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Overview

@ Introduction
o Why Random Walks & Markov Chains?
o Basics on Theory of (finite) Markov Chains

@ Main Topics
e Fundamental Theorem of Markov Chains
o Page Rank

@ Conclusion

@ Acknowledgements
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What is a Random Walk?
Given a graph G(V,E)
@ random walk starts from a vertex vy

@ at each time step it moves to a uniformly random neighbor of the
current vertex in the graph
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What is a Random Walk?
Given a graph G(V, E)
@ random walk starts from a vertex vy

@ at each time step it moves to a uniformly random neighbor of the
current vertex in the graph

Vi+l <R NG(Vt)

Basic questions involving random walks:

4/87



What is a Random Walk?
Given a graph G(V,E) (V,—' n IEI-m
© random walk starts from a vertex vy G L

@ at each time step it moves to a uniformly random neighbor of the
current vertex in the graph

Vi+l <R NG(Vt)

Basic questions involving random walks:

e Stationary distribution: does the random walk converge to a “stable”
distribution? If it does, what is this distribution?
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What is a Random Walk?
Given a graph G(V, E)
@ random walk starts from a vertex vy

@ at each time step it moves to a uniformly random neighbor of the
current vertex in the graph

Vi+l <R NG(Vt)

Basic questions involving random walks:

e Stationary distribution: does the random walk converge to a “stable”
distribution? If it does, what is this distribution?

o Mixing time: how long does it take for the walk to converge to the

stationary distribution?
L, +Dd0u.a'h ..QOX.{'W.L
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What is a Random Walk?
Given a graph G(V, E)
@ random walk starts from a vertex vy

@ at each time step it moves to a uniformly random neighbor of the
current vertex in the graph

Vi+l <R NG(Vt)

Basic questions involving random walks:

e Stationary distribution: does the random walk converge to a “stable”
distribution? If it does, what is this distribution?

o Mixing time: how long does it take for the walk to converge to the
stationary distribution?

e Hitting time: starting from a vertex vy, what is expected number of
steps until it reaches a vertex v¢?
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What is a Random Walk?
Given a graph G(V, E)
@ random walk starts from a vertex vy

@ at each time step it moves to a uniformly random neighbor of the
current vertex in the graph

Vi+l <R NG(Vt)

Basic questions involving random walks:

e Stationary distribution: does the random walk converge to a “stable”
distribution? If it does, what is this distribution?

o Mixing time: how long does it take for the walk to converge to the
stationary distribution?

e Hitting time: starting from a vertex vy, what is expected number of
steps until it reaches a vertex v¢?

@ Cover time: how long does it take to reach every vertex of the graph
at least once?
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Random Walk: Example
@ Suppose G(V, E) = K, the complete graph, a, b € V two vertices
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Random Walk: Example

@ Suppose G(V, E) = K, the complete graph, a, b € V two vertices

@ What is expected number of steps to reach b in simple random walk
starting at a? (i.e., hitting time)
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Random Walk: Example

@ Suppose G(V, E) = K, the complete graph, a, b € V two vertices

@ What is expected number of steps to reach b in simple random walk
starting at a? (i.e., hitting time)

@ Starting from a, what is expected number of steps to visit all vertices?
(i.e, cover time)

Prackhce (ore blem)
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Random Walk: Example

@ Suppose G(V, E) = K, the complete graph, a, b € V two vertices
@ What is expected number of steps to reach b in simple random walk
starting at a? (i.e., hitting time)
@ Starting from a, what is expected number of steps to visit all vertices?
(i.e, cover time)
© Stationary Distribution?
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Random Walk: Example

@ Suppose G(V, E) = K, the complete graph, a, b € V two vertices
@ What is expected number of steps to reach b in simple random walk
starting at a? (i.e., hitting time)
@ Starting from a, what is expected number of steps to visit all vertices?
(i.e, cover time)
© Stationary Distribution?
@ Mixing time? (we'll do it later)
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Random Walk: Example

@ Suppose G(V, E) = K, the complete graph, a, b € V two vertices
@ What is expected number of steps to reach b in simple random walk

starting at a? (i.e., hitting time)
@Starting from a, what is expected number of steps to visit all vertices?

(i.e, cover time)
© Stationary Distribution?
@ Mixing time? (we'll do it later)

@ Practice question: Compare question 2 to coupon collector problem!

QI
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What is a Markov Chain?
hiatow o( Xo ndom wefs

Random walk is a\special kind of stochastic process:
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What is a Markov Chain?

Random walk is a special kind of stochastic process:
Pr[Xt = Vi | XO = Vo,-..- ,th]_ = thl] = Pr[Xt = V; | thl = Vt71]

Probability that we are at vertex v; at time t only depends on the state of
our process at time t — 1.
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What is a Markov Chain?

Random walk is a special kind of stochastic process:

{ Pr[Xt = Vi | XO = Vo,-..- ,thl = th]_] = Pr[Xt = V; | thl = thl] J

Probability that we are at vertex v; at time t only depends on the state of
our process at time t — 1.

Process is “forgetful’

Markov chain is characterized by this property.
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Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized
algorithms.
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Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized
algorithms.

@ Page Rank algorithm (today's lecture)
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Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized
algorithms.

@ Page Rank algorithm (today's lecture)

@ Approximation algorithms for counting
problems [Karp, Luby & Madras|

o Permanent of non-negative matrices [Jerrum, Vigoda & Sinclair] (great
final project topic!)
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Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized
algorithms.

@ Page Rank algorithm (today's lecture)

@ Approximation algorithms for counting
problems [Karp, Luby & Madras|

o Permanent of non-negative matrices [Jerrum, Vigoda & Sinclair] (great
final project topic!)
@ Sampling Problems
o Gibbs sampling in statistical physics (great final project topic!)
e many more places

21/87



Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized
algorithms.

Page Rank algorithm (today’s lecture)

Approximation algorithms for counting
problems [Karp, Luby & Madras|
o Permanent of non-negative matrices [Jerrum, Vigoda & Sinclair] (great
final project topic!)

Sampling Problems
o Gibbs sampling in statistical physics (great final project topic!)
e many more places

Probability amplification without too much randomness (efficient)
o random walks on expander graphs (great final project topic!)
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Why study Markov Chains and Random Walks?

Markov Chains and Random Walks are ubiquitous in randomized
algorithms.

Page Rank algorithm (today’s lecture)

Approximation algorithms for counting
problems [Karp, Luby & Madras|
o Permanent of non-negative matrices [Jerrum, Vigoda & Sinclair] (great
final project topic!)

Sampling Problems
o Gibbs sampling in statistical physics (great final project topic!)
e many more places

Probability amplification without too much randomness (efficient)
o random walks on expander graphs (great final project topic!)

@ many more
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Representing Finite Markov Chains

Markov chain can be seen as weighted directed graph.
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Representing Finite Markov Chains

Markov chain can be seen as weighted directed graph.

@ Vertex is a state of Markov chain

@ edge (/,j) corresponds to transition probability from i to j
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Representing Finite Markov Chains

Markov chain can be seen as weighted directed graph.

@ Vertex is a state of Markov chain

@ Markov Chain irreducible if underlying directed graph is strongly

connected (i.e. there is directed path from i to j for any pair i,j € V)
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Representing Finite Markov Chains

Markov chain can be seen in weighted adjacency matrix format.
Yy Vs o \ * >
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Properties of Markov Chains

@ Period of a state j is:
ged{t e N| P, > 0}

That is, gcd of all times t such that the probability of starting at
state / and being back at / at time t is positive

Pr prohehithy Has § im0
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Properties of Markov Chains

@ Period of a state i is:
ged{t e N| Pf; > 0}

That is, gcd of all times t such that the probability of starting at
state / and being back at / at time t is positive

@ State / is aperiodic if its period is 1.
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Properties of Markov Chains

@ Period of a state i is:
ged{t e N| Pf; > 0}

That is, gcd of all times t such that the probability of starting at
state / and being back at / at time t is positive

@ State / is aperiodic if its period is 1.
@ Markov Chain aperiodic if all states are aperiodic (otherwise periodic)
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Properties of Markov Chains

@ Period of a state i is:
ged{t e N| Pf; > 0}

That is, gcd of all times t such that the probability of starting at
state / and being back at / at time t is positive

@ State / is aperiodic if its period is 1.
@ Markov Chain aperiodic if all states are aperiodic (otherwise periodic)
o Bipartite graphs yield periodic Markov Chains
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Properties of Markov Chains

@ Period of a state j is:
ged{t e N| Pf; > 0}

That is, gcd of all times t such that the probability of starting at
state / and being back at / at time t is positive
@ State / is aperiodic if its period is 1.
@ Markov Chain aperiodic if all states are aperiodic (otherwise periodic)
o Bipartite graphs yield periodic Markov Chains

For any finite, irreducible and aperiodic Markov Chain, there exists T < 0o

such that
< P,-t’j>0)foranyi,j€ Vandt>T.

Thatl 12 © at rome peiﬂ.'} we will neech evow veriex

o A Liw ﬂ,"
+ paaitive prsbability e(be;wg“end’) Vordex afix t’:‘ws:[ 52/87
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Stationary Distributions

Definition (Stationary Distribution)
A stationary distribution of a Markov Chain is a probability distribution

7 € R” such that
’ TP s
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Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
m € R" such that

TP = .

@ Informally, 7 is an “equilibrium /fixed point” state, as we have
m = 7Pt for any t > 0.
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Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
m € R" such that

TP = .

@ Informally, 7 is an “equilibrium /fixed point” state, as we have
m = 7Pt for any t > 0.

o Intuition: If we run finite, irreducible and aperiodic Markov Chain
long enough, we will converge to a stationary distribution.
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Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
m € R" such that

TP = .

@ Informally, 7 is an “equilibrium /fixed point” state, as we have
m = 7Pt for any t > 0.
o Intuition: If we run finite, irreducible and aperiodic Markov Chain
long enough, we will converge to a stationary distribution.
e what do you mean by converge here?
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Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
m € R" such that

TP = .

@ Informally, 7 is an “equilibrium /fixed point” state, as we have
m = 7Pt for any t > 0.
o Intuition: If we run finite, irreducible and aperiodic Markov Chain
long enough, we will converge to a stationary distribution.
e what do you mean by converge here?
@ Given two distributions p, g € R", their total variational distance is

1 1 — 1
Atv(p,q) > )m 5" lpgallL
=1

=
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Stationary Distributions

Definition (Stationary Distribution)

A stationary distribution of a Markov Chain is a probability distribution
m € R" such that

TP = .

Informally, 7 is an “equilibrium/fixed point” state, as we have
m = 7Pt for any t > 0.
o Intuition: If we run finite, irreducible and aperiodic Markov Chain
long enough, we will converge to a stationary distribution.
e what do you mean by converge here?

@ Given two distributions p, g € R", their total variational distance is

1< 1
Arv(p.q) =5 _lpi—ail = 5 - llpzals
i=1

@ p; converges to q iff lim Ary(ps,q) =0
t—00
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Mixing Time of Markov Chains
Definition (Mixing Time)

The e-mixing time of a Markov Chain is the smallest t such that

regardless of the initial starting distribution pg.

o
transitien matnix P ° ..'L I ol meo
1 . 5 0=l v;\mhm

ergmvaluen: Jet (@ G‘;—_',)n de+(ﬂ+(n-l)t31 —:;P
: v

Cigmvec oy f( J, ) D2 ¢- Uwm (_,mf-ﬁmnﬂd)
E(hl.-.-.l) .\_)EIM’"'_A":_'/"-'\
. eigmvaluwv 4 P: (& (aDA;=0li - o, <3 - e s

E 9a
Cigmvchows o P: Uy VUL s 2 VUn 39/87

Fo- complek groph K :



Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira



Mixing Time of Markov Chains

Definition (Mixing Time)

The e-mixing time of a Markov Chain is the smallest t such that

Aty(ps,m) <€

/regardless of the initial starting distribution |pp.

o Eigenvalues|\; = IJAZ ==\, corresponding
igenvectors vi, ..., v, (orthonormal) o = (114 - t)- }'UF
"

_.L4:(f- preb -

_CL>) D0y < F
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Fundamental Theorem of Markov Chains

@ The return time from state / to itself is defined as

H,',,' = min{t >1 | Xe=1,X0 = i}
—_

( 7;;%0( at
L

bach at 1
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Fundamental Theorem of Markov Chains

@ The return time from state / to itself is defined as
H,'y,' = min{t >1 | Xe=1,X0 = i}

e Expected return time: defined as h; ; := E[H; ;].
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Fundamental Theorem of Markov Chains

@ The return time from state / to itself is defined as
H,'y,' = min{t >1 ’ Xe=1,X0 = i}
o Expected return time: defined as h;; := E[H; ;].

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

© There exists a unique stationary distribution T, WherE mi >0 %Jr all
i € [n]

@ The sequence of distribution}; {pt}t>0 }A/ill converge to m, no matter
what the initial distribution

) P
Bt W Ry
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

@ There is unique stationary distribution m, where m; > 0 for all i € [n]
© for every distribution pg € RZ,

o

lim po- Pt =
t—o0

) 1
T = lim Pitl' = —
t—o00 ’ hii

b

Intuition for proof of this theorem:
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

@ There is unique stationary distribution m, where m; > 0 for all i € [n]
© for every distribution pg € RZ,

o

lim po- Pt =
t—o0

) 1
T = lim Pitl' = —
t—o00 ’ hii

b

Intuition for proof of this theorem:

@ two random walks are “indistinguishable” after they “meet” at the
same vertex v at a particular time t
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

@ There is unique stationary distribution m, where m; > 0 for all i € [n]
@ For every distribution pg € RZ, t|im po-Pi=m

- — 00
o

) 1
T = lim Pitl' = —
t—o00 ’ hii

b

Intuition for proof of this theorem:

@ two random walks are “indistinguishable” after they “meet” at the
same vertex v at a particular time t

@ By finiteness, irreducibility and aperiodicity, two walks will meet with

positive probability (and thus by Markov property) become same
distribution
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

Q There is unique stationary distribution m, where m; > 0 for all i € [n]
© For every distribution pg € RZ,

o

lim po- Pt =
t—o0

If our underlying graph is undirected:
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

Q There is unique stationary distribution m, where m; > 0 for all i € [n]
@ For every distribution pg € RZ, tlim po-Pt=m
- — 00

1
7= lim Pf, = —
t—o00 hf,i

If our underlying graph is undirected: (7 de«)(‘.)

e If Ag adjacency matrix of G(V/, E) and D = diag(di, d>, ..., dp),
transitjon matrix:

oy AL o

n P i,
- Zﬂ(:)- A,-‘- l\a um’@sm diatribydcon
- ) d; Nee viecghbaws of i
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Fundamental Theorem of Markov Chains

Theorem (Fundamental Theorem of Markov Chains)

Any finite, irreducible and aperiodic Markov Chain has the following
properties:

Q There is unique stationary distribution m, where m; > 0 for all i € [n]
© For every distribution pg € RZ,

o

lim po- Pt =
t—o0

If our underlying graph is undirected:
e If Ag adjacency matrix of G(V/, E) and D = diag(di, d>, ..., dp),
transition matrix:
P= 1D 'e A
@ Note that in this case, easy to guess stationary distribution:
. o

W;:;n, m:\E\
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

@ In this case, easy to guess stationary distribution:

now J-.oln-‘buf"?‘" S di
f jth ewlny
- Yof St
diﬂ"ﬂ;)ju‘-“,“

'-, .
[\
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

@ In this case, easy to guess stationary distribution:

di
i = =—, = E
M ==, m=|E|
e If Ag adjacency matrix of G(V, E) and D = diag(dy, da, ..., dy),
transition matrix: :
P—fwD'Ag ‘
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

@ In this case, easy to guess stationary distribution:

[Ac) .'j:(AGJJ'i i = %ﬂ m = |E|

° @ acency matrix of G(V/, E) and D = diag(d1, da, . .., dyn),

tran on matrix:
P = Ac

o P not symmetric, but s:m:/ar to a symmetric matrix:

Aammfn.'(.
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

e If Ag adjacency matrix of G(V, E) and D = diag(dy, da, ..., dy),
transition matrix:

P = MggeD e Ag

e P not symmetric, but similar to a symmetric matrix:

LA P e T s A T
D" P-D" - DD AD" = DR D =P

e P and P’ has same e/genva/ues' And P’ has onIy real eigenvalues!

-
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Fundamental Theorem of Markov Chains

If our underlying graph is undirected:

e If Ag adjacency matrix of G(V, E) and D = diag(dy, da, ..., dy),

transition matrix:

P=4geD'- Ac

e P not symmetric, but similar to a symmetric matrix:

PP e F T P ee D2 Ac D = P

e P and P’ has same

o
e Eigenvectors of P ar4 D—1/2y; }v
can be taken to form orthonormal basis.

And P’ has only real eigenyalues!
here v; are eigenvectors .a And@

<
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Fundamental Theorem of Markov Chains

d.
e Stationary distribution: m; = 2—', m = |E]|
m

o Transition matrix: P = £gge D 1- A6
o P similar to a symmetric matrix: P’ = D~Y2As;D~1/2
e P and P’ has same eigenvalues! And P’ has only real eigenvalues!
o Eigenvectors of P are D~1/2v; where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.
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Fundamental Theorem of Markov Chains

e Stationary distribution: m; = m = |E]

@ Transition matrix: 'P Ac-D1 'P.J > 0

o P similar to a symmetric matrix: P’ = D~1/2AcD~1/2

e P and P’ has same eigenvalues! And P’ has only real eigenvalues!

o Eigenvectors of P are D~1/2v; where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.

Graph strongly connected = Perron-Frobenius for irreducible

non-negative matrices
P,
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Fundamental Theorem of Markov Chains

e Stationary distribution: m; = 2—' m = |E]
m

)

e Transition matrix: P = Ag - D1
o P similar to a symmetric matrix: P’ = D~Y2As;D~1/2
e P and P’ has same eigenvalues! And P’ has only real eigenvalues!
o Eigenvectors of P are D~1/2v; where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.
o Graph strongly connected = Perron-Frobenius for irreducible
non-negative matrices
@ unique eigenvector whose eigenvalue has max absolute value
@ eigenvector has all positive coordinates
@ eigenvalue is positive
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Fundamental Theorem of Markov Chains

TP-=T

m=|E| g e. gamvechn
e Transition matrix: P = #ége D' - Ac T, %0
o P similar to a symmetric matrix: P’ = D~Y2As;D~1/2
e P and P’ has same eigenvalues! And P’ has only real eigenvalues!
o Eigenvectors of P are D~1/2v; where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.
Graph strongly connected = Perron-Frobenius for irreducible
non-negative matrices
V' o unique eigenvector whose eigenvalue has max absolute value
Vo eigenvector has all positive coordinates
o eigenvalue is positive

Thisei‘g,;g/ecto;::; oA c"a.nwl“( LM J:"
ol othen e iy uhr <t w

@ Stationary distribution:|m; =

60 /87


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira


Rafael Oliveira



Fundamental Theorem of Markov Chains

e Stationary distribution: 7, = —, m = |E]
2m
e Transition matrix: P = Ag - D1
o P similar to a symmetric matrix: P’ = D~Y2As;D~1/2
e P and P’ has same eigenvalues! And P’ has only real eigenvalues!
o Eigenvectors of P are D~1/2v; where v; are eigenvectors of P’. And v;
can be taken to form orthonormal basis.
o Graph strongly connected = Perron-Frobenius for irreducible
non-negative matrices
@ unique eigenvector whose eigenvalue has max absolute value
@ eigenvector has all positive coordinates
@ eigenvalue is positive
o This eigenvector is 7!
o All random walks converge to 7, as we wanted to show. ‘,6}’ L‘Y)

o owolys Hoal we oid
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Page Rank

@ Setting: we have a directed graph describing relationships between
set of webpages.
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Page Rank

o Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i,/) if there is a link from page i to page j.
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Page Rank

o Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i,/) if there is a link from page i to page j.

@ Goal: want algorithm to “rank” how important a page is.
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Page Rank

o Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i,/) if there is a link from page i to page j.
@ Goal: want algorithm to “rank” how important a page is.

@ Intuition: if many other pages link to a particular page, then the
linked page must be important!
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Page Rank

o Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i,/) if there is a link from page i to page j.
@ Goal: want algorithm to “rank” how important a page is.

@ Intuition: if many other pages link to a particular page, then the
linked page must be important!

Algorithm (Page Rank Algorithm)

© /Initially, each page has pagerank value %
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Page Rank

o Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i,/) if there is a link from page i to page j.
@ Goal: want algorithm to “rank” how important a page is.

@ Intuition: if many other pages link to a particular page, then the
linked page must be important!

Algorithm (Page Rank Algorithm)

© /Initially, each page has pagerank value %
© In each step, each page:
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Page Rank

o Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i,/) if there is a link from page i to page j.
@ Goal: want algorithm to “rank” how important a page is.

@ Intuition: if many other pages link to a particular page, then the
linked page must be important!

Algorithm (Page Rank Algorithm)

. 1
@ Initially, each page has pagerank value -
© In each step, each page:
@ divides its pagerank value equally to its outgoing link,
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Page Rank

o Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i,/) if there is a link from page i to page j.
@ Goal: want algorithm to “rank” how important a page is.

@ Intuition: if many other pages link to a particular page, then the
linked page must be important!

Algorithm (Page Rank Algorithm)

© /Initially, each page has pagerank value %,
© In each step, each page:

@ divides its pagerank value equally to its outgoing link,
@ sends these equal shares to the pages it points to,
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Page Rank

o Setting: we have a directed graph describing relationships between
set of webpages.

There is a directed edge (i,/) if there is a link from page i to page j.
@ Goal: want algorithm to “rank” how important a page is.

@ Intuition: if many other pages link to a particular page, then the
linked page must be important!

Algorithm (Page Rank Algorithm)

. 1
@ Initially, each page has pagerank value -
© In each step, each page:

@ divides its pagerank value equally to its outgoing link,
@ sends these equal shares to the pages it points to,
@ updates its new pagerank value to be the sum of shares it receives.
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Page Rank
Algorithm (Page Rank Algorithm)

- 1
@ Initially, each page has pagerank value
@ In each step, each page:

@ divides its pagerank value equally to its outgoing link,

@ sends these equal shares to the pages it points to,
@ updates its new pagerank value to be the sum of shares it receives.
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Page Rank

Algorithm (Page Rank Algorithm)

- 1
Q Initially, each page has pagerank value + FMCW
@ In each step, each page:

@ divides its pagerank value equally to its outgoing link,

@ sends these equal shares to the pages it points to,
@ updates its new pagerank value to be the sum of shares it receives.

e Equilibrium of pagerank values equal to probabilities of stationary
distribution of random walk

PeR™" P,

o 1
o 5out(,-)

~———
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Page Rank
Algorithm (Page Rank Algorithm)

- 1
@ Initially, each page has pagerank value
@ In each step, each page:

@ divides its pagerank value equally to its outgoing link,

@ sends these equal shares to the pages it points to,
@ updates its new pagerank value to be the sum of shares it receives.

e Equilibrium of pagerank values equal to probabilities of stationary
distribution of random walk

1
PGR"XH, P,'J:

@ Pagerank values and transition probabilities satisfy same equations:

s
= Pt+1:Pt'P

”Phl’/ ”Pt”, =1

Pt+1(i)

I
M
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Page Rank
Algorithm (Page Rank Algorithm)

5, o 1
@ Initially, each page has pagerank value
@ In each step, each page:
@ divides its pagerank value equally to its outgoing link,

@ sends these equal shares to the pages it points to,
@ updates its new pagerank value to be the sum of shares it receives.

e Equilibrium of pagerank values equal to probabilities of stationary

distribution of random walk
1
nxn _
PeR s P’d = (Sou—t(i)
@ Pagerank values and transition probabilities satisfy same equations:
pe(i)
5out(,’)

pe1(i) = = pry1=pe P

i:(ij)€E

o If graph finite,|irreducible and aperiodic, fundamental theorem
guarantees stationary distribdution.
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Page Rank

@ In practice, directed graph may not satisfy fundamental theorem'’s
conditions
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Page Rank

@ In practice, directed graph may not satisfy fundamental theorem'’s
conditions

@ Modify original graph as follows:
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Page Rank

@ In practice, directed graph may not satisfy fundamental theorem'’s
conditions

@ Modify original graph as follows:

o Fix number 0 <s <1
e Divide s fraction of its pagerank value to its neighbors,
e 1 — s fraction of its pagerank value to all nodes evenly

mokng d notd vf{ campbc arwp

5 G + (A 28 fé\’/g
— |
,chMa r
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Page Rank

@ In practice, directed graph may not satisfy fundamental theorem'’s
conditions
@ Modify original graph as follows:

o Fix number0 <s <1
e Divide s fraction of its pagerank value to its neighbors,
e 1 — s fraction of its pagerank value to all nodes evenly

@ Equivalent to the random walk:
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Page Rank

@ In practice, directed graph may not satisfy fundamental theorem'’s
conditions
@ Modify original graph as follows:

o Fix number0 <s <1
e Divide s fraction of its pagerank value to its neighbors,
e 1 — s fraction of its pagerank value to all nodes evenly

@ Equivalent to the random walk:

With probability s go to one of its neighbors (uniformly at random),
Le ® ith probability 1 — s go to random page (uniformly at random)
n

G
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Page Rank

In practice, directed graph may not satisfy fundamental theorem's
conditions

Modify original graph as follows:

o Fix number0 <s <1
e Divide s fraction of its pagerank value to its neighbors,
e 1 — s fraction of its pagerank value to all nodes evenly

Equivalent to the random walk:
e With probability s go to one of its neighbors (uniformly at random),
e With probability 1 — s go to random page (uniformly at random)
Now resulting graph is strongly connected and aperiodic = unique
stationary distribution
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Page Rank

@ In practice, directed graph may not satisfy fundamental theorem'’s
conditions
@ Modify original graph as follows:

o Fix number0 <s <1
e Divide s fraction of its pagerank value to its neighbors,
e 1 — s fraction of its pagerank value to all nodes evenly

@ Equivalent to the random walk:

e With probability s go to one of its neighbors (uniformly at random),
e With probability 1 — s go to random page (uniformly at random)

@ Now resulting graph is strongly connected and aperiodic = unique
stationary distribution

@ This modification does not change “relative importance” of vertices
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Conclusion

Markov Chains and Random Walks are ubiquitous in randomized
algorithms.

Page Rank algorithm (today's lecture)

Approximation algorithms for counting
problems [Karp, Luby & Madras|

e Permanent of non-negative matrices [Jerrum, Vigoda & Sinclair]

Sampling Problems
o Gibbs sampling in statistical physics
e many more places

Probability amplification without too much randomness (efficient)
o Random walks on expander graphs

@ many more
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Potential Final Projects

2 ruduehle
(st Ay i)

o Cap wf derandomizeAht perfect mpatching aforithms from class?

o X o of p res as/been prdd¢in the’paft couptt yedrs on ik
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Acknowledgement

@ Lecture based largely on:
e Lap Chi's notes
o [Motwani & Raghavan 2007, Chapter 6]
@ See Lap Chi’s notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L11.pdf

@ Also see Lap Chi's notes
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L14.pdf for a
proof of fundamental theorem of Markov chains for undirected graphs.
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