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It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

Interactive proof systems

Efficient proof/program verification (PCP - a bit in lecture 16)

Applications in hardness of approximation!
Applications in blockchain (Zcash for instance)
Zero Knowledge proofs (lecture 24)

Cryptography

Coding theory

many more...
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Verifying String Equality

Suppose Alice and Bob each maintain the same large database of
information.1 They would like to check if their databases are consistent.

1Think of each of them being a server of a company that deals with massive data.
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Verifying String Equality

Suppose Alice and Bob each maintain the same large database of
information.1 They would like to check if their databases are consistent.

Transmission of all data is expensive (communication complexity
setting)

Sending the entire database not feasible

Say Alice’s version of database given by bits (a1, . . . , an) and Bob’s
version is (b1, . . . , bn)

Deterministic consistency check requires Alice and Bob to
communicate n bits (otherwise adversary would know how to change
database to make check fail)

Fingerprinting for the rescue!

Communication complexity setting, randomized algorithms, need to work
with high probability.

1Think of each of them being a server of a company that deals with massive data.
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Want to check whether strings (a1, . . . , an) and (b1, . . . , bn) equal.

Fingerprinting mechanism:

1 Let a =
�n

i=1 ai · 2i−1 and b =
�n

i=1 bi · 2i−1

2 Let Fp(x) = x mod p be a fingerprinting function, for a prime p
3 Protocol:

1 Alice picks a random prime p and sends (p,Fp(a)) to Bob
2 Bob checks whether Fp(a) ≡ Fp(b) mod p, sends

�
1, if the values are equal

0, otherwise

Total bits communicated: O(log p) bits (dominated by Alice’s
message)

if (a1, . . . , an) = (b1, . . . , bn) then protocol always right

what happens when they are different?
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Verifying string equality
If (a1, . . . , an) = (b1, . . . , bn), then a �= b.
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Verifying string equality
If (a1, . . . , an) = (b1, . . . , bn), then a �= b.

For how many primes can Fp(a) ≡ Fp(b)? (i.e., protocol will fail)

If a number M is in {−2n, . . . , 2n}, then number of distinct primes
p | M is < n.

1 Each prime divisor of M is ≥ 2, so if M has t distinct prime divisors,
then |M| > 2t

2 |M| ≤ 2n ⇒ t ≤ n

Fp(a) ≡ Fp(b) if, and only if, p | a− b.

Thus, protocol fails for at most n choices of p

Prime number theorem: there are m/ logm primes among first m
positive integers

Choosing p among the first tn log(tn) primes we have that

Pr[Fp(a) �≡ Fp(b)] ≤
n

tn log tn/ log(tn log tn)
= Õ(1/t)

Number of bits sent is O(log t + log n). Choosing t = n solves it.
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setting:

Input: “Given” two polynomials P(x),Q(x), are they equal?

Two polynomials are equal ⇔ all their coefficients are equal
So why not just compare their coefficients?

1 Sometimes polynomials are given implicitly (i.e., not by their list of
coefficients)

2 P1(x),P2(x),P3(x), test whether: P1(x) · P2(x) = P3(x)?
3 If P1,P2 have degree ≤ n, then deg(P3) ≤ 2n (otherwise problem is

trivial)

Multiplication of two polynomials of degree n: O(n log n) by FFT

Polynomial evaluation: O(n)

Can we check whether P1(x) · P2(x) = P3(x) in O(n) time?

Lemma (Roots of Univariate Polynomials)

Let F be a field and P(x) ∈ F[x ] be a nonzero univariate polynomial of
degree d. Then P(x) has at most d roots in F.
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Lemma (Roots of Univariate Polynomials)

Let F be a field and P(x) ∈ F[x ] be a nonzero univariate polynomial of
degree d. Then P(x) has at most d roots in F.

Let Q(x) = P3(x)− P1(x) · P2(x). It had degree ≤ 2n

By lemma, if Q �= 0 then Q(a) = 0 for at most 2n values in F.
Take a set S ⊆ F of size 4n. Let a ∈ S chosen randomly.

Compute Q(a) by computing P1(a),P2(a),P3(a) and then
P3(a)− P1(a) · P2(a)

Probability Q(a) = 0 (i.e., we failed to identify non-zero)

≤ deg(Q)

|S | ≤ 2n

4n
= 1/2.

Can amplify probability by running multiple times or by choosing
larger set S .
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Polynomial Identity Testing

Lemma (Ore-Schwartz-Zippel-de Millo-Lipton lemma)

Let F be a field and P(x1, . . . , xn) ∈ F[x1, . . . , xn] be a nonzero polynomial
of degree ≤ d. Then for any set S ⊆ F, we have:

Pr[P(a1, . . . , an) = 0 | ai ∈ S ] ≤ d

|S |
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Polynomial Identity Testing

Lemma (Ore-Schwartz-Zippel-de Millo-Lipton lemma)

Let F be a field and P(x1, . . . , xn) ∈ F[x1, . . . , xn] be a nonzero polynomial
of degree ≤ d. Then for any set S ⊆ F, we have:

Pr[P(a1, . . . , an) = 0 | ai ∈ S ] ≤ d

|S |

Proof by induction in number of variables.
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Bipartite Matching
Input: bipartite graph G (L,R ,E ) with |L| = |R | = n

Output: does G have a perfect matching?

2First proved by Edmonds.
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Bipartite Matching
Input: bipartite graph G (L,R ,E ) with |L| = |R | = n

Output: does G have a perfect matching?

Let X ∈ Fn×n be such that

Xi ,j =

�
yi ,j , if there is edge between (i , j) ∈ L× R

0, otherwise

det(X ) =
�

σ∈Sn
(−1)σ

n�

i=1

Xiσ(i)

G has perfect matching ⇔ det(X ) is a non-zero polynomial!2

2First proved by Edmonds.
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Bipartite Matching
Input: bipartite graph G (L,R ,E ) with |L| = |R | = n

Output: does G have a perfect matching?

Let X ∈ Fn×n be such that

Xi ,j =

�
yi ,j , if there is edge between (i , j) ∈ L× R

0, otherwise

det(X ) =
�

σ∈Sn
(−1)σ

n�

i=1

Xiσ(i)

G has perfect matching ⇔ det(X ) is a non-zero polynomial!2

Testing if G has a perfect matching is a special case of Polynomial
Identity Testing!

2First proved by Edmonds.
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Bipartite Matching
Input: bipartite graph G (L,R ,E ) with |L| = |R | = n

Output: does G have a perfect matching?

Let X ∈ Fn×n be such that

Xi ,j =

�
yi ,j , if there is edge between (i , j) ∈ L× R

0, otherwise

det(X ) =
�

σ∈Sn
(−1)σ

n�

i=1

Xiσ(i)

G has perfect matching ⇔ det(X ) is a non-zero polynomial!2

Testing if G has a perfect matching is a special case of Polynomial
Identity Testing!

Algorithm: evaluate det(X ) at a random value for the variables yi ,j .

2First proved by Edmonds.
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General Matching

Ok, bipartite matching is easy (we know many algorithms for it...)
what about the general case?
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General Matching

Ok, bipartite matching is easy (we know many algorithms for it...)
what about the general case?

Input: (undirected) graph G (V ,E ) where |V | = 2n.

Output: does G have a perfect matching?

Tutte Matrix: TG is the following 2n × 2n matrix: let F be an
arbitrary orientation of edges in E . Then,

[TG ]i ,j =





xi ,j if (i , j) ∈ F

−xi ,j if (j , i) ∈ F

0 otherwise
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General Matching

Ok, bipartite matching is easy (we know many algorithms for it...)
what about the general case?

Input: (undirected) graph G (V ,E ) where |V | = 2n.

Output: does G have a perfect matching?

Tutte Matrix: TG is the following 2n × 2n matrix: let F be an
arbitrary orientation of edges in E . Then,

[TG ]i ,j =





xi ,j if (i , j) ∈ F

−xi ,j if (j , i) ∈ F

0 otherwise

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG ) �= 0.
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Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG ) �= 0.
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Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG ) �= 0.

det(TG ) =
�

σ∈Sn
(−1)σ

n�

i=1

[TG ]i ,σ(i)
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Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG ) �= 0.

det(TG ) =
�

σ∈Sn
(−1)σ

n�

i=1

[TG ]i ,σ(i)

Each permutation σ ∈ Sn that yields non-zero term corresponds to a
(directed) subgraph of G Hσ(V ,Fσ), where Fσ = {(i ,σ(i)}ni=1.
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Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG ) �= 0.

det(TG ) =
�

σ∈Sn
(−1)σ

n�

i=1

[TG ]i ,σ(i)

Each permutation σ ∈ Sn that yields non-zero term corresponds to a
(directed) subgraph of G Hσ(V ,Fσ), where Fσ = {(i ,σ(i)}ni=1.

Each vertex in Hσ has |δout(i)| = |δin(i)| = 1.
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Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG ) �= 0.

Each permutation σ ∈ Sn that yields non-zero term corresponds to a
(directed) subgraph of G Hσ(V ,Fσ), where Fσ = {(i ,σ(i)}ni=1.

If σ only has even cycles, then Hσ gives us a perfect matching (by
taking every other edge of the graph Hσ, ignoring orientation)
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Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG ) �= 0.

Each permutation σ ∈ Sn that yields non-zero term corresponds to a
(directed) subgraph of G Hσ(V ,Fσ), where Fσ = {(i ,σ(i)}ni=1.

Otherwise, for each σ ∈ Sn (that has odd cycle), there is another
permutation r(σ) ∈ Sn that is obtained by reversing odd cycle of Hσ

containing vertex with minimum index.
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Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG ) �= 0.
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Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG ) �= 0.

Comparing (−1)σ
�n

i=1[TG ]i ,σ(i) and (−1)r(σ)
�n

i=1[TG ]i ,r(σ)(i)
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Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG ) �= 0.

Comparing (−1)σ
�n

i=1[TG ]i ,σ(i) and (−1)r(σ)
�n

i=1[TG ]i ,r(σ)(i)
(−1)σ = (−1)r(σ) ⇐ cycles of same size
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Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG ) �= 0.

Comparing (−1)σ
�n

i=1[TG ]i ,σ(i) and (−1)r(σ)
�n

i=1[TG ]i ,r(σ)(i)
(−1)σ = (−1)r(σ) ⇐ cycles of same size

n�

i=1

[TG ]i,σ(i) =
n�

i=1

xi,σ(i) = −
n�

i=1

[TG ]i,r(σ)(i)
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Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG ) �= 0.

Comparing (−1)σ
�n

i=1[TG ]i ,σ(i) and (−1)r(σ)
�n

i=1[TG ]i ,r(σ)(i)
(−1)σ = (−1)r(σ) ⇐ cycles of same size

n�

i=1

[TG ]i,σ(i) =
n�

i=1

xi,σ(i) = −
n�

i=1

[TG ]i,r(σ)(i)

These two terms cancel!
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Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG ) �= 0.

Comparing (−1)σ
�n

i=1[TG ]i ,σ(i) and (−1)r(σ)
�n

i=1[TG ]i ,r(σ)(i)
(−1)σ = (−1)r(σ) ⇐ cycles of same size

n�

i=1

[TG ]i,σ(i) =
n�

i=1

xi,σ(i) = −
n�

i=1

[TG ]i,r(σ)(i)

These two terms cancel!

Since r(r(σ)) = σ, all such terms cancel!
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Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG ) �= 0.

Comparing (−1)σ
�n

i=1[TG ]i ,σ(i) and (−1)r(σ)
�n

i=1[TG ]i ,r(σ)(i)
(−1)σ = (−1)r(σ) ⇐ cycles of same size

n�

i=1

[TG ]i,σ(i) =
n�

i=1

xi,σ(i) = −
n�

i=1

[TG ]i,r(σ)(i)

These two terms cancel!

Since r(r(σ)) = σ, all such terms cancel!
Is there a term that does not cancel? (have to show that
det(TG ) �≡ 0)
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Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG ) �= 0.

Is there a term that does not cancel? (have to show that
det(TG ) �≡ 0)
If TG has a matching, say, {1, 2}, {3, 4}, . . . , {2n − 1, 2n}, then take
permutation σ = (1 2)(3 4) · · · (2n − 1 2n)

(−1)σ
n�

i=1

[TG ]i ,σ(i) = (−1)n
n�

i=1

−x2iσ(i) =
n�

i=1

x2iσ(i).
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Where are my parallel algorithms?

We have seen randomized algorithms for bipartite and non-bipartite
matching.

Why did you say parallel algorithms?
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Where are my parallel algorithms?

We have seen randomized algorithms for bipartite and non-bipartite
matching.

Why did you say parallel algorithms?

The algorithms for matching consisted of:

testing whether a certain determinant is non-zero
by evaluating it at a random point
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Where are my parallel algorithms?

We have seen randomized algorithms for bipartite and non-bipartite
matching.

Why did you say parallel algorithms?

The algorithms for matching consisted of:

testing whether a certain determinant is non-zero
by evaluating it at a random point

Ore-Schwartz-Zippel-deMillo-Lipton lemma tells us that this
algorithm succeeds with high probability
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Where are my parallel algorithms?

We have seen randomized algorithms for bipartite and non-bipartite
matching.

Why did you say parallel algorithms?

The algorithms for matching consisted of:

testing whether a certain determinant is non-zero
by evaluating it at a random point

Ore-Schwartz-Zippel-deMillo-Lipton lemma tells us that this
algorithm succeeds with high probability

In lecture 21, we will see that we can

compute the determinant efficiently in parallel
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Isolation Lemma

Often times in parallel computation, when solving a problem with many
possible solutions, it is important to make sure that different processors

are working towards same solution.
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Solution: Implicitly choose a random order on the feasible solutions
and require processors to find solution of lowest rank in this order
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Chi’s notes)
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Isolation Lemma

Often times in parallel computation, when solving a problem with many
possible solutions, it is important to make sure that different processors

are working towards same solution.

Need to single out (i.e. isolate) a specific solution without knowing any
element of the solution space. How to do this?

Solution: Implicitly choose a random order on the feasible solutions
and require processors to find solution of lowest rank in this order

Applications also in distributed computing (breaking deadlocks)!

Can use it to compute minimum weight perfect matching (see Lap
Chi’s notes)

Lemma (Isolation Lemma)

Given a set system over [n] := {1, 2, . . . , n}, if we assign a random weight
function w : [n] → [2n] then the probability that there is a unique
minimum weight set is at least 1/2.
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Lemma (Isolation Lemma)

Given a set system over [n] := {1, 2, . . . , n}, if we assign a random weight
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Isolation lemma

Lemma (Isolation Lemma)

Given a set system over [n] := {1, 2, . . . , n}, if we assign a random weight
function w : [n] → [2n] then the probability that there is a unique
minimum weight set is at least 1/2.

Example for n = 4:

Set system: S1 = {1, 4}, S2 = {2, 3}, S3 = {1, 2, 3}
Random weight function w : [4] → [8] given by
w(1) = 3,w(2) = 5,w(3) = 8,w(4) = 4
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Isolation lemma

Lemma (Isolation Lemma)

Given a set system over [n] := {1, 2, . . . , n}, if we assign a random weight
function w : [n] → [2n] then the probability that there is a unique
minimum weight set is at least 1/2.

Example for n = 4:

Set system: S1 = {1, 4}, S2 = {2, 3}, S3 = {1, 2, 3}
Random weight function w : [4] → [8] given by
w(1) = 3,w(2) = 5,w(3) = 8,w(4) = 4
Random weight function w � : [4] → [8] given by
w �(1) = 5,w �(2) = 1,w �(3) = 7,w �(4) = 3

Remark

The isolation lemma could be quite counter-intuitive. A set system can
have Ω(2n) sets. On average, there are Ω(2n/(2n2)) sets of a given
weight, as max weight is ≤ 2n2. Isolation lemma tells us that with high
probability there is only one set of minimum weight.
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Proof of Isolation lemma
1 Let S be our set system and v ∈ [n].
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2 Let Sv family of sets from S which contain v , and Nv the family of
sets from S which do not contain v
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Proof of Isolation lemma
1 Let S be our set system and v ∈ [n].

2 Let Sv family of sets from S which contain v , and Nv the family of
sets from S which do not contain v

3 Let
αv := min

A∈Nv

w(A)− min
B∈Sv

w(B \ {v})
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2 Let Sv family of sets from S which contain v , and Nv the family of
sets from S which do not contain v

3 Let
αv := min

A∈Nv

w(A)− min
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w(B \ {v})

4 αv < w(v) ⇒ v does not belong to any minimum weight set
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5 αv > w(v) ⇒ v belongs to every minimum weight set
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6 αv = w(v) ⇒ v is ambiguous
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1 Let S be our set system and v ∈ [n].

2 Let Sv family of sets from S which contain v , and Nv the family of
sets from S which do not contain v

3 Let
αv := min

A∈Nv

w(A)− min
B∈Sv

w(B \ {v})

4 αv < w(v) ⇒ v does not belong to any minimum weight set

5 αv > w(v) ⇒ v belongs to every minimum weight set

6 αv = w(v) ⇒ v is ambiguous

7 αv is independent of w(v), and w(v) chosen uniformly at random
from [2n].
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Proof of Isolation lemma

3 Let
αv := min

A∈Nv

w(A)− min
B∈Sv

w(B \ {v})

4 αv < w(v) ⇒ v does not belong to any minimum weight set

5 αv > w(v) ⇒ v belongs to every minimum weight set
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8 Pr[v ambiguous] ≤ 1/2n ⇒union bound Pr[∃ ambiguous element] ≤ 1/2
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Proof of Isolation lemma

3 Let
αv := min

A∈Nv

w(A)− min
B∈Sv

w(B \ {v})

4 αv < w(v) ⇒ v does not belong to any minimum weight set

5 αv > w(v) ⇒ v belongs to every minimum weight set

6 αv = w(v) ⇒ v is ambiguous

7 αv is independent of w(v), and w(v) chosen uniformly at random
from [2n].

8 Pr[v ambiguous] ≤ 1/2n ⇒union bound Pr[∃ ambiguous element] ≤ 1/2

9 If two different sets A,B have minimum weight, then any element in
AΔB must be ambiguous.
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Proof of Isolation lemma

3 Let
αv := min

A∈Nv

w(A)− min
B∈Sv

w(B \ {v})

4 αv < w(v) ⇒ v does not belong to any minimum weight set

5 αv > w(v) ⇒ v belongs to every minimum weight set

6 αv = w(v) ⇒ v is ambiguous

7 αv is independent of w(v), and w(v) chosen uniformly at random
from [2n].

8 Pr[v ambiguous] ≤ 1/2n ⇒union bound Pr[∃ ambiguous element] ≤ 1/2

9 If two different sets A,B have minimum weight, then any element in
AΔB must be ambiguous.

10 Probability that this happens is ≤ 1/2. (step 8)
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Remarks

It is hard to overstate the importance of algebraic techniques in computing.
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Remarks

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

Interactive proof systems

Efficient proof/program verification (PCP - a bit in lecture 16)

Applications in hardness of approximation!
Applications in blockchain (Zcash for instance)
Zero Knowledge proofs (lecture 24)

Cryptography

Coding theory

many more...

Derandomizing (i.e., obtaining deterministic algorithms) for some of these
settings (whenever possible) is major open problem in computer science.
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Potential Final Projects

Can we derandomize the perfect matching algorithms from class?

A lot of progress has been made in the past couple years on this
question in the works [Fenner, Gurjar & Thierauf 2019] and
subsequently [Svensson & Tarnawski 2017]

Survey of the above, or understanding these papers is a great final
project!
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Lecture based largely on:

Lap Chi’s notes
[Motwani & Raghavan 2007, Chapter 7]
[Korte & Vygen 2012, Chapter 10].

See Lap Chi’s notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L07.pdf
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