon
$$

regardless of the initial starting distribution p_{0}.

- Eigenvalues $\lambda_{1}=1, \lambda_{2}=\cdots=\lambda_{n}=-1 /(n-1)$. corresponding eigenvectors v_{1}, \ldots, v_{n} (orthonormal) $v_{1}=(1,1, \ldots, 1) \cdot 1 / \sqrt{n}$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \lambda_{i}^{t}\left(p_{0} v_{1}^{\top}\right) \cdot v_{i}=\frac{\left(p_{0} v_{1}^{\top}\right) \cdot v_{1}}{=\frac{1}{\sqrt{n}}\left(p_{0} p_{\text {prob }}\right.}+\frac{(-1 / 0-1)^{t} \cdot \sum_{i=2}^{n}\left(p_{0} v_{i}^{\top}\right) \cdot v_{i}}{\text { didtaibution) }} \\
& t=O\left(\log _{n-1}\left(\frac{n-1}{6}\right)\right) \Rightarrow \Delta_{T v} \leqslant F
\end{aligned}
$$

- Introduction
- Why Random Walks \& Markov Chains?
- Basics on Theory of (finite) Markov Chains
- Main Topics
- Fundamental Theorem of Markov Chains
- Page Rank
- Conclusion
- Acknowledgements

Fundamental Theorem of Markov Chains

- The return time from state i to itself is defined as

$$
H_{i, i}:=\min \{t \geq 1 \underbrace{X_{\text {started at }}^{\left.X_{0}=i\right\}}}_{\substack{\mid X_{t}=i}} \begin{array}{c}
\text { bach at i } \\
\text { first time } \\
\text { at time } t
\end{array}
$$

Fundamental Theorem of Markov Chains

- The return time from state i to itself is defined as

$$
H_{i, i}:=\min \left\{t \geq 1 \mid X_{t}=i, X_{0}=i\right\}
$$

- Expected return time: defined as $h_{i, i}:=\mathbb{E}\left[H_{i, i}\right]$.

Fundamental Theorem of Markov Chains

- The return time from state i to itself is defined as

$$
H_{i, i}:=\min \left\{t \geq 1 \mid X_{t}=i, X_{0}=i\right\}
$$

- Expected return time: defined as $h_{i, i}:=\mathbb{E}\left[H_{i, i}\right]$.

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:
(1) There exists a unique stationary distribution π, where $\pi_{i}>0$ for all $i \in[n]$
(2) The sequence of distributions $\left\{p_{t}\right\}_{t \geq 0}$ will converge to π, no matter what the initial distribution is
(3)

$$
\pi_{i}=\lim _{t \rightarrow \infty} P_{i, i}^{t}=\frac{1}{h_{i, i}}
$$

Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:
(1) There is unique stationary distribution π, where $\pi_{i}>0$ for all $i \in[n]$
(2) For every distribution $p_{0} \in \mathbb{R}_{\geq 0}^{n}, \quad \lim _{t \rightarrow \infty} p_{0} \cdot P^{t}=\pi$

B

$$
\pi_{i}=\lim _{t \rightarrow \infty} P_{i, i}^{t}=\frac{1}{h_{i, i}}
$$

Intuition for proof of this theorem:

Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:
(1) There is unique stationary distribution π, where $\pi_{i}>0$ for all $i \in[n]$
(2) For every distribution $p_{0} \in \mathbb{R}_{\geq 0}^{n}, \quad \lim _{t \rightarrow \infty} p_{0} \cdot P^{t}=\pi$
(3)

$$
\pi_{i}=\lim _{t \rightarrow \infty} P_{i, i}^{t}=\frac{1}{h_{i, i}}
$$

Intuition for proof of this theorem:

- two random walks are "indistinguishable" after they "meet" at the same vertex v at a particular time t

Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:
(1) There is unique stationary distribution π, where $\pi_{i}>0$ for all $i \in[n]$
(2. For every distribution $p_{0} \in \mathbb{R}_{\geq 0}^{n}, \quad \lim _{t \rightarrow \infty} p_{0} \cdot P^{t}=\pi$
(3)

$$
\pi_{i}=\lim _{t \rightarrow \infty} P_{i, i}^{t}=\frac{1}{h_{i, i}}
$$

Intuition for proof of this theorem:

- two random walks are "indistinguishable" after they "meet" at the same vertex v at a particular time t
- By finiteness, irreducibility and aperiodicity, two walks will meet with positive probability (and thus by Markov property) become same distribution

Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:
(1) There is unique stationary distribution π, where $\pi_{i}>0$ for all $i \in[n]$
(2) For every distribution $p_{0} \in \mathbb{R}_{\geq 0}^{n}, \quad \lim _{t \rightarrow \infty} p_{0} \cdot P^{t}=\pi$
©

$$
\pi_{i}=\lim _{t \rightarrow \infty} P_{i, i}^{t}=\frac{1}{h_{i, i}}
$$

If our underlying graph is undirected:

Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:
(1) There is unique stationary distribution π, where $\pi_{i}>0$ for all $i \in[n]$
(2) For every distribution $p_{0} \in \mathbb{R}_{\geq 0}^{n}, \quad \lim _{t \rightarrow \infty} p_{0} \cdot P^{t}=\pi$
©

$$
\pi_{i}=\lim _{t \rightarrow \infty} P_{i, i}^{t}=\frac{1}{h_{i, i}}
$$

If our underlying graph is undirected:

- If A_{G} adjacency matrix of $G(V, E)$ and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, transition matrix:
$D=\left(\begin{array}{lll}d_{1} & & 0 \\ 0 & & d_{n}\end{array}\right)$

$(j)=\sum_{i=1}^{n} p_{t}(i) P_{i j}=\sum_{i=1}^{n} p_{t}(i) \cdot \overbrace{A_{i j}}^{\sim} \frac{1}{d_{i}} \longrightarrow \begin{gathered}\text { uniform distribution } \\ \text { over neighbors of } i\end{gathered}$

Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following properties:
(1) There is unique stationary distribution π, where $\pi_{i}>0$ for all $i \in[n]$
(2) For every distribution $p_{0} \in \mathbb{R}_{\geq 0}^{n}, \quad \lim _{t \rightarrow \infty} p_{0} \cdot P^{t}=\pi$
©

$$
\pi_{i}=\lim _{t \rightarrow \infty} P_{i, i}^{t}=\frac{1}{h_{i, i}}
$$

If our underlying graph is undirected:

- If A_{G} adjacency matrix of $G(V, E)$ and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, transition matrix:

$$
P=D^{-1} \cdot A
$$

- Note that in this case, easy to guess stationary distribution:

$$
\pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E|
$$

Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

- In this case, easy to guess stationary distribution:

$$
\begin{aligned}
& \text { new distribution } \quad \pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E| \\
& (\pi P)_{j}=\sum_{i=1}^{n} \pi_{i} \cdot P_{i j}=\sum_{i=1}^{n} \frac{d_{i}}{2 m} \cdot A_{i j} \cdot \frac{1}{d_{i}} \quad d_{j}(j)^{\text {th entry }} \\
& j^{\text {themly }}=\sum_{i=1}^{n} \frac{A_{i j}}{2 m}=\frac{d_{j}}{2 m}=\pi_{j} \\
& A_{i j}=1 \text { eff } i \in N_{G}(j) \\
& \text { O otherwise }
\end{aligned}
$$

Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

- In this case, easy to guess stationary distribution:

$$
\pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E|
$$

- If A_{G} adjacency matrix of $G(V, E)$ and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, transition matrix:

$$
P=D^{-1} \cdot A_{G}
$$

Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

- In this case, easy to guess stationary distribution:

$$
[A G)_{i j}=[A G]_{j i} \quad \pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E|
$$

- A_{G} adjacency matrix of $G(V, E)$ and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, transition matrix:

$$
P=\operatorname{mat} D^{-1} \cdot A_{G}
$$

- P not symmetric, but similar to a symmetric matrix:

$$
D^{1 / 2} \cdot P \cdot D^{-1 / 2}=D^{1 / 2} \cdot D^{-1} A_{G} D^{-1 / 2}=D_{\text {symmetric }}^{D^{-1 / 2} A_{G} D^{-1 / 2}}=: P^{\prime}
$$

Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

- If A_{G} adjacency matrix of $G(V, E)$ and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, transition matrix:

$$
P=D^{-1} \cdot A_{G}
$$

- P not symmetric, but similar to a symmetric matrix:
- $D^{1 / 2} \cdot P \cdot D^{-1 / 2}=D^{1 / 2} \cdot D^{-1} A_{G} D^{-1 / 2}=D^{-1 / 2} A_{G} D^{-1 / 2}=: P^{\prime}$

Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

- If A_{G} adjacency matrix of $G(V, E)$ and $D=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$, transition matrix:

$$
P=D^{-1} \cdot A G
$$

- P not symmetric, but similar to a symmetric matrix:

- P and P^{\prime} has same eigenvalues And P^{\prime} has only real eigenvalues!
- Eigenvectors of P are $D^{-1 / 2} v_{i}$ where v_{i} are eigenvectors of P^{\prime}. And v_{i} can be taken to form orthonormal basis.

Fundamental Theorem of Markov Chains

- Stationary distribution: $\pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E|$
- Transition matrix: $P=D^{-1} \cdot A_{G}$
- P similar to a symmetric matrix: $P^{\prime}=D^{-1 / 2} A_{G} D^{-1 / 2}$
- P and P^{\prime} has same eigenvalues! And P^{\prime} has only real eigenvalues!
- Eigenvectors of P are $D^{-1 / 2} v_{i}$ where v_{i} are eigenvectors of P^{\prime}. And v_{i} can be taken to form orthonormal basis.

Fundamental Theorem of Markov Chains

- Stationary distribution: $\pi_{i}=\frac{d_{i}}{2 \pi m}, \quad m=|E|$
- Transition matrix: $P=A_{G} \cdot D^{-1} \quad P_{i j} \geqslant 0$
- P similar to a symmetric matrix: $P^{\prime}=D^{-1 / 2} A_{G} D^{-1 / 2}$
- P and P^{\prime} has same eigenvalues! And P^{\prime} has only real eigenvalues!
- Eigenvectors of P are $D^{-1 / 2} v_{i}$ where v_{i} are eigenvectors of P^{\prime}. And v_{i} can be taken to form orthonormal basis.
- Graph strongly connected \Rightarrow Perron-Frobenius for irreducible non-negative matrices

Fundamental Theorem of Markov Chains

- Stationary distribution: $\pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E|$
- Transition matrix: $P=A_{G} \cdot D^{-1}$
- P similar to a symmetric matrix: $P^{\prime}=D^{-1 / 2} A_{G} D^{-1 / 2}$
- P and P^{\prime} has same eigenvalues! And P^{\prime} has only real eigenvalues!
- Eigenvectors of P are $D^{-1 / 2} v_{i}$ where v_{i} are eigenvectors of P^{\prime}. And v_{i} can be taken to form orthonormal basis.
- Graph strongly connected \Rightarrow Perron-Frobenius for irreducible non-negative matrices
- unique eigenvector whose eigenvalue has max absolute value
- eigenvector has all positive coordinates
- eigenvalue is positive

Fundamental Theorem of Markov Chains

- Stationary distribution: $\begin{aligned} & \pi_{i}=\frac{d_{i}}{2 m}, \\ & \text { - Transition matrix. } P=|E| \quad \pi P=\pi \\ & D^{-1}, A_{G}\end{aligned} \quad \begin{aligned} & \Pi \quad \text { eigenvector }\end{aligned}$
- Transition matrix: $P=D^{-1} \cdot A_{G}$
- P similar to a symmetric matrix: $P^{\prime}=D^{-1 / 2} A_{G} D^{-1 / 2}$
- P and P^{\prime} has same eigenvalues! And P^{\prime} has only real eigenvalues!
- Eigenvectors of P are $D^{-1 / 2} v_{i}$ where v_{i} are eigenvectors of P^{\prime}. And v_{i} can be taken to form orthonormal basis.
- Graph strongly connected \Rightarrow Perron-Frobenius for irreducible non-negative matrices
\checkmark - unique eigenvector whose eigenvalue has max absolute value
- eigenvector has all positive coordinates
- eigenvalue is positive
- This eigenvector is π !

Fundamental Theorem of Markov Chains

- Stationary distribution: $\pi_{i}=\frac{d_{i}}{2 m}, \quad m=|E|$
- Transition matrix: $P=A_{G} \cdot D^{-1}$
- P similar to a symmetric matrix: $P^{\prime}=D^{-1 / 2} A_{G} D^{-1 / 2}$
- P and P^{\prime} has same eigenvalues! And P^{\prime} has only real eigenvalues!
- Eigenvectors of P are $D^{-1 / 2} v_{i}$ where v_{i} are eigenvectors of P^{\prime}. And v_{i} can be taken to form orthonormal basis.
- Graph strongly connected \Rightarrow Perron-Frobenius for irreducible non-negative matrices
- unique eigenvector whose eigenvalue has max absolute value
- eigenvector has all positive coordinates
- eigenvalue is positive
- This eigenvector is π !
- All random walks converge to π, as we wanted to show.
same owolynis thet we did for Kn_{n}
－Introduction
－Why Random Walks \＆Markov Chains？
－Basics on Theory of（finite）Markov Chains
－Main Topics
－Fundamental Theorem of Markov Chains
－Page Rank
－Conclusion
－Acknowledgements

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$
(2) In each step, each page:

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$
(2) In each step, each page:
(1) divides its pagerank value equally to its outgoing link,

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$
(2) In each step, each page:
(1) divides its pagerank value equally to its outgoing link,
(2) sends these equal shares to the pages it points to,

Page Rank

- Setting: we have a directed graph describing relationships between set of webpages.
There is a directed edge (i, j) if there is a link from page i to page j.
- Goal: want algorithm to "rank" how important a page is.
- Intuition: if many other pages link to a particular page, then the linked page must be important!

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$
(2) In each step, each page:
(1) divides its pagerank value equally to its outgoing link,
(2) sends these equal shares to the pages it points to,
(3) updates its new pagerank value to be the sum of shares it receives.

Page Rank

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$
(2) In each step, each page:
(1) divides its pagerank value equally to its outgoing link,
(2) sends these equal shares to the pages it points to,
(3) updates its new pagerank value to be the sum of shares it receives.

Page Rank

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$

process

(2) In each step, each page:
(1) divides its pagerank value equally to its outgoing link,
(2) sends these equal shares to the pages it points to,
(3) updates its new pagerank value to be the sum of shares it receives.

- Equilibrium of pagerank values equal to probabilities of stationary distribution of random walk

$$
P \in \mathbb{R}^{n \times n}, \quad P_{i, j}=\frac{1}{\delta^{\text {out }}(i)}
$$

Page Rank

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$
(2) In each step, each page:
(1) divides its pagerank value equally to its outgoing link,
(2) sends these equal shares to the pages it points to,
(3) updates its new pagerank value to be the sum of shares it receives.

- Equilibrium of pagerank values equal to probabilities of stationary distribution of random walk

$$
P \in \mathbb{R}^{n \times n}, \quad P_{i, j}=\frac{1}{\delta^{\text {out }}(i)}
$$

- Pagerank values and transition probabilities satisfy same equations:

$$
\begin{aligned}
& \quad \begin{array}{l}
p_{t+1}(i)
\end{array}=\sum_{i:(i, j) \in E} \frac{p_{t}(i)}{\text { join }(i)} \Rightarrow p_{t+1}=p_{t} \cdot P \\
& \left\|p_{t v 1}\right\|_{1}=\left\|p_{t}\right\|_{1}=1
\end{aligned}
$$

Page Rank

Algorithm (Page Rank Algorithm)

(1) Initially, each page has pagerank value $\frac{1}{n}$
(2) In each step, each page:
(1) divides its pagerank value equally to its outgoing link,
(2) sends these equal shares to the pages it points to,
(3) updates its new pagerank value to be the sum of shares it receives.

- Equilibrium of pagerank values equal to probabilities of stationary distribution of random walk

$$
P \in \mathbb{R}^{n \times n}, \quad P_{i, j}=\frac{1}{\delta^{\text {out }}(i)}
$$

- Pagerank values and transition probabilities satisfy same equations:

$$
p_{t+1}(i)=\sum_{i:(i, j) \in E} \frac{p_{t}(i)}{\delta^{\text {out }}(i)} \Rightarrow p_{t+1}=p_{t} \cdot P
$$

- If graph finite, irreducible and aperiodic, fundamental theorem guarantees stationary distribution.

Page Rank

- In practice, directed graph may not satisfy fundamental theorem's conditions

Page Rank

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:

Page Rank

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:
- Fix number $0<s<1$
- Divide s fraction of its pagerank value to its neighbors,
- $1-s$ fraction of its pagerank value to all nodes evenly
making it sort of complete oproph

$$
\frac{\Delta G+(1-s) u_{n} \text { satisfies }}{\text { relevance }}
$$

Page Rank

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:
- Fix number $0<s<1$
- Divide s fraction of its pagerank value to its neighbors,
- $1-s$ fraction of its pagerank value to all nodes evenly
- Equivalent to the random walk:

Page Rank

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:
- Fix number $0<s<1$
- Divide s fraction of its pagerank value to its neighbors,
- $1-s$ fraction of its pagerank value to all nodes evenly
- Equivalent to the random walk:
- With probability s go to one of its neighbors (uniformly at random),
$k_{n} \odot$ With probability $1-s$ go to random page (uniformly at random)

Page Rank

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:
- Fix number $0<s<1$
- Divide s fraction of its pagerank value to its neighbors,
- $1-s$ fraction of its pagerank value to all nodes evenly
- Equivalent to the random walk:
- With probability s go to one of its neighbors (uniformly at random),
- With probability $1-s$ go to random page (uniformly at random)
- Now resulting graph is strongly connected and aperiodic \Rightarrow unique stationary distribution

Page Rank

- In practice, directed graph may not satisfy fundamental theorem's conditions
- Modify original graph as follows:
- Fix number $0<s<1$
- Divide s fraction of its pagerank value to its neighbors,
- $1-s$ fraction of its pagerank value to all nodes evenly
- Equivalent to the random walk:
- With probability s go to one of its neighbors (uniformly at random),
- With probability $1-s$ go to random page (uniformly at random)
- Now resulting graph is strongly connected and aperiodic \Rightarrow unique stationary distribution
- This modification does not change "relative importance" of vertices

Conclusion

Markov Chains and Random Walks are ubiquitous in randomized algorithms.

- Page Rank algorithm (today's lecture)
- Approximation algorithms for counting problems [Karp, Luby \& Madras]
- Permanent of non-negative matrices [Jerrum, Vigoda \& Sinclair]
- Sampling Problems
- Gibbs sampling in statistical physics
- many more places
- Probability amplification without too much randomness (efficient)
- Random walks on expander graphs
- many more

Potential Final Projects

- Cap ype derandomizethe perfect pyatching atporithms from class?
- A pot of pregress has been padef in the past couple yeprs on 4 yps Question in the works [? Pand pubsequenty [z]
- Syryeypf the abque or undergtanding these papersis a greatinal projecty.

Acknowledgement

- Lecture based largely on:
- Lap Chi's notes
- [Motwani \& Raghavan 2007, Chapter 6]
- See Lap Chi's notes at https://cs.uwaterloo.ca/~lapchi/cs466/notes/L11.pdf
- Also see Lap Chi's notes https://cs.uwaterloo.ca/~lapchi/cs466/notes/L14.pdf for a proof of fundamental theorem of Markov chains for undirected graphs.

References I

\square Motwani, Rajeev and Raghavan, Prabhakar (2007) Randomized Algorithms

Karp, R.M. and Luby, M. and Madras, N. (1989)
Monte-Carlo approximation algorithms for enumeration problems.
Journal of algorithms, 10(3), pp.429-448.
\square Jerrum, M. and Sinclair, A. and Vigoda, E. (2004)
A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries.
Journal of the ACM (JACM), 51(4), pp.671-697.

