
Lecture 1: Amortized Analysis & Union Find

Rafael Oliveira

University of Waterloo
Cheriton School of Computer Science

rafael.oliveira.teaching@gmail.com

September 14, 2020

1 / 76



Overview

Introduction
Why amortized analysis?
Types of amortized analyses
Union-Find

Implementing Union-Find
Setup
First approach
Tree Representation & Path Compression
Analysis

Acknowledgements

2 / 76



Why Amortized Analysis?

In your first data structures course, you learned how to devise data
structures that had good worst-case or average-case behaviour per query .

Worst or average-case complexity of data structures

Data Structure search insertion deletion

Doubly-Linked List O(n) O(1) O(n)
Ordered Array O(log n) O(n) O(n)
Hash Tablesa O(1) O(1) O(1)
Balanced Binary Search Treesb O(log n) O(log n) O(log n)

aAverage-case, although worst-case search time is Θ(n)
bAlso average-case. Worst-case complexity is O(height) of the tree, which

can be Θ(n).
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Why Amortized Analysis?

In amortized analysis, one averages the total time required to perform a
sequence of data-structure operations over all operations performed.

Upshot of amortized analysis: worst-case cost per query may be high for
one particular query, so long as overall average cost per query is small in
the end!

Remark

Amortized analysis is a worst-case analysis. That is, it measures the
average performance of each operation in the worst case.

5 / 76



Types of amortized analyses

Three common types of amortized analyses:

1 Aggregate Analysis: determine upper bound T (n) on total cost of
sequence of n operations. So amortized complexity is T (n)/n.

2 Accounting Method: assign certain charge to each operation
(independent of the actual cost of the operation). If operation is
cheaper than the charge, then build up credit to use later.

3 Potential Method: one comes up with potential energy of a data
structure, which maps each state of entire data-structure to a real
number (its “potential”). Differs from accounting method because we
assign credit to the data structure as a whole, instead of assigning
credit to each operation.
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Why Union Find?

Certain problems/applications require one to maintain/group distinct
elements into a collection of disjoint sets. For instance: maintaining
connected components of a graph which keeps changing over time.

Uses: graph algorithms, social network graphs, etc.

These applications require data structure to perform two operations:

1 Find the unique set containing a particular element
1 Input: element v from universe of elements
2 Output: set containing v

2 Take union of two disjoint sets
1 Input: two sets A,B from you current collection of sets
2 Output: updated collection of sets, i.e. with A ∪ B and without A,B
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Application: Kruskal’s minimum spanning tree algorithm

Input: graph G (V ,E ) and edge weights w : E → N
Output: spanning tree T of minimum weight among all spanning trees.

1 Sort edges e1, . . . , e|E | by weight such that w(ei ) ≤ w(ei+1)

2 Set T ← ∅ (each vertex is a component by itself)
3 for i = 1, . . . , |E |:

1 if endpoints of ei in different connected components of T (use two find
operations on endpoints of ei to check this step)

T ← T ∪ {ei}
combine the connected components of endpoints of ei (union
operation)

4 return T

Remark

In this application, we care about the total cost of all operations (unions
and finds). Thus, amortized analysis is better than worst-case per query.
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Example
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Example (continued)
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Setup

Notation:

n← number of elements (we denote the elements by 1, 2, . . . , n)

m← number of operations. That is

m = (number of finds) + (number of unions)1

FIND(k)← find the set containing element k

UNION(A,B)← updates data structure by deleting sets A,B and
constructing A ∪ B

1Number of unions is ≤ n − 1. We will assume that m ≥ n
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Naive approach

Keep an array S of size n where

S [i ] contains the name of set containing element i .

In this case, we have

FIND(k) takes time O(1) (per operation)

UNION(A,B) takes time O(|A|+ |B|). Thus, Θ(n) worst case (per
operation)

No amortized analysis yet.

What if when taking the union of A and B, we only change name of the
set of least size?
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Naive Approach

What if when taking UNION, we only change name of the set of least size?

We will use aggregate analysis for this case: that is, determine upper
bound on total cost of all operations.

Cost of all unions = O(n log n), as for each element i ∈ {1, . . . , n}, we
have that the UNION operation will change S [i ] at most log n times.

Proof.

Every time we change S [i ], the size of the set containing element i
doubles.

Thus, cost of m operations is O(m + n log n) and we get that amortized

cost is O

(
1 +

n log n

m

)
. If m = Ω(n log n) this is best possible.

Are we done? What if m = o(n log n), can we do better?
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Tree Representation

Represent each set as a tree of parent pointers. Each set will have its root
as its representative element.

FIND(k)← walk up the tree from k and output name of the root

UNION(A,B)← link both trees by making “smaller” tree’s root
point to “larger” tree’s root.

Question

How to define “smaller” (i.e., the “size” of a tree)?

What if we define the size of a tree to be number of elements?

What if we define the size of a tree to be it’s height (longest path
from leaf to root)?
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Bad instances

What if we define the size of a tree to be number of elements?

What if we define the size of a tree to be it’s height (longest path
from leaf to root)?
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Path Compression

To fix problems above, need path compression (i.e. make all trees “flat”).

Definition (Path compression)

After each FIND(k), for every node j on path k → · · · → root, set

PARENT (j)← root.

This doubles the work of FIND, but that is fine, since it has same O(·)
complexity. (no effect on asymptotics)

This messes up the height of the tree, as path compression may change it.
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Rank of a tree

Definition (Rank of tree)

For each tree with root r , define rank(r) as follows:

if the tree is a single element (r in this case) rank(r) = 0

when performing union of two trees with roots r1, r2,
if rank(r1) ≥ rank(r2), then

make r1 the new root
set rank(r1)← max(r1, r2 + 1).

Intuition: rank of a tree is the height if no path compressions had been
done.
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Final Algorithm

Input: set of elements {1, 2, . . . , n}
Output: at each step, a union-find data structure comprised of disjoint
union of sets whose union is {1, 2, . . . , n}

1 Start with each set being {k}, where k ∈ {1, . . . , n}. Set rank(k) = 0.

2 UNION(S1,S2): where r1, r2 are the roots of S1, S2
if rank(r1) ≥ rank(r2):

1 make root(S1 ∪ S2) = r1, by creating pointer r2 → r1.
2 rank(r1) = max(rank(r1), rank(r2) + 1)

else:
1 make root(S1 ∪ S2) = r2, by creating pointer r1 → r2.
2 rank(r2) = max(rank(r2), rank(r1) + 1)

3 FIND(k): walk up the tree from k to the root of its tree. Return
name of root, and perform path compression.
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Analysis

Theorem ([Tarjan 1975])

The amortized cost per operation of union-find is Θ(α(m, n)), where
α(m, n) is the inverse Ackermann function. That is, the (worst-case) cost
of m operations is Θ(m · α(m, n)).

Remark

Note the Θ in the statement. This means that the bound above is tight.
Many tight examples exist.

Remark

Inverse Ackermann function is mega-hyper-super slow growing. For more
about the Ackermann function and its inverse, see
https://en.wikipedia.org/wiki/Ackermann_function.
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Analysis
In this class, we will see a weaker amortized bound of O(log∗(n)) per
operation. For another analysis, see [Seidel, Sharir 2005]. We will use the
accounting method.

Definition

log∗(n) := min{i | log(i)(n) ≤ 1},

where log(i) means that we apply the log function i times.

n 1 2 3, 4 = 22 5, . . . , 16 = 22
2

17, . . . , 65536 = 216

log∗(n) 0 1 2 3 4

In the accounting method, we need to choose a charge to each operation
ĉi such that ∑̀

i=1

ĉi ≥
∑̀
i=1

ci

for all ` ≤ m, where ci is the actual cost of the i th operation.
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Final Algorithm - recap

Input: set of elements {1, 2, . . . , n}
Output: at each step, a union-find data structure comprised of disjoint
union of sets whose union is {1, 2, . . . , n}

1 Start with each set being {k}, where k ∈ {1, . . . , n}. Set rank(k) = 0.

2 UNION(S1,S2): where r1, r2 are the roots of S1, S2
if rank(r1) ≥ rank(r2):

1 make root(S1 ∪ S2) = r1, by creating pointer r2 → r1.
2 rank(r1) = max(rank(r1), rank(r2) + 1)

else:
1 make root(S1 ∪ S2) = r2, by creating pointer r1 → r2.
2 rank(r2) = max(rank(r2), rank(r1) + 1)

3 FIND(k): walk up the tree from k to the root of its tree. Return
name of root, and perform path compression.
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Analysis

The complex operation is FIND, since we will perform path compression.

Claim

When an element k is assigned rank(k) = r then k has ≥ 2r descendants.

Claim

rank(k) < rank(parent(k))

Claim

Number of vertices of rank r is ≤ n/2r .
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Grouping Elements Based on Rank

Idea: divide vertices into groups based on rank.

Element of rank r goes into group log∗(r). In particular, for element k, we
have:

group(k) := log∗(rank(k))

Remark

Number of groups: log∗(n).
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Analysis

Actual cost of FIND(k): distance from k to root.
Idea: charge some of this cost to FIND and some to nodes along path.

Charging scheme:
1 FIND(k)

For each element u in the path k → root:

if u has parent and grandparent in path and
group(u) = group(parent(u)), then charge 1 to u
else charge 1 to FIND(k).

2 UNION(A,B): just charge 1 to this operation

Remark

Note that charging scheme for FIND(k) and nodes covers the actual cost
of FIND(k), since we are charging either the node on the path or the
operation FIND(k).

Since charging for UNION also covers the cost of the union operation, we
have a valid charging scheme.
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Charging Scheme Formally

So, how do we define the charges to FIND(k)?

ĉi (FIND(k)) = c̃i (FIND(k)) +
∑

u∈ path k→u

(charge to u)
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Analysis

Now we need to analyse the total amortized cost of this charging scheme.

Total charge to each FIND(k) is ≤ log∗(n) + 1

Group changes ≤ log∗(n)− 1 times
+2 for root of tree and child of root of tree

Total charge to each element of {1, . . . , n}:
if k is charged in a path compression, then k is not root and path
compression will give it a parent of higher rank than old parent.
if k has a parent in a higher group, then k will no longer be charged.
thus, if group(k) = g then k can be charged at most

(number of ranks in group g)− 1 ≤ 2 ↑ g

Let N(g) be number of elements in group g . Then

N(g) ≤
2↑g∑

r=2↑(g−1)+1

n

2r
≤ n

22↑(g−1)+1
·
∞∑
0

1/2i =
n

2 ↑ g
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Analysis

1 Thus, total charge to all elements in group g :

(total charge per element in group g) · N(g) ≤ (2 ↑ g) · n

2 ↑ g
= n

2 Total charge to all elements of {1, . . . , n}:

(charge to all elements in group g) · (number of groups) ≤ n · log∗(n)

3 Total charge to all FIND operations:

(number of FIND operations) · (charge per FIND) ≤ m · (log∗(n) + 1)

4 Total charge overall: sum of 2 + 3.

O((m + n) log∗ n) = O(m log∗ n), as we assumedn ≤ m
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