
Lecture 10: Algebraic Techniques
Fingerprinting, Verifying Polynomial Identities, Parallel

Algorithms for Matching Problems

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

October 19, 2020

1 / 124

Overview

Introduction
Why Algebraic Techniques in computer science?
Fingerprinting: String equality verification

Main Problems
Polynomial Identity Testing
Randomized Matching Algorithms
Isolation Lemma

Remarks

Acknowledgements

2 / 124

Why use algebraic techniques in Computer Science?

It is hard to overstate the importance of algebraic techniques in computing.

3 / 124

Why use algebraic techniques in Computer Science?

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

4 / 124

Why use algebraic techniques in Computer Science?

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

5 / 124

Why use algebraic techniques in Computer Science?

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

Interactive proof systems

6 / 124

Why use algebraic techniques in Computer Science?

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

Interactive proof systems

Efficient proof/program verification (PCP - a bit in lecture 16)

Applications in hardness of approximation!
Applications in blockchain (Zcash for instance)
Zero Knowledge proofs (lecture 24)

7 / 124

Why use algebraic techniques in Computer Science?

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

Interactive proof systems

Efficient proof/program verification (PCP - a bit in lecture 16)

Applications in hardness of approximation!
Applications in blockchain (Zcash for instance)
Zero Knowledge proofs (lecture 24)

Cryptography

8 / 124

Why use algebraic techniques in Computer Science?

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

Interactive proof systems

Efficient proof/program verification (PCP - a bit in lecture 16)

Applications in hardness of approximation!
Applications in blockchain (Zcash for instance)
Zero Knowledge proofs (lecture 24)

Cryptography

Coding theory

9 / 124

Why use algebraic techniques in Computer Science?

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

Interactive proof systems

Efficient proof/program verification (PCP - a bit in lecture 16)

Applications in hardness of approximation!
Applications in blockchain (Zcash for instance)
Zero Knowledge proofs (lecture 24)

Cryptography

Coding theory

many more...

10 / 124

Verifying String Equality

Suppose Alice and Bob each maintain the same large database of
information.1 They would like to check if their databases are consistent.

1Think of each of them being a server of a company that deals with massive data.
11 / 124

Verifying String Equality

Suppose Alice and Bob each maintain the same large database of
information.1 They would like to check if their databases are consistent.

Transmission of all data is expensive (communication complexity
setting)

1Think of each of them being a server of a company that deals with massive data.
12 / 124

Verifying String Equality

Suppose Alice and Bob each maintain the same large database of
information.1 They would like to check if their databases are consistent.

Transmission of all data is expensive (communication complexity
setting)

Sending the entire database not feasible

1Think of each of them being a server of a company that deals with massive data.
13 / 124

Verifying String Equality

Suppose Alice and Bob each maintain the same large database of
information.1 They would like to check if their databases are consistent.

Transmission of all data is expensive (communication complexity
setting)

Sending the entire database not feasible

Say Alice’s version of database given by bits (a1, . . . , an) and Bob’s
version is (b1, . . . , bn)

1Think of each of them being a server of a company that deals with massive data.
14 / 124

Verifying String Equality

Suppose Alice and Bob each maintain the same large database of
information.1 They would like to check if their databases are consistent.

Transmission of all data is expensive (communication complexity
setting)

Sending the entire database not feasible

Say Alice’s version of database given by bits (a1, . . . , an) and Bob’s
version is (b1, . . . , bn)

Deterministic consistency check requires Alice and Bob to
communicate n bits (otherwise adversary would know how to change
database to make check fail)

1Think of each of them being a server of a company that deals with massive data.
15 / 124

Verifying String Equality

Suppose Alice and Bob each maintain the same large database of
information.1 They would like to check if their databases are consistent.

Transmission of all data is expensive (communication complexity
setting)

Sending the entire database not feasible

Say Alice’s version of database given by bits (a1, . . . , an) and Bob’s
version is (b1, . . . , bn)

Deterministic consistency check requires Alice and Bob to
communicate n bits (otherwise adversary would know how to change
database to make check fail)

Fingerprinting for the rescue!

1Think of each of them being a server of a company that deals with massive data.
16 / 124

Verifying String Equality

Suppose Alice and Bob each maintain the same large database of
information.1 They would like to check if their databases are consistent.

Transmission of all data is expensive (communication complexity
setting)

Sending the entire database not feasible

Say Alice’s version of database given by bits (a1, . . . , an) and Bob’s
version is (b1, . . . , bn)

Deterministic consistency check requires Alice and Bob to
communicate n bits (otherwise adversary would know how to change
database to make check fail)

Fingerprinting for the rescue!

Communication complexity setting, randomized algorithms, need to work
with high probability.

1Think of each of them being a server of a company that deals with massive data.
17 / 124

Verifying string equality

Want to check whether strings (a1, . . . , an) and (b1, . . . , bn) equal.

18 / 124

Verifying string equality

Want to check whether strings (a1, . . . , an) and (b1, . . . , bn) equal.

Fingerprinting mechanism:

19 / 124

Verifying string equality

Want to check whether strings (a1, . . . , an) and (b1, . . . , bn) equal.

Fingerprinting mechanism:

1 Let a =
�n

i=1 ai · 2i−1 and b =
�n

i=1 bi · 2i−1

20 / 124

Verifying string equality

Want to check whether strings (a1, . . . , an) and (b1, . . . , bn) equal.

Fingerprinting mechanism:

1 Let a =
�n

i=1 ai · 2i−1 and b =
�n

i=1 bi · 2i−1

2 Let Fp(x) = x mod p be a fingerprinting function, for a prime p

21 / 124

Verifying string equality

Want to check whether strings (a1, . . . , an) and (b1, . . . , bn) equal.

Fingerprinting mechanism:

1 Let a =
�n

i=1 ai · 2i−1 and b =
�n

i=1 bi · 2i−1

2 Let Fp(x) = x mod p be a fingerprinting function, for a prime p
3 Protocol:

22 / 124

Verifying string equality

Want to check whether strings (a1, . . . , an) and (b1, . . . , bn) equal.

Fingerprinting mechanism:

1 Let a =
�n

i=1 ai · 2i−1 and b =
�n

i=1 bi · 2i−1

2 Let Fp(x) = x mod p be a fingerprinting function, for a prime p
3 Protocol:

1 Alice picks a random prime p and sends (p,Fp(a)) to Bob

23 / 124

Verifying string equality

Want to check whether strings (a1, . . . , an) and (b1, . . . , bn) equal.

Fingerprinting mechanism:

1 Let a =
�n

i=1 ai · 2i−1 and b =
�n

i=1 bi · 2i−1

2 Let Fp(x) = x mod p be a fingerprinting function, for a prime p
3 Protocol:

1 Alice picks a random prime p and sends (p,Fp(a)) to Bob
2 Bob checks whether Fp(a) ≡ Fp(b) mod p, sends

�
1, if the values are equal

0, otherwise

24 / 124

Verifying string equality

Want to check whether strings (a1, . . . , an) and (b1, . . . , bn) equal.

Fingerprinting mechanism:

1 Let a =
�n

i=1 ai · 2i−1 and b =
�n

i=1 bi · 2i−1

2 Let Fp(x) = x mod p be a fingerprinting function, for a prime p
3 Protocol:

1 Alice picks a random prime p and sends (p,Fp(a)) to Bob
2 Bob checks whether Fp(a) ≡ Fp(b) mod p, sends

�
1, if the values are equal

0, otherwise

Total bits communicated: O(log p) bits (dominated by Alice’s
message)

25 / 124

Verifying string equality

Want to check whether strings (a1, . . . , an) and (b1, . . . , bn) equal.

Fingerprinting mechanism:

1 Let a =
�n

i=1 ai · 2i−1 and b =
�n

i=1 bi · 2i−1

2 Let Fp(x) = x mod p be a fingerprinting function, for a prime p
3 Protocol:

1 Alice picks a random prime p and sends (p,Fp(a)) to Bob
2 Bob checks whether Fp(a) ≡ Fp(b) mod p, sends

�
1, if the values are equal

0, otherwise

Total bits communicated: O(log p) bits (dominated by Alice’s
message)

if (a1, . . . , an) = (b1, . . . , bn) then protocol always right

26 / 124

Verifying string equality

Want to check whether strings (a1, . . . , an) and (b1, . . . , bn) equal.

Fingerprinting mechanism:

1 Let a =
�n

i=1 ai · 2i−1 and b =
�n

i=1 bi · 2i−1

2 Let Fp(x) = x mod p be a fingerprinting function, for a prime p
3 Protocol:

1 Alice picks a random prime p and sends (p,Fp(a)) to Bob
2 Bob checks whether Fp(a) ≡ Fp(b) mod p, sends

�
1, if the values are equal

0, otherwise

Total bits communicated: O(log p) bits (dominated by Alice’s
message)

if (a1, . . . , an) = (b1, . . . , bn) then protocol always right

what happens when they are different?
27 / 124

Verifying string equality
If (a1, . . . , an) = (b1, . . . , bn), then a �= b.

28 / 124

Verifying string equality
If (a1, . . . , an) = (b1, . . . , bn), then a �= b.

For how many primes can Fp(a) ≡ Fp(b)? (i.e., protocol will fail)

29 / 124

Verifying string equality
If (a1, . . . , an) = (b1, . . . , bn), then a �= b.

For how many primes can Fp(a) ≡ Fp(b)? (i.e., protocol will fail)

If a number M is in {−2n, . . . , 2n}, then number of distinct primes
p | M is < n.

30 / 124

Verifying string equality
If (a1, . . . , an) = (b1, . . . , bn), then a �= b.

For how many primes can Fp(a) ≡ Fp(b)? (i.e., protocol will fail)

If a number M is in {−2n, . . . , 2n}, then number of distinct primes
p | M is < n.

1 Each prime divisor of M is ≥ 2, so if M has t distinct prime divisors,
then |M| > 2t

31 / 124

Verifying string equality
If (a1, . . . , an) = (b1, . . . , bn), then a �= b.

For how many primes can Fp(a) ≡ Fp(b)? (i.e., protocol will fail)

If a number M is in {−2n, . . . , 2n}, then number of distinct primes
p | M is < n.

1 Each prime divisor of M is ≥ 2, so if M has t distinct prime divisors,
then |M| > 2t

2 |M| ≤ 2n ⇒ t ≤ n

32 / 124

Verifying string equality
If (a1, . . . , an) = (b1, . . . , bn), then a �= b.

For how many primes can Fp(a) ≡ Fp(b)? (i.e., protocol will fail)

If a number M is in {−2n, . . . , 2n}, then number of distinct primes
p | M is < n.

1 Each prime divisor of M is ≥ 2, so if M has t distinct prime divisors,
then |M| > 2t

2 |M| ≤ 2n ⇒ t ≤ n

Fp(a) ≡ Fp(b) if, and only if, p | a− b.

33 / 124

Verifying string equality
If (a1, . . . , an) = (b1, . . . , bn), then a �= b.

For how many primes can Fp(a) ≡ Fp(b)? (i.e., protocol will fail)

If a number M is in {−2n, . . . , 2n}, then number of distinct primes
p | M is < n.

1 Each prime divisor of M is ≥ 2, so if M has t distinct prime divisors,
then |M| > 2t

2 |M| ≤ 2n ⇒ t ≤ n

Fp(a) ≡ Fp(b) if, and only if, p | a− b.

Thus, protocol fails for at most n choices of p

34 / 124

Verifying string equality
If (a1, . . . , an) = (b1, . . . , bn), then a �= b.

For how many primes can Fp(a) ≡ Fp(b)? (i.e., protocol will fail)

If a number M is in {−2n, . . . , 2n}, then number of distinct primes
p | M is < n.

1 Each prime divisor of M is ≥ 2, so if M has t distinct prime divisors,
then |M| > 2t

2 |M| ≤ 2n ⇒ t ≤ n

Fp(a) ≡ Fp(b) if, and only if, p | a− b.

Thus, protocol fails for at most n choices of p

Prime number theorem: there are m/ logm primes among first m
positive integers

35 / 124

Verifying string equality
If (a1, . . . , an) = (b1, . . . , bn), then a �= b.

For how many primes can Fp(a) ≡ Fp(b)? (i.e., protocol will fail)

If a number M is in {−2n, . . . , 2n}, then number of distinct primes
p | M is < n.

1 Each prime divisor of M is ≥ 2, so if M has t distinct prime divisors,
then |M| > 2t

2 |M| ≤ 2n ⇒ t ≤ n

Fp(a) ≡ Fp(b) if, and only if, p | a− b.

Thus, protocol fails for at most n choices of p

Prime number theorem: there are m/ logm primes among first m
positive integers

Choosing p among the first tn log(tn) primes we have that

Pr[Fp(a) �≡ Fp(b)] ≤
n

tn log tn/ log(tn log tn)
= Õ(1/t)

36 / 124

Verifying string equality
If (a1, . . . , an) = (b1, . . . , bn), then a �= b.

For how many primes can Fp(a) ≡ Fp(b)? (i.e., protocol will fail)

If a number M is in {−2n, . . . , 2n}, then number of distinct primes
p | M is < n.

1 Each prime divisor of M is ≥ 2, so if M has t distinct prime divisors,
then |M| > 2t

2 |M| ≤ 2n ⇒ t ≤ n

Fp(a) ≡ Fp(b) if, and only if, p | a− b.

Thus, protocol fails for at most n choices of p

Prime number theorem: there are m/ logm primes among first m
positive integers

Choosing p among the first tn log(tn) primes we have that

Pr[Fp(a) �≡ Fp(b)] ≤
n

tn log tn/ log(tn log tn)
= Õ(1/t)

Number of bits sent is O(log t + log n). Choosing t = n solves it.

37 / 124

Introduction
Why Algebraic Techniques in computer science?
Fingerprinting: String equality verification

Main Problems
Polynomial Identity Testing
Randomized Matching Algorithms
Isolation Lemma

Remarks

Acknowledgements

38 / 124

Polynomial Identity Testing
Technique for string equality testing can be generalized to following
setting:

39 / 124

Polynomial Identity Testing
Technique for string equality testing can be generalized to following
setting:

Input: “Given” two polynomials P(x),Q(x), are they equal?

Two polynomials are equal ⇔ all their coefficients are equal

40 / 124

Polynomial Identity Testing
Technique for string equality testing can be generalized to following
setting:

Input: “Given” two polynomials P(x),Q(x), are they equal?

Two polynomials are equal ⇔ all their coefficients are equal
So why not just compare their coefficients?

41 / 124

Polynomial Identity Testing
Technique for string equality testing can be generalized to following
setting:

Input: “Given” two polynomials P(x),Q(x), are they equal?

Two polynomials are equal ⇔ all their coefficients are equal
So why not just compare their coefficients?

1 Sometimes polynomials are given implicitly (i.e., not by their list of
coefficients)

42 / 124

Polynomial Identity Testing
Technique for string equality testing can be generalized to following
setting:

Input: “Given” two polynomials P(x),Q(x), are they equal?

Two polynomials are equal ⇔ all their coefficients are equal
So why not just compare their coefficients?

1 Sometimes polynomials are given implicitly (i.e., not by their list of
coefficients)

2 P1(x),P2(x),P3(x), test whether: P1(x) · P2(x) = P3(x)?

43 / 124

Polynomial Identity Testing
Technique for string equality testing can be generalized to following
setting:

Input: “Given” two polynomials P(x),Q(x), are they equal?

Two polynomials are equal ⇔ all their coefficients are equal
So why not just compare their coefficients?

1 Sometimes polynomials are given implicitly (i.e., not by their list of
coefficients)

2 P1(x),P2(x),P3(x), test whether: P1(x) · P2(x) = P3(x)?
3 If P1,P2 have degree ≤ n, then deg(P3) ≤ 2n (otherwise problem is

trivial)

44 / 124

Polynomial Identity Testing
Technique for string equality testing can be generalized to following
setting:

Input: “Given” two polynomials P(x),Q(x), are they equal?

Two polynomials are equal ⇔ all their coefficients are equal
So why not just compare their coefficients?

1 Sometimes polynomials are given implicitly (i.e., not by their list of
coefficients)

2 P1(x),P2(x),P3(x), test whether: P1(x) · P2(x) = P3(x)?
3 If P1,P2 have degree ≤ n, then deg(P3) ≤ 2n (otherwise problem is

trivial)

Multiplication of two polynomials of degree n: O(n log n) by FFT

45 / 124

Polynomial Identity Testing
Technique for string equality testing can be generalized to following
setting:

Input: “Given” two polynomials P(x),Q(x), are they equal?

Two polynomials are equal ⇔ all their coefficients are equal
So why not just compare their coefficients?

1 Sometimes polynomials are given implicitly (i.e., not by their list of
coefficients)

2 P1(x),P2(x),P3(x), test whether: P1(x) · P2(x) = P3(x)?
3 If P1,P2 have degree ≤ n, then deg(P3) ≤ 2n (otherwise problem is

trivial)

Multiplication of two polynomials of degree n: O(n log n) by FFT

Polynomial evaluation: O(n)

46 / 124

Polynomial Identity Testing
Technique for string equality testing can be generalized to following
setting:

Input: “Given” two polynomials P(x),Q(x), are they equal?

Two polynomials are equal ⇔ all their coefficients are equal
So why not just compare their coefficients?

1 Sometimes polynomials are given implicitly (i.e., not by their list of
coefficients)

2 P1(x),P2(x),P3(x), test whether: P1(x) · P2(x) = P3(x)?
3 If P1,P2 have degree ≤ n, then deg(P3) ≤ 2n (otherwise problem is

trivial)

Multiplication of two polynomials of degree n: O(n log n) by FFT

Polynomial evaluation: O(n)

Can we check whether P1(x) · P2(x) = P3(x) in O(n) time?

47 / 124

Polynomial Identity Testing
Technique for string equality testing can be generalized to following
setting:

Input: “Given” two polynomials P(x),Q(x), are they equal?

Two polynomials are equal ⇔ all their coefficients are equal
So why not just compare their coefficients?

1 Sometimes polynomials are given implicitly (i.e., not by their list of
coefficients)

2 P1(x),P2(x),P3(x), test whether: P1(x) · P2(x) = P3(x)?
3 If P1,P2 have degree ≤ n, then deg(P3) ≤ 2n (otherwise problem is

trivial)

Multiplication of two polynomials of degree n: O(n log n) by FFT

Polynomial evaluation: O(n)

Can we check whether P1(x) · P2(x) = P3(x) in O(n) time?

Lemma (Roots of Univariate Polynomials)

Let F be a field and P(x) ∈ F[x] be a nonzero univariate polynomial of
degree d. Then P(x) has at most d roots in F.

48 / 124

Polynomial Identity Testing

Lemma (Roots of Univariate Polynomials)

Let F be a field and P(x) ∈ F[x] be a nonzero univariate polynomial of
degree d. Then P(x) has at most d roots in F.

49 / 124

Polynomial Identity Testing

Lemma (Roots of Univariate Polynomials)

Let F be a field and P(x) ∈ F[x] be a nonzero univariate polynomial of
degree d. Then P(x) has at most d roots in F.

Let Q(x) = P3(x)− P1(x) · P2(x). It had degree ≤ 2n

50 / 124

Polynomial Identity Testing

Lemma (Roots of Univariate Polynomials)

Let F be a field and P(x) ∈ F[x] be a nonzero univariate polynomial of
degree d. Then P(x) has at most d roots in F.

Let Q(x) = P3(x)− P1(x) · P2(x). It had degree ≤ 2n

By lemma, if Q �= 0 then Q(a) = 0 for at most 2n values in F.

51 / 124

Polynomial Identity Testing

Lemma (Roots of Univariate Polynomials)

Let F be a field and P(x) ∈ F[x] be a nonzero univariate polynomial of
degree d. Then P(x) has at most d roots in F.

Let Q(x) = P3(x)− P1(x) · P2(x). It had degree ≤ 2n

By lemma, if Q �= 0 then Q(a) = 0 for at most 2n values in F.
Take a set S ⊆ F of size 4n. Let a ∈ S chosen randomly.

52 / 124

Polynomial Identity Testing

Lemma (Roots of Univariate Polynomials)

Let F be a field and P(x) ∈ F[x] be a nonzero univariate polynomial of
degree d. Then P(x) has at most d roots in F.

Let Q(x) = P3(x)− P1(x) · P2(x). It had degree ≤ 2n

By lemma, if Q �= 0 then Q(a) = 0 for at most 2n values in F.
Take a set S ⊆ F of size 4n. Let a ∈ S chosen randomly.

Compute Q(a) by computing P1(a),P2(a),P3(a) and then
P3(a)− P1(a) · P2(a)

53 / 124

Polynomial Identity Testing

Lemma (Roots of Univariate Polynomials)

Let F be a field and P(x) ∈ F[x] be a nonzero univariate polynomial of
degree d. Then P(x) has at most d roots in F.

Let Q(x) = P3(x)− P1(x) · P2(x). It had degree ≤ 2n

By lemma, if Q �= 0 then Q(a) = 0 for at most 2n values in F.
Take a set S ⊆ F of size 4n. Let a ∈ S chosen randomly.

Compute Q(a) by computing P1(a),P2(a),P3(a) and then
P3(a)− P1(a) · P2(a)

Probability Q(a) = 0 (i.e., we failed to identify non-zero)

≤ deg(Q)

|S | ≤ 2n

4n
= 1/2.

54 / 124

Polynomial Identity Testing

Lemma (Roots of Univariate Polynomials)

Let F be a field and P(x) ∈ F[x] be a nonzero univariate polynomial of
degree d. Then P(x) has at most d roots in F.

Let Q(x) = P3(x)− P1(x) · P2(x). It had degree ≤ 2n

By lemma, if Q �= 0 then Q(a) = 0 for at most 2n values in F.
Take a set S ⊆ F of size 4n. Let a ∈ S chosen randomly.

Compute Q(a) by computing P1(a),P2(a),P3(a) and then
P3(a)− P1(a) · P2(a)

Probability Q(a) = 0 (i.e., we failed to identify non-zero)

≤ deg(Q)

|S | ≤ 2n

4n
= 1/2.

Can amplify probability by running multiple times or by choosing
larger set S .

55 / 124

Polynomial Identity Testing

Lemma (Ore-Schwartz-Zippel-de Millo-Lipton lemma)

Let F be a field and P(x1, . . . , xn) ∈ F[x1, . . . , xn] be a nonzero polynomial
of degree ≤ d. Then for any set S ⊆ F, we have:

Pr[P(a1, . . . , an) = 0 | ai ∈ S] ≤ d

|S |

56 / 124

Polynomial Identity Testing

Lemma (Ore-Schwartz-Zippel-de Millo-Lipton lemma)

Let F be a field and P(x1, . . . , xn) ∈ F[x1, . . . , xn] be a nonzero polynomial
of degree ≤ d. Then for any set S ⊆ F, we have:

Pr[P(a1, . . . , an) = 0 | ai ∈ S] ≤ d

|S |

Proof by induction in number of variables.

57 / 124

Introduction
Why Algebraic Techniques in computer science?
Fingerprinting: String equality verification

Main Problems
Polynomial Identity Testing
Randomized Matching Algorithms
Isolation Lemma

Remarks

Acknowledgements

58 / 124

Bipartite Matching
Input: bipartite graph G (L,R ,E) with |L| = |R | = n

Output: does G have a perfect matching?

2First proved by Edmonds.
59 / 124

Bipartite Matching
Input: bipartite graph G (L,R ,E) with |L| = |R | = n

Output: does G have a perfect matching?

2First proved by Edmonds.
60 / 124

Bipartite Matching
Input: bipartite graph G (L,R ,E) with |L| = |R | = n

Output: does G have a perfect matching?

Let X ∈ Fn×n be such that

Xi ,j =

�
yi ,j , if there is edge between (i , j) ∈ L× R

0, otherwise

2First proved by Edmonds.
61 / 124

Bipartite Matching
Input: bipartite graph G (L,R ,E) with |L| = |R | = n

Output: does G have a perfect matching?

Let X ∈ Fn×n be such that

Xi ,j =

�
yi ,j , if there is edge between (i , j) ∈ L× R

0, otherwise

det(X) =
�

σ∈Sn
(−1)σ

n�

i=1

Xiσ(i)

2First proved by Edmonds.
62 / 124

Bipartite Matching
Input: bipartite graph G (L,R ,E) with |L| = |R | = n

Output: does G have a perfect matching?

Let X ∈ Fn×n be such that

Xi ,j =

�
yi ,j , if there is edge between (i , j) ∈ L× R

0, otherwise

det(X) =
�

σ∈Sn
(−1)σ

n�

i=1

Xiσ(i)

G has perfect matching ⇔ det(X) is a non-zero polynomial!2

2First proved by Edmonds.
63 / 124

Bipartite Matching
Input: bipartite graph G (L,R ,E) with |L| = |R | = n

Output: does G have a perfect matching?

Let X ∈ Fn×n be such that

Xi ,j =

�
yi ,j , if there is edge between (i , j) ∈ L× R

0, otherwise

det(X) =
�

σ∈Sn
(−1)σ

n�

i=1

Xiσ(i)

G has perfect matching ⇔ det(X) is a non-zero polynomial!2

Testing if G has a perfect matching is a special case of Polynomial
Identity Testing!

2First proved by Edmonds.
64 / 124

Bipartite Matching
Input: bipartite graph G (L,R ,E) with |L| = |R | = n

Output: does G have a perfect matching?

Let X ∈ Fn×n be such that

Xi ,j =

�
yi ,j , if there is edge between (i , j) ∈ L× R

0, otherwise

det(X) =
�

σ∈Sn
(−1)σ

n�

i=1

Xiσ(i)

G has perfect matching ⇔ det(X) is a non-zero polynomial!2

Testing if G has a perfect matching is a special case of Polynomial
Identity Testing!

Algorithm: evaluate det(X) at a random value for the variables yi ,j .

2First proved by Edmonds.
65 / 124

General Matching

Ok, bipartite matching is easy (we know many algorithms for it...)
what about the general case?

66 / 124

General Matching

Ok, bipartite matching is easy (we know many algorithms for it...)
what about the general case?

Input: (undirected) graph G (V ,E) where |V | = 2n.

Output: does G have a perfect matching?

67 / 124

General Matching

Ok, bipartite matching is easy (we know many algorithms for it...)
what about the general case?

Input: (undirected) graph G (V ,E) where |V | = 2n.

Output: does G have a perfect matching?

Tutte Matrix: TG is the following 2n × 2n matrix: let F be an
arbitrary orientation of edges in E . Then,

[TG]i ,j =





xi ,j if (i , j) ∈ F

−xi ,j if (j , i) ∈ F

0 otherwise

68 / 124

General Matching

Ok, bipartite matching is easy (we know many algorithms for it...)
what about the general case?

Input: (undirected) graph G (V ,E) where |V | = 2n.

Output: does G have a perfect matching?

Tutte Matrix: TG is the following 2n × 2n matrix: let F be an
arbitrary orientation of edges in E . Then,

[TG]i ,j =





xi ,j if (i , j) ∈ F

−xi ,j if (j , i) ∈ F

0 otherwise

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG) �= 0.

69 / 124

Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG) �= 0.

70 / 124

Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG) �= 0.

det(TG) =
�

σ∈Sn
(−1)σ

n�

i=1

[TG]i ,σ(i)

71 / 124

Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG) �= 0.

det(TG) =
�

σ∈Sn
(−1)σ

n�

i=1

[TG]i ,σ(i)

Each permutation σ ∈ Sn that yields non-zero term corresponds to a
(directed) subgraph of G Hσ(V ,Fσ), where Fσ = {(i ,σ(i)}ni=1.

72 / 124

Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG) �= 0.

det(TG) =
�

σ∈Sn
(−1)σ

n�

i=1

[TG]i ,σ(i)

Each permutation σ ∈ Sn that yields non-zero term corresponds to a
(directed) subgraph of G Hσ(V ,Fσ), where Fσ = {(i ,σ(i)}ni=1.

Each vertex in Hσ has |δout(i)| = |δin(i)| = 1.

73 / 124

Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG) �= 0.

Each permutation σ ∈ Sn that yields non-zero term corresponds to a
(directed) subgraph of G Hσ(V ,Fσ), where Fσ = {(i ,σ(i)}ni=1.

If σ only has even cycles, then Hσ gives us a perfect matching (by
taking every other edge of the graph Hσ, ignoring orientation)

74 / 124

Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG) �= 0.

Each permutation σ ∈ Sn that yields non-zero term corresponds to a
(directed) subgraph of G Hσ(V ,Fσ), where Fσ = {(i ,σ(i)}ni=1.

Otherwise, for each σ ∈ Sn (that has odd cycle), there is another
permutation r(σ) ∈ Sn that is obtained by reversing odd cycle of Hσ

containing vertex with minimum index.

75 / 124

Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG) �= 0.

76 / 124

Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG) �= 0.

Comparing (−1)σ
�n

i=1[TG]i ,σ(i) and (−1)r(σ)
�n

i=1[TG]i ,r(σ)(i)

77 / 124

Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG) �= 0.

Comparing (−1)σ
�n

i=1[TG]i ,σ(i) and (−1)r(σ)
�n

i=1[TG]i ,r(σ)(i)
(−1)σ = (−1)r(σ) ⇐ cycles of same size

78 / 124

Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG) �= 0.

Comparing (−1)σ
�n

i=1[TG]i ,σ(i) and (−1)r(σ)
�n

i=1[TG]i ,r(σ)(i)
(−1)σ = (−1)r(σ) ⇐ cycles of same size

n�

i=1

[TG]i,σ(i) =
n�

i=1

xi,σ(i) = −
n�

i=1

[TG]i,r(σ)(i)

79 / 124

Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG) �= 0.

Comparing (−1)σ
�n

i=1[TG]i ,σ(i) and (−1)r(σ)
�n

i=1[TG]i ,r(σ)(i)
(−1)σ = (−1)r(σ) ⇐ cycles of same size

n�

i=1

[TG]i,σ(i) =
n�

i=1

xi,σ(i) = −
n�

i=1

[TG]i,r(σ)(i)

These two terms cancel!

80 / 124

Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG) �= 0.

Comparing (−1)σ
�n

i=1[TG]i ,σ(i) and (−1)r(σ)
�n

i=1[TG]i ,r(σ)(i)
(−1)σ = (−1)r(σ) ⇐ cycles of same size

n�

i=1

[TG]i,σ(i) =
n�

i=1

xi,σ(i) = −
n�

i=1

[TG]i,r(σ)(i)

These two terms cancel!

Since r(r(σ)) = σ, all such terms cancel!

81 / 124

Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG) �= 0.

Comparing (−1)σ
�n

i=1[TG]i ,σ(i) and (−1)r(σ)
�n

i=1[TG]i ,r(σ)(i)
(−1)σ = (−1)r(σ) ⇐ cycles of same size

n�

i=1

[TG]i,σ(i) =
n�

i=1

xi,σ(i) = −
n�

i=1

[TG]i,r(σ)(i)

These two terms cancel!

Since r(r(σ)) = σ, all such terms cancel!
Is there a term that does not cancel? (have to show that
det(TG) �≡ 0)

82 / 124

Proof of Tutte’s Theorem

Theorem (Tutte 1947)

G has a perfect matching ⇔ det(TG) �= 0.

Is there a term that does not cancel? (have to show that
det(TG) �≡ 0)
If TG has a matching, say, {1, 2}, {3, 4}, . . . , {2n − 1, 2n}, then take
permutation σ = (1 2)(3 4) · · · (2n − 1 2n)

(−1)σ
n�

i=1

[TG]i ,σ(i) = (−1)n
n�

i=1

−x2iσ(i) =
n�

i=1

x2iσ(i).

83 / 124

Where are my parallel algorithms?

We have seen randomized algorithms for bipartite and non-bipartite
matching.

Why did you say parallel algorithms?

84 / 124

Where are my parallel algorithms?

We have seen randomized algorithms for bipartite and non-bipartite
matching.

Why did you say parallel algorithms?

The algorithms for matching consisted of:

testing whether a certain determinant is non-zero
by evaluating it at a random point

85 / 124

Where are my parallel algorithms?

We have seen randomized algorithms for bipartite and non-bipartite
matching.

Why did you say parallel algorithms?

The algorithms for matching consisted of:

testing whether a certain determinant is non-zero
by evaluating it at a random point

Ore-Schwartz-Zippel-deMillo-Lipton lemma tells us that this
algorithm succeeds with high probability

86 / 124

Where are my parallel algorithms?

We have seen randomized algorithms for bipartite and non-bipartite
matching.

Why did you say parallel algorithms?

The algorithms for matching consisted of:

testing whether a certain determinant is non-zero
by evaluating it at a random point

Ore-Schwartz-Zippel-deMillo-Lipton lemma tells us that this
algorithm succeeds with high probability

In lecture 21, we will see that we can

compute the determinant efficiently in parallel

87 / 124

Introduction
Why Algebraic Techniques in computer science?
Fingerprinting: String equality verification

Main Problems
Polynomial Identity Testing
Randomized Matching Algorithms
Isolation Lemma

Remarks

Acknowledgements

88 / 124

Isolation Lemma

Often times in parallel computation, when solving a problem with many
possible solutions, it is important to make sure that different processors

are working towards same solution.

89 / 124

Isolation Lemma

Often times in parallel computation, when solving a problem with many
possible solutions, it is important to make sure that different processors

are working towards same solution.

Need to single out (i.e. isolate) a specific solution without knowing any
element of the solution space. How to do this?

90 / 124

Isolation Lemma

Often times in parallel computation, when solving a problem with many
possible solutions, it is important to make sure that different processors

are working towards same solution.

Need to single out (i.e. isolate) a specific solution without knowing any
element of the solution space. How to do this?

Solution: Implicitly choose a random order on the feasible solutions
and require processors to find solution of lowest rank in this order

91 / 124

Isolation Lemma

Often times in parallel computation, when solving a problem with many
possible solutions, it is important to make sure that different processors

are working towards same solution.

Need to single out (i.e. isolate) a specific solution without knowing any
element of the solution space. How to do this?

Solution: Implicitly choose a random order on the feasible solutions
and require processors to find solution of lowest rank in this order

Applications also in distributed computing (breaking deadlocks)!

92 / 124

Isolation Lemma

Often times in parallel computation, when solving a problem with many
possible solutions, it is important to make sure that different processors

are working towards same solution.

Need to single out (i.e. isolate) a specific solution without knowing any
element of the solution space. How to do this?

Solution: Implicitly choose a random order on the feasible solutions
and require processors to find solution of lowest rank in this order

Applications also in distributed computing (breaking deadlocks)!

Can use it to compute minimum weight perfect matching (see Lap
Chi’s notes)

93 / 124

Isolation Lemma

Often times in parallel computation, when solving a problem with many
possible solutions, it is important to make sure that different processors

are working towards same solution.

Need to single out (i.e. isolate) a specific solution without knowing any
element of the solution space. How to do this?

Solution: Implicitly choose a random order on the feasible solutions
and require processors to find solution of lowest rank in this order

Applications also in distributed computing (breaking deadlocks)!

Can use it to compute minimum weight perfect matching (see Lap
Chi’s notes)

Lemma (Isolation Lemma)

Given a set system over [n] := {1, 2, . . . , n}, if we assign a random weight
function w : [n] → [2n] then the probability that there is a unique
minimum weight set is at least 1/2.

94 / 124

Isolation lemma

Lemma (Isolation Lemma)

Given a set system over [n] := {1, 2, . . . , n}, if we assign a random weight
function w : [n] → [2n] then the probability that there is a unique
minimum weight set is at least 1/2.

Example for n = 4:

95 / 124

Isolation lemma

Lemma (Isolation Lemma)

Given a set system over [n] := {1, 2, . . . , n}, if we assign a random weight
function w : [n] → [2n] then the probability that there is a unique
minimum weight set is at least 1/2.

Example for n = 4:

Set system: S1 = {1, 4}, S2 = {2, 3}, S3 = {1, 2, 3}

96 / 124

Isolation lemma

Lemma (Isolation Lemma)

Given a set system over [n] := {1, 2, . . . , n}, if we assign a random weight
function w : [n] → [2n] then the probability that there is a unique
minimum weight set is at least 1/2.

Example for n = 4:

Set system: S1 = {1, 4}, S2 = {2, 3}, S3 = {1, 2, 3}
Random weight function w : [4] → [8] given by
w(1) = 3,w(2) = 5,w(3) = 8,w(4) = 4

97 / 124

Isolation lemma

Lemma (Isolation Lemma)

Given a set system over [n] := {1, 2, . . . , n}, if we assign a random weight
function w : [n] → [2n] then the probability that there is a unique
minimum weight set is at least 1/2.

Example for n = 4:

Set system: S1 = {1, 4}, S2 = {2, 3}, S3 = {1, 2, 3}
Random weight function w : [4] → [8] given by
w(1) = 3,w(2) = 5,w(3) = 8,w(4) = 4
Random weight function w � : [4] → [8] given by
w �(1) = 5,w �(2) = 1,w �(3) = 7,w �(4) = 3

98 / 124

Isolation lemma

Lemma (Isolation Lemma)

Given a set system over [n] := {1, 2, . . . , n}, if we assign a random weight
function w : [n] → [2n] then the probability that there is a unique
minimum weight set is at least 1/2.

Example for n = 4:

Set system: S1 = {1, 4}, S2 = {2, 3}, S3 = {1, 2, 3}
Random weight function w : [4] → [8] given by
w(1) = 3,w(2) = 5,w(3) = 8,w(4) = 4
Random weight function w � : [4] → [8] given by
w �(1) = 5,w �(2) = 1,w �(3) = 7,w �(4) = 3

99 / 124

Isolation lemma

Lemma (Isolation Lemma)

Given a set system over [n] := {1, 2, . . . , n}, if we assign a random weight
function w : [n] → [2n] then the probability that there is a unique
minimum weight set is at least 1/2.

Example for n = 4:

Set system: S1 = {1, 4}, S2 = {2, 3}, S3 = {1, 2, 3}
Random weight function w : [4] → [8] given by
w(1) = 3,w(2) = 5,w(3) = 8,w(4) = 4
Random weight function w � : [4] → [8] given by
w �(1) = 5,w �(2) = 1,w �(3) = 7,w �(4) = 3

Remark

The isolation lemma could be quite counter-intuitive. A set system can
have Ω(2n) sets. On average, there are Ω(2n/(2n2)) sets of a given
weight, as max weight is ≤ 2n2. Isolation lemma tells us that with high
probability there is only one set of minimum weight.

100 / 124

Proof of Isolation lemma
1 Let S be our set system and v ∈ [n].

101 / 124

Proof of Isolation lemma
1 Let S be our set system and v ∈ [n].

2 Let Sv family of sets from S which contain v , and Nv the family of
sets from S which do not contain v

102 / 124

Proof of Isolation lemma
1 Let S be our set system and v ∈ [n].

2 Let Sv family of sets from S which contain v , and Nv the family of
sets from S which do not contain v

3 Let
αv := min

A∈Nv

w(A)− min
B∈Sv

w(B \ {v})

103 / 124

Proof of Isolation lemma
1 Let S be our set system and v ∈ [n].

2 Let Sv family of sets from S which contain v , and Nv the family of
sets from S which do not contain v

3 Let
αv := min

A∈Nv

w(A)− min
B∈Sv

w(B \ {v})

4 αv < w(v) ⇒ v does not belong to any minimum weight set

104 / 124

Proof of Isolation lemma
1 Let S be our set system and v ∈ [n].

2 Let Sv family of sets from S which contain v , and Nv the family of
sets from S which do not contain v

3 Let
αv := min

A∈Nv

w(A)− min
B∈Sv

w(B \ {v})

4 αv < w(v) ⇒ v does not belong to any minimum weight set

5 αv > w(v) ⇒ v belongs to every minimum weight set

105 / 124

Proof of Isolation lemma
1 Let S be our set system and v ∈ [n].

2 Let Sv family of sets from S which contain v , and Nv the family of
sets from S which do not contain v

3 Let
αv := min

A∈Nv

w(A)− min
B∈Sv

w(B \ {v})

4 αv < w(v) ⇒ v does not belong to any minimum weight set

5 αv > w(v) ⇒ v belongs to every minimum weight set

6 αv = w(v) ⇒ v is ambiguous

106 / 124

Proof of Isolation lemma
1 Let S be our set system and v ∈ [n].

2 Let Sv family of sets from S which contain v , and Nv the family of
sets from S which do not contain v

3 Let
αv := min

A∈Nv

w(A)− min
B∈Sv

w(B \ {v})

4 αv < w(v) ⇒ v does not belong to any minimum weight set

5 αv > w(v) ⇒ v belongs to every minimum weight set

6 αv = w(v) ⇒ v is ambiguous

7 αv is independent of w(v), and w(v) chosen uniformly at random
from [2n].

107 / 124

Proof of Isolation lemma

3 Let
αv := min

A∈Nv

w(A)− min
B∈Sv

w(B \ {v})

4 αv < w(v) ⇒ v does not belong to any minimum weight set

5 αv > w(v) ⇒ v belongs to every minimum weight set

6 αv = w(v) ⇒ v is ambiguous

7 αv is independent of w(v), and w(v) chosen uniformly at random
from [2n].

8 Pr[v ambiguous] ≤ 1/2n ⇒union bound Pr[∃ ambiguous element] ≤ 1/2

108 / 124

Proof of Isolation lemma

3 Let
αv := min

A∈Nv

w(A)− min
B∈Sv

w(B \ {v})

4 αv < w(v) ⇒ v does not belong to any minimum weight set

5 αv > w(v) ⇒ v belongs to every minimum weight set

6 αv = w(v) ⇒ v is ambiguous

7 αv is independent of w(v), and w(v) chosen uniformly at random
from [2n].

8 Pr[v ambiguous] ≤ 1/2n ⇒union bound Pr[∃ ambiguous element] ≤ 1/2

9 If two different sets A,B have minimum weight, then any element in
AΔB must be ambiguous.

109 / 124

Proof of Isolation lemma

3 Let
αv := min

A∈Nv

w(A)− min
B∈Sv

w(B \ {v})

4 αv < w(v) ⇒ v does not belong to any minimum weight set

5 αv > w(v) ⇒ v belongs to every minimum weight set

6 αv = w(v) ⇒ v is ambiguous

7 αv is independent of w(v), and w(v) chosen uniformly at random
from [2n].

8 Pr[v ambiguous] ≤ 1/2n ⇒union bound Pr[∃ ambiguous element] ≤ 1/2

9 If two different sets A,B have minimum weight, then any element in
AΔB must be ambiguous.

10 Probability that this happens is ≤ 1/2. (step 8)

110 / 124

Remarks

It is hard to overstate the importance of algebraic techniques in computing.

111 / 124

Remarks

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

112 / 124

Remarks

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

113 / 124

Remarks

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

Interactive proof systems

114 / 124

Remarks

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

Interactive proof systems

Efficient proof/program verification (PCP - a bit in lecture 16)

115 / 124

Remarks

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

Interactive proof systems

Efficient proof/program verification (PCP - a bit in lecture 16)

Applications in hardness of approximation!

116 / 124

Remarks

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

Interactive proof systems

Efficient proof/program verification (PCP - a bit in lecture 16)

Applications in hardness of approximation!
Applications in blockchain (Zcash for instance)

117 / 124

Remarks

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

Interactive proof systems

Efficient proof/program verification (PCP - a bit in lecture 16)

Applications in hardness of approximation!
Applications in blockchain (Zcash for instance)
Zero Knowledge proofs (lecture 24)

118 / 124

Remarks

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

Interactive proof systems

Efficient proof/program verification (PCP - a bit in lecture 16)

Applications in hardness of approximation!
Applications in blockchain (Zcash for instance)
Zero Knowledge proofs (lecture 24)

Cryptography

119 / 124

Remarks

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

Interactive proof systems

Efficient proof/program verification (PCP - a bit in lecture 16)

Applications in hardness of approximation!
Applications in blockchain (Zcash for instance)
Zero Knowledge proofs (lecture 24)

Cryptography

Coding theory

120 / 124

Remarks

It is hard to overstate the importance of algebraic techniques in computing.

Very useful tool for randomized algorithms (hashing, today’s lecture)

Parallel & Distributed Computing (this lecture and lectures 21 and 23)

Interactive proof systems

Efficient proof/program verification (PCP - a bit in lecture 16)

Applications in hardness of approximation!
Applications in blockchain (Zcash for instance)
Zero Knowledge proofs (lecture 24)

Cryptography

Coding theory

many more...

Derandomizing (i.e., obtaining deterministic algorithms) for some of these
settings (whenever possible) is major open problem in computer science.

121 / 124

Potential Final Projects

Can we derandomize the perfect matching algorithms from class?

A lot of progress has been made in the past couple years on this
question in the works [Fenner, Gurjar & Thierauf 2019] and
subsequently [Svensson & Tarnawski 2017]

Survey of the above, or understanding these papers is a great final
project!

122 / 124

Acknowledgement

Lecture based largely on:

Lap Chi’s notes
[Motwani & Raghavan 2007, Chapter 7]
[Korte & Vygen 2012, Chapter 10].

See Lap Chi’s notes at
https://cs.uwaterloo.ca/~lapchi/cs466/notes/L07.pdf

123 / 124

References I

Motwani, Rajeev and Raghavan, Prabhakar (2007)

Randomized Algorithms

Korte, Bernhard and Vygen, Jens (2012)

Combinatorial optimization. Vol. 2. Heidelberg: Springer.

Fenner, Stephen and Gurjar, Rohit and Thierauf, Thomas (2019)

Bipartite perfect matching is in quasi-NC.

SIAM Journal on Computing

Svensson, Ola and Jakub Tarnawski (2017)

The matching problem in general graphs is in quasi-NC.

IEEE 58th Annual Symposium on Foundations of Computer Science

124 / 124

