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The Poincaré inequality

Poincaré inequality: a type of local-global inequality. For nice domain Ω ⊂ Rd ,
1 ≤ p ≤ ∞, and smooth f : Ω → R with mean fΩ,

∥f − fΩ∥Lp(Ω) ≤ C∥∇f ∥Lp(Ω) .

f

(∫
Ω|f (x)− fΩ|p dx

)1/p
“distance to constant”

(∫
Ω|∇f (x)|p dx

)1/p
“local violations”

[Poincaré 1890]: partial differential equations (PDEs) from mathematical physics.
When p = 2, C characterizes the exponential convergence of the heat equation.

An isoperimetric statement: when p = 1, C characterizes the isoperimetric
constant of Ω.

Wide-ranging connections: mathematical physics, geometry, probability theory,
diffusion processes, optimal transport...
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Property testing

For universe X and property P ⊂ X , design algorithm which, with high probability,
1 Accepts objects in x ∈ P;
2 Rejects ε-far objects, i.e. when dist(x ,P) ≥ ε.

Goal: make decision using few queries to x (query complexity).

P ε

Accept

Reject
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Monotonicity testing

The monotonicity property in partially ordered domain: f (x) ≤ f (y) whenever x ⪯ y .

A central topic in property testing. Studied in many settings:

Boolean case: f : {0, 1}d → {0, 1} [Goldreich-Goldwasser-Lehman-Ron’98,Raskhodnikova’99,

Dodis-Goldreich-Lehman-Raskhodnikova-Ron-Samorodnitsky’99, Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky’00,

Chakrabarty-Seshadhri’16, Chen-Servedio-Tan’14, Khot-Minzer-Safra’18, ...]

More generally, f : [n]d → R [Goldreich-Goldwasser-Lehman-Ron’98,Raskhodnikova’99,

Dodis-Goldreich-Lehman-Raskhodnikova-Ron-Samorodnitsky’99, Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky’00,

Chakrabarty-Seshadhri’14, Black-Chakrabarty-Seshadhri’23, Black-Kalemaj-Raskhodnikova’24, ...]

General posets [Fischer-Lehman-Newman-Raskhodnikova-Rubinfeld-Samorodnitsky’02, Lange-Rubinfeld-Vasilyan’22]

Continuous setting: f : [0, 1]d → R [F’23, this work]

Also many works on lower bounds [Blais-Raskhodnikova-Yaroslavtsev’14, Chakrabarty-Seshadhri’14,

Chen-Servedio-Tan’14, Belovs-Blais’16, Chen-Waingarten-Xie’17, ...]

We focus our discussion on the Boolean and continuous settings.
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Warm-up: Boolean case and the edge tester

Consider the case f : {0, 1}d → {0, 1}. Most natural tester:

1 Sample uniformly random edge (x , y).

2 Reject if f (x) > f (y).

This is the edge tester. How many queries to reject ε-far f w.p. 2/3?

Lemma (Raskhodnikova’99,
Dodis-Goldreich-Lehman-Raskhodnikova-Ron-Samorodnitsky’99,
Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky’00)

Suppose f : {0, 1}d → {0, 1} is ε-far from monotone. Let V (f ) denote the number of
violating edges in f . Then

V (f ) ≥ ε · 2d .

So the tester succeeds with probability Ω
(

ε·2d
d ·2d

)
= Ω(ε/d) =⇒ O(d/ε) queries. ,

Claim: a Poincaré inequality is hiding here!
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Recall: Poincaré inequality has the form ∥f − fΩ∥p ≲ ∥∇f ∥p.

Put another way: distconstp (f )p ≲ E [|∇f |p].

For monotonicity in the Boolean case: let ∇f be the
discrete gradient of f , and let ∇−f := min{∇f , 0} be
its directed (discrete) gradient.

0 1

0y

∇f (y) = (-1, 1) 
1

x

∇f (x) = (1, 1) 

Then the lemma says: distmono
1 (f ) ≲ E [∥∇−f ∥1].
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Recall: Poincaré inequality has the form ∥f − fΩ∥p ≲ ∥∇f ∥p.

Put another way: distconstp (f )p ≲ E [|∇f |p].

For monotonicity in the Boolean case: let ∇f be the
discrete gradient of f , and let ∇−f := min{∇f , 0} be
its directed (discrete) gradient.

0 1

0y

∇f (y) = (-1, 1) 
1

x

∇f (x) = (1, 1) Then the lemma says: distmono
1 (f ) ≲ E [∥∇−f ∥1].

6 / 31



Warm-up: Boolean case and the edge tester

Lemma (Raskhodnikova’99,
Dodis-Goldreich-Lehman-Raskhodnikova-Ron-Samorodnitsky’99,
Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky’00)

Suppose f : {0, 1}d → {0, 1} is ε-far from monotone. Let V (f ) denote the number of
violating edges in f . Then

V (f ) ≥ ε · 2d .
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Directed isoperimetry

For p, q ≥ 1, a classical (Lp, ℓq)-Poincaré inequality says

distconstp (f )p ≲ E
[
∥∇f ∥pq

]
,

and a directed (Lp, ℓq)-Poincaré inequality says

distmono
p (f )p ≲ E

[
∥∇−f ∥pq

]
,

where ∇− := min{0,∇} and

distconstp (f ) := inf {∥f − g∥Lp : g ∈ Lp constant} ,

distmono
p (f ) := inf {∥f − g∥Lp : g ∈ Lp monotone}

A connection between local violations and the distance to the property of interest.
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Directed isoperimetry in monotonicity testing

Discrete

f : {0, 1}d → {0, 1}
Continuous

f : [0, 1]d → R

Directed
distmono

p (f )p ≲ E
[
∥∇−f ∥pq

]

Classical
distconstp (f )p ≲ E

[
∥∇f ∥pq

]
• classical (L2, ℓ2) =⇒ (L1, ℓ1)

• [edge tester] (L1, ℓ1) =⇒ O(d/ε)

• [Margulis’74]

• [Chakrabarty-Seshadhri’16] Margulis =⇒ o(d)

• [Talagrand’93] (L1, ℓ2)

• [Khot-Minzer-Safra’18] (L1, ℓ2) =⇒ Õ(
√
d/ε2)

• [Bobkov-Houdré’97] (L1, ℓ2) =⇒ (L1, ℓ1)

• [F’23] (L1, ℓ1) =⇒ O(dM/ε)

• classical (L2, ℓ2)

• [this work] (L2, ℓ2) =⇒ Õ(
√
dM2/ε2)

Conceptually similar results for: hypergrid [Black-Chakrabarty-Seshadhri’22,Braverman-Khot-Kindler-Minzer’22,Black-

Chakrabarty-Seshadhri’23], real-valued functions on the Boolean cube [Black-Kalemaj-Raskhodnikova’24].
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√
d/ε2)
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• [Bobkov-Houdré’97] (L1, ℓ2) =⇒ (L1, ℓ1)

• [F’23] (L1, ℓ1) =⇒ O(dM/ε)

• classical (L2, ℓ2)

• [this work] (L2, ℓ2) =⇒ Õ(
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This work

1 Guiding question [F’23]: is there a o(d) monotonicity tester in the continuous
setting?

2 Conceptual motivation: answering this question should require a deeper
understanding of the connection between classical and directed isoperimetry.

Our answers:

1 Yes: in fact, roughly
√
d queries suffice.

2 Main insight: a common phenomenon underlying classical and directed Poincaré
inequalities in continuous space, namely convergence properties of a partial
differential equation (PDE) – the (classical or directed) heat equation.
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Goals of this talk

1 Give the idea behind the Õ(
√
dM2/ε2) tester, using the directed Poincaré

inequality.

2 Overview the proof ideas underlying the directed Poincaré inequality.

3 Provide some intuition for the directed heat equation, the main new ingredient
toward proving the directed Poincaré inequality.
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Testing model

In the continuous setting, need to define the model carefully. Adopt the Lp testing
model of [Berman-Raskhodnikova-Yaroslavtsev’14]. Regularity assumption as in [F’23]:
Lipschitz.

Input: M-Lipschitz f : [0, 1]d → R. Accept if f is monotone, reject if distmono
2 (f ) ≥ ε.

Oracle queries:

Value query given x , obtain f (x).

Directional derivative query given x , v , obtain ∇v f (x) = v · ∇f (x).

[F’23]: tester with query complexity O(dM/ε).1 Left open: sublinear tester?

1Actually a bit stronger than this, since in [F’23] M can be the Lipschitz constant in ℓ1 geometry.
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Results

Theorem (Directed Poincaré inequality)

There exists a universal constant C > 0 such that, for all f ∈ H1((0, 1)d),

distmono
2 (f )2 ≤ C E

[
∥∇−f ∥22

]
.

Theorem (Monotonicity tester)

There exists a nonadaptive, directional derivative L2 monotonicity tester for
M-Lipschitz functions f : [0, 1]d → R with query complexity Õ(

√
dM2/ε2) and

one-sided error.

Also, the
√
d dependence is optimal among a natural generalization of pair testers to

the continuous setting.

12 / 31



Idea of the tester

Tester: sample uniform x ∈ [0, 1]d , v ∼ D, and reject if v · ∇f (x) < 0.

Lemma (Detecting negative entries with subset sums)

There exists a distribution D over {0, 1}d and universal constant c > 0 such that, for
any nonzero u ∈ Rd , we have

P
v∼D

[u · v < 0] ≥ c · ∥u−∥22√
d log(d) · ∥u∥22

.

Essentially a signed version of the group testing problem [Dorfman’43].

Rejection probability when distmono
2 (f ) ≥ ε:

E
x

[
P
v
[v · ∇f (x) < 0]

]
≳ E

x

[
∥∇−f (x)∥22√

d log(d)∥∇f (x)∥22

]
≥ 1√

d log(d)M2
E
[
∥∇−f ∥22

]
≳

distmono
2 (f )2√

d log(d)M2
≥ ε2√

d log(d)M2
.
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Intuition for the lemma

Lemma (Detecting negative entries with subset sums)

There exists a distribution D over {0, 1}d and universal constant c > 0 such that, for
any nonzero u ∈ Rd , we have

P
v∼D

[u · v < 0] ≥ c · ∥u−∥22√
d log(d) · ∥u∥22

.

For simplicity, suppose ∥u∥22 ≈ ∥u−∥22 ≈ 1.

If | supp(u−)| ≳
√
d , guessing singleton vi = 1 works.

Suppose | supp(u−)| = 1, so ui ≈ −1 for some i , and uj ≈ 1/
√
d for j ̸= i .

Guessing v ∈ {0, 1}d with ∥v∥1 ≈
√
d works.

General case: guess expected ∥v∥1 from 1, 2, 4, . . . , d , and argue via thresholds of
the form ui < −τ that one of these granularities works.
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Analogy with the path tester

Our tester is the natural continuous analogue of the Õ(
√
d) path tester of [KMS’18].

[KMS’18]: sample x ⪯ y in {0, 1}d joined by a path of length 2k , for k sampled
uniformly from [log d ].

For us, taking edge i in the path tester roughly corresponds to sampling vi = 1 for
the directional derivative query.

15 / 31



Directed Poincaré inequality – proof overview

Directed Poincaré inequality:

distmono
2 (f )2 ≲ E

[
∥∇−f ∥22

]
.

Main ideas:

1 Introduce and study a 1D dynamical process, the directed heat equation.

2 Use it to to prove the 1D transport-energy inequality

W 2
2 (µ, µ∞) ≲

∫
[0,1]

(∂−
x u)

2 dx .

3 Tensorize the transport-energy inequality to [0, 1]d :

W 2
2 (µ → µ∗) ≲

∫
[0,1]d

∣∣∇−f
∣∣2 dx .

4 Use Kantorovich duality to go from Wasserstein to Lp distance:

distmono
2 (f )2 ≲ E

[
∥∇−f ∥22

]
.
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Step 1: The directed heat equation

Goal: find a robust approach to the classical Poincaré inequality, such that “toggling”
one aspect of this approach yields the directed version.

Main idea: the classical Poincaré inequality characterizes the convergence of the heat
equation toward equilibrium.

18 / 31



The heat equation

Let x ∈ [0, 1]d denote space and t ≥ 0 time. For u = u(t, x), the heat equation is

∂tu = ∆u ,

where ∆ =
∑

i ∂i∂i is the Laplacian operator. In one dimension,

∂tu = ∂x ∂xu︸︷︷︸
“flux”

.

Value view Particle view

19 / 31



Exponential convergence

Variance decay: assuming u has mean zero,

∂tVar [u(t)] = ∂t

∫
u(t)2 dx

=

∫
∂tu(t)

2 dx

= 2

∫
u(t)∆u(t)dx (Heat equation)

= −2

∫
∇u(t) · ∇u(t) (Integration by parts)

= −2E
[
∥∇u(t)∥22

]
.

So ∂tVar [u(t)] ≤ −CVar [u(t)] iff distconst2 (u(t))2 = Var [u(t)] ≤ 2
CE

[
∥∇u(t)∥22

]
.

Exponential decay of variance is equivalent to the Poincaré inequality.
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Dirichlet energy

Looking ahead at the directed case: analyze decay of distmono
2 (f )2? Maybe, but does

not seem to lead to a proof.

Another relevant quantity: the Dirichlet energy

E(f ) = 1

2

∫
(∂x f )

2 dx .

Intuition: measure the local violations of the “constant” property.

By similar calculation, E(u(t)) also enjoys exponential decay under the heat equation.
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Directed heat equation

Sticking to one dimension for now, we study the directed heat equation

∂tu = ∂x∂
−
x u(t) .

Particle view, directed version

“Should” converge to a monotone limit =⇒ learn about distance to monotonicity?

Analyze via the directed Dirichlet energy

E−(f ) =
1

2

∫
(∂−

x f )
2 dx .
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PDE results

Using E−, bring in the theory of gradient flows and maximal monotone operators.

The directed heat equation has a solution u 7→ Ptu (directed heat semigroup).

E−(Ptu) decays exponentially in time.

The solution converges to a monotone limit P∞u as t → ∞.

Nice analytic properties such as

Nonexpansiveness: ∥Ptu − Ptv∥L2 ≤ ∥u − v∥L2 .

Order preservation: u ≤ v =⇒ Ptu ≤ Ptv .

Regularity preservation: u “regular” =⇒ Ptu“regular” (concretely: Lipschitz,
Sobolev class H1).

Main idea: canonical decomposition u = u↑+ u↓.
u↓ is “well-behaved” (≈ differentiable), u↑ can be “wild” (e.g. jump up).
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PDE results
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Directed Poincaré inequality – proof overview

Directed Poincaré inequality:

distmono
2 (f )2 ≲ E

[
∥∇−f ∥22

]
.

Main ideas:

1 Introduce and study a 1D dynamical process, the directed heat equation.

2 Use it to to prove the 1D transport-energy inequality

W 2
2 (µ, µ∞) ≲

∫
[0,1]

(∂−
x u)

2 dx .

3 Tensorize the transport-energy inequality to [0, 1]d :

W 2
2 (µ → µ∗) ≲

∫
[0,1]d

∣∣∇−f
∣∣2 dx .

4 Use Kantorovich duality to go from Wasserstein to Lp distance:

distmono
2 (f )2 ≲ E

[
∥∇−f ∥22

]
.
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Optimal transport

Intimate connection between PDEs and optimal transport. For probability measures
ϱ0, ϱ1, the squared Wasserstein distance

W 2
2 (ϱ0, ϱ1) = minimum cost of moving mass from ϱ0 to ϱ1 ,

if moving mass from x to y costs |x − y |2.

Connection to PDEs via the Benamou-Brenier formula:

W 2
2 (ϱ0, ϱ1) = min

{∫ 1

0
∥vt∥2L2(ϱt) dt : vt velocity field taking ϱ0 to ϱ1 from time 0 to 1

}
.

Directed heat equation ∂tu = ∂x∂
−
x u

Suggests connection to the directed Dirichlet
energy, E−(f ) = 1

2

∫
(∂−

x f )2 dx .

“velocity vt ≈ momentum ≈ flux ≈ ∂−
x f ”
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Step 2 – 1D Transport-energy inequality

Exploit the exponential decay of E−, via Benamou-Brenier, to conclude

Theorem (Transport-energy inequality in one dimension)

There exists a constant C > 0 such that the following holds. Let u ∈ U be positive,
bounded away from zero, and satisfy

∫
(0,1) u dx = 1. Define the measures dµ := u dx

and dµ∞ := (P∞u)dx . Then

W 2
2 (µ, µ∞) ≤ C

inf u
E−(u) .
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Step 3 – Tensorizing the transport-energy inequality

How to tensorize into a multidimensional result? Key: move along one coordinate at
a time, compose the costs |x − y |2 via the Pythagorean theorem.

1 Make all rows monotone, particles move horizontally.
2 Make all columns monotone, particles move vertically.
3 ...

Theorem (Transport-energy inequality)

There exists a universal constant C > 0 such that the following holds. Let a ∈ (0, 1),
and let f ∈ Lip satisfy 1− a ≤ f ≤ 1 + a and

∫
[0,1]d f dx = 1. Define the probability

measures dµ := f dx and dµ∗ := f ∗ dx on [0, 1]d . Then

W 2
2 (µ → µ∗) ≤ C (1 + a)2

(1− a)3

∫
[0,1]d

∣∣∇−f
∣∣2 dx .

Note above directed Wasserstein distance!
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Step 4 – From Wasserstein to Lp

Classically: close connections between transport-energy inequalities, Poincaré
inequalities, Talagrand concentration inequalities, and log-Sobolev inequalities
[Villani’09]. In particular [Liu’19] gives equivalence between:

1 Transport-energy inequality:

W 2
2 (µ, µunif) ≲ E

[
∥∇f ∥22

]
, where dµ := f dx = f dµunif .

2 Poincaré inequality:
distconst2 (f )2 ≲ E

[
∥∇f ∥22

]
.

We show a directed implication. If the directed transport energy inequality holds:

W 2
2 (µ → µ∗) ≲ E

[
∥∇−f ∥22

]
, where µ∗: monotone equilibrium of µ,

then the directed Poincaré inequality holds:

distmono
2 (f )2 ≲ E

[
∥∇−f ∥22

]
.

,
Main ingredient:
Kantorovich duality
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Conclusion and open questions

Main message: convergence properties of a PDE are the principle underlying
classical and directed Poincaré inequalities.

We extend the connection between directed isoperimetry and monotonicity
testing, which proves to be robust to the choice of continuous/discrete setting.

The Õ(
√
dM2/ε2) tester helps unite the continuous and discrete landscapes of

monotonicity testing.

Questions

Our tester is a continuous analogue of the path tester of [KMS’18]. Is there a
formal connection between the discrete and continuous cases?

Lower bounds for general testers in the continuous setting?

Other applications of the dynamical approach (PDEs, optimal transport theory) to
property testing? Maybe other questions in TCS?

31 / 31


