Directed Isoperimetry and Monotonicity Testing: A Dynamical Approach

Renato Ferreira Pinto Jr. University of Waterloo

$$\|f-f_{\Omega}\|_{L^p(\Omega)}\leq C\|
abla f\|_{L^p(\Omega)}$$
.

- [Poincaré 1890]: partial differential equations (PDEs) from mathematical physics. When p = 2, C characterizes the exponential convergence of the heat equation.
- An isoperimetric statement: when p = 1, C characterizes the isoperimetric constant of Ω.
- Wide-ranging connections: mathematical physics, geometry, probability theory, diffusion processes, optimal transport...

$$\|f-f_\Omega\|_{L^p(\Omega)}\leq C\|
abla f\|_{L^p(\Omega)}$$
 .

- [Poincaré 1890]: partial differential equations (PDEs) from mathematical physics. When p = 2, C characterizes the exponential convergence of the heat equation.
- An isoperimetric statement: when p = 1, C characterizes the isoperimetric constant of Ω.
- Wide-ranging connections: mathematical physics, geometry, probability theory, diffusion processes, optimal transport...

$$\|f-f_\Omega\|_{L^p(\Omega)}\leq C\|
abla f\|_{L^p(\Omega)}$$
.

- [Poincaré 1890]: partial differential equations (PDEs) from mathematical physics. When p = 2, C characterizes the exponential convergence of the heat equation.
- An isoperimetric statement: when p = 1, C characterizes the isoperimetric constant of Ω.
- Wide-ranging connections: mathematical physics, geometry, probability theory, diffusion processes, optimal transport...

Property testing

For universe \mathcal{X} and property $\mathcal{P} \subset \mathcal{X}$, design algorithm which, with high probability, **Accepts** objects in $x \in \mathcal{P}$;

2 Rejects ε -far objects, i.e. when dist $(x, \mathcal{P}) \geq \varepsilon$.

Goal: make decision using few queries to x (query complexity).

Monotonicity testing

The monotonicity property in partially ordered domain: $f(x) \le f(y)$ whenever $x \le y$.

A central topic in property testing. Studied in many settings:

• Boolean case: $f: \{0,1\}^d o \{0,1\}$ [Goldreich-Goldwasser-Lehman-Ron'98,Raskhodnikova'99,

Dodis-Goldreich-Lehman-Raskhodnikova-Ron-Samorodnitsky'99, Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky'00,

Chakrabarty-Seshadhri'16, Chen-Servedio-Tan'14, Khot-Minzer-Safra'18, ...]

• More generally, $f:[n]^d o \mathbb{R}$ [Goldreich-Goldwasser-Lehman-Ron'98,Raskhodnikova'99,

 $Dodis-Goldreich-Lehman-Raskhodnikova-Ron-Samorodnitsky' 99,\ Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky' 00,\ Samorodnitsky' 00,\ Samorodnits$

 $Chakrabarty-Seshadhri'14, \ Black-Chakrabarty-Seshadhri'23, \ Black-Kalemaj-Raskhodnikova'24, \ \ldots]$

- General posets [Fischer-Lehman-Newman-Raskhodnikova-Rubinfeld-Samorodnitsky'02, Lange-Rubinfeld-Vasilyan'22]
- Continuous setting: $f:[0,1]^d
 ightarrow \mathbb{R}$ [F'23, this work]
- Also many works on lower bounds [Blais-Raskhodnikova-Yaroslavtsev'14, Chakrabarty-Seshadhri'14,

Chen-Servedio-Tan'14, Belovs-Blais'16, Chen-Waingarten-Xie'17, ...]

We focus our discussion on the **Boolean** and **continuous** settings.

Warm-up: Boolean case and the edge tester

Consider the case $f: \{0,1\}^d \to \{0,1\}$. Most natural tester:

- Sample uniformly random edge (x, y).
- 3 Reject if f(x) > f(y).

This is the edge tester. How many queries to reject ε -far f w.p. 2/3?

Lemma (Raskhodnikova'99, Dodis-Goldreich-Lehman-Raskhodnikova-Ron-Samorodnitsky'99, Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky'00)

Suppose $f : \{0,1\}^d \to \{0,1\}$ is ε -far from monotone. Let V(f) denote the number of violating edges in f. Then

$$V(f) \geq \varepsilon \cdot 2^d$$
.

So the tester succeeds with probability $\Omega\left(rac{arepsilon\cdot 2^d}{d\cdot 2^d}
ight)=\Omega(arepsilon/d)\implies O(d/arepsilon)$ queries. @

Claim: a Poincaré inequality is hiding here!

Warm-up: Boolean case and the edge tester

Consider the case $f : \{0,1\}^d \to \{0,1\}$. Most natural tester:

- Sample uniformly random edge (x, y).
- 3 Reject if f(x) > f(y).

This is the edge tester. How many queries to reject ε -far f w.p. 2/3?

Lemma (Raskhodnikova'99, Dodis-Goldreich-Lehman-Raskhodnikova-Ron-Samorodnitsky'99, Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky'00)

Suppose $f : \{0,1\}^d \to \{0,1\}$ is ε -far from monotone. Let V(f) denote the number of violating edges in f. Then

$$V(f) \geq \varepsilon \cdot 2^d$$
.

So the tester succeeds with probability $\Omega\left(\frac{\varepsilon \cdot 2^d}{d \cdot 2^d}\right) = \Omega(\varepsilon/d) \implies O(d/\varepsilon)$ queries. \odot

Claim: a Poincaré inequality is hiding here!

Warm-up: Boolean case and the edge tester

Consider the case $f : \{0,1\}^d \to \{0,1\}$. Most natural tester:

- Sample uniformly random edge (x, y).
- 3 Reject if f(x) > f(y).

This is the edge tester. How many queries to reject ε -far f w.p. 2/3?

Lemma (Raskhodnikova'99, Dodis-Goldreich-Lehman-Raskhodnikova-Ron-Samorodnitsky'99, Goldreich-Goldwasser-Lehman-Ron-Samorodnitsky'00)

Suppose $f : \{0,1\}^d \to \{0,1\}$ is ε -far from monotone. Let V(f) denote the number of violating edges in f. Then

$$V(f) \geq \varepsilon \cdot 2^d$$
.

So the tester succeeds with probability $\Omega\left(\frac{\varepsilon \cdot 2^d}{d \cdot 2^d}\right) = \Omega(\varepsilon/d) \implies O(d/\varepsilon)$ queries. \odot

Claim: a Poincaré inequality is hiding here!

Suppose $f : \{0,1\}^d \to \{0,1\}$ is ε -far from monotone. Let V(f) denote the number of violating edges in f. Then

 $V(f) \geq \varepsilon \cdot 2^d$.

- Recall: Poincaré inequality has the form $\|f f_{\Omega}\|_{\rho} \lesssim \|\nabla f\|_{\rho}$.
- Put another way: dist^{const}_p $(f)^p \lesssim \mathbb{E}[|\nabla f|^p].$
- For monotonicity in the Boolean case: let ∇f be the discrete gradient of f, and let ∇⁻f := min{∇f,0} be its directed (discrete) gradient.
- Then the lemma says: dist₁^{mono}(f) $\lesssim \mathbb{E}[\|\nabla^{-}f\|_{1}]$.

Suppose $f : \{0,1\}^d \to \{0,1\}$ is ε -far from monotone. Let V(f) denote the number of violating edges in f. Then

 $V(f) \geq \varepsilon \cdot 2^d$.

- Recall: Poincaré inequality has the form $\|f f_{\Omega}\|_{p} \lesssim \|\nabla f\|_{p}$.
- Put another way: dist^{const}_p $(f)^p \lesssim \mathbb{E}[|\nabla f|^p].$
- For monotonicity in the Boolean case: let ∇f be the discrete gradient of f, and let ∇⁻f := min{∇f,0} be its directed (discrete) gradient.
- Then the lemma says: $dist_1^{mono}(f) \lesssim \mathbb{E}[\|\nabla^- f\|_1].$

Suppose $f : \{0,1\}^d \to \{0,1\}$ is ε -far from monotone. Let V(f) denote the number of violating edges in f. Then

 $V(f) \geq \varepsilon \cdot 2^d$.

- Recall: Poincaré inequality has the form $\|f f_{\Omega}\|_{p} \lesssim \|\nabla f\|_{p}$.
- Put another way: $\operatorname{dist}_p^{\operatorname{const}}(f)^p \leq \mathbb{E}\left[|\nabla f|^p\right]$.
- For monotonicity in the Boolean case: let ∇f be the discrete gradient of f, and let ∇⁻f := min{∇f,0} be its directed (discrete) gradient.
- Then the lemma says: $dist_1^{mono}(f) \lesssim \mathbb{E}[\|\nabla^- f\|_1].$

Suppose $f : \{0,1\}^d \to \{0,1\}$ is ε -far from monotone. Let V(f) denote the number of violating edges in f. Then

 $V(f) \geq \varepsilon \cdot 2^d$.

- Recall: Poincaré inequality has the form $\|f f_{\Omega}\|_{p} \lesssim \|\nabla f\|_{p}$.
- Put another way: dist^{const}_p $(f)^{p} \lesssim \mathbb{E}[|\nabla f|^{p}].$
- For monotonicity in the Boolean case: let ∇f be the discrete gradient of f, and let ∇⁻f := min{∇f,0} be its directed (discrete) gradient.

• Then the lemma says: dist₁^{mono}(f) $\lesssim \mathbb{E}[\|\nabla^{-}f\|_{1}]$.

Suppose $f : \{0,1\}^d \to \{0,1\}$ is ε -far from monotone. Let V(f) denote the number of violating edges in f. Then

 $V(f) \geq \varepsilon \cdot 2^d$.

- Recall: Poincaré inequality has the form $\|f f_{\Omega}\|_{p} \lesssim \|\nabla f\|_{p}$.
- Put another way: dist^{const}_p $(f)^{p} \lesssim \mathbb{E}[|\nabla f|^{p}].$
- For monotonicity in the Boolean case: let ∇f be the discrete gradient of f, and let ∇⁻f := min{∇f,0} be its directed (discrete) gradient.
- Then the lemma says: $dist_1^{mono}(f) \leq \mathbb{E}[\|\nabla^- f\|_1]$.

For $p, q \ge 1$, a classical (L^p, ℓ^q) -Poincaré inequality says

 $\operatorname{dist}_p^{\operatorname{const}}(f)^p \lesssim \mathbb{E}\left[\| \nabla f \|_q^p \right] \,,$

and a directed (L^p, ℓ^q) -Poincaré inequality says

$$\operatorname{dist}_p^{\operatorname{mono}}(f)^p \lesssim \mathbb{E}\left[\| \nabla^- f \|_q^p
ight] \,,$$

where $abla^- := \min\{0,
abla\}$ and

$$\begin{split} \operatorname{dist}_p^{\operatorname{const}}(f) &:= \inf \left\{ \|f - g\|_{L^p} : g \in L^p \text{ constant} \right\},\\ \operatorname{dist}_p^{\operatorname{mono}}(f) &:= \inf \left\{ \|f - g\|_{L^p} : g \in L^p \text{ monotone} \right\} \end{split}$$

A connection between local violations and the distance to the property of interest.

	$\begin{array}{c} \textbf{Discrete} \\ f: \{0,1\}^d \rightarrow \{0,1\} \end{array}$	$\begin{array}{c} \textbf{Continuous} \\ f: [0,1]^d \rightarrow \mathbb{R} \end{array}$
Directed $\operatorname{dist}_{p}^{\operatorname{mono}}(f)^{p} \lesssim \mathbb{E}\left[\ \nabla^{-}f\ _{q}^{p} \right]$	• [Khot-Minzer-Safra'18] $(L^1, \ell^2) \implies \widetilde{O}(\sqrt{d}/\varepsilon^2)$ • [Chakrabarty-Seshadhri'16] Margulis $\implies o(d)$ • [edge tester] $(L^1, \ell^1) \implies O(d/\varepsilon)$	• [this work] $(L^2, \ell^2) \implies \widetilde{O}(\sqrt{d}M^2/\varepsilon^2)$ • [F'23] $(L^1, \ell^1) \implies O(dM/\varepsilon)$
$Classical \\ dist_p^{const}(f)^p \lesssim \mathbb{E}\left[\ \nabla f\ _q^p \right]$	• [Talagrand'93] (L^1, ℓ^2) • [Margulis'74] • classical $(L^2, \ell^2) \implies (L^1, \ell^1)$	• classical (L^2,ℓ^2) • [Bobkov-Houdré'97] $(L^1,\ell^2) \implies (L^1,\ell^1)$

	$\begin{array}{c} \textbf{Discrete} \\ f: \{0,1\}^d \rightarrow \{0,1\} \end{array}$	$\begin{array}{c} \textbf{Continuous} \\ f: [0,1]^d \rightarrow \mathbb{R} \end{array}$
Directed $dist_p^{mono}(f)^p \lesssim \mathbb{E}\left[\ \nabla^- f\ _Q^p \right]$	• [Khot-Minzer-Safra'18] $(L^1, \ell^2) \implies \widetilde{O}(\sqrt{d}/\varepsilon^2)$ • [Chakrabarty-Seshadhri'16] Margulis $\implies o(d)$ • [edge tester] $(L^1, \ell^1) \implies O(d/\varepsilon)$	• [this work] $(L^2, \ell^2) \implies \widetilde{O}(\sqrt{d}M^2/\varepsilon^2)$ • [F'23] $(L^1, \ell^1) \implies O(dM/\varepsilon)$
$\frac{Classical}{{\operatorname{dist}}_p^{const}(f)^p \lesssim \mathbb{E}\left[\ \nabla f\ _q^p \right]$	• [Talagrand'93] (L^1, ℓ^2) • [Margulis'74]	• classical (L^2,ℓ^2)
	• classical $(L^2,\ell^2) \implies (L^1,\ell^1)$	• [Bobkov-Houdré'97] $\left(L^1,\ell^2 ight) \implies \left(L^1,\ell^1 ight)$

	$\begin{array}{c} \textbf{Discrete} \\ f: \{0,1\}^d \rightarrow \{0,1\} \end{array}$	$\begin{array}{c} \textbf{Continuous} \\ f: [0,1]^d \rightarrow \mathbb{R} \end{array}$
Directed $\operatorname{dist}_{p}^{\operatorname{mono}}(f)^{p} \lesssim \mathbb{E}\left[\ \nabla^{-}f\ _{q}^{p} \right]$	• [Khot-Minzer-Safra'18] $(L^1, \ell^2) \implies \widetilde{O}(\sqrt{d}/\varepsilon^2)$ • [Chakrabarty-Seshadhri'16] Margulis $\implies o(d)$ • [edge tester] $(L^1, \ell^1) \implies O(d/\varepsilon)$	• [this work] $(L^2, \ell^2) \implies \widetilde{O}(\sqrt{d}M^2/\varepsilon^2)$ • [F'23] $(L^1, \ell^1) \implies O(dM/\varepsilon)$
$Classical \\ dist_p^{const}(f)^p \lesssim \mathbb{E}\left[\ \nabla f\ _q^p \right]$	• [Talagrand'93] (L^1, ℓ^2) • [Margulis'74] • classical $(L^2, \ell^2) \implies (L^1, \ell^1)$	• classical (L^2, ℓ^2) • [Bobkov-Houdré'97] $(L^1, \ell^2) \implies (L^1, \ell^1)$

	$\begin{array}{c} \textbf{Discrete} \\ f: \{0,1\}^d \rightarrow \{0,1\} \end{array}$	$\begin{array}{c} \textbf{Continuous} \\ f: [0,1]^d \rightarrow \mathbb{R} \end{array}$
Directed $\operatorname{dist}_{p}^{\operatorname{mono}}(f)^{p} \lesssim \mathbb{E}\left[\ \nabla^{-}f\ _{q}^{p} \right]$	• [Khot-Minzer-Safra'18] $(L^1, \ell^2) \implies \widetilde{O}(\sqrt{d}/\varepsilon^2)$ • [Chakrabarty-Seshadhri'16] Margulis $\implies o(d)$ • [edge tester] $(L^1, \ell^1) \implies O(d/\varepsilon)$	• [this work] $(L^2, \ell^2) \implies \widetilde{O}(\sqrt{d}M^2/\varepsilon^2)$ • [F'23] $(L^1, \ell^1) \implies O(dM/\varepsilon)$
$\frac{Classical}{dist_p^{const}(f)^p} \lesssim \mathbb{E}\left[\ \nabla f\ _q^p \right]$	• [Talagrand'93] (L^1, ℓ^2) • [Margulis'74] • classical $(L^2, \ell^2) \implies (L^1, \ell^1)$	• classical (L^2,ℓ^2) • [Bobkov-Houdré'97] $(L^1,\ell^2) \implies (L^1,\ell^1)$

	$\begin{array}{c} \textbf{Discrete} \\ f: \{0,1\}^d \rightarrow \{0,1\} \end{array}$	$\begin{array}{c} \textbf{Continuous} \\ f:[0,1]^d \rightarrow \mathbb{R} \end{array}$
Directed $\operatorname{dist}_{p}^{\operatorname{mono}}(f)^{p} \lesssim \mathbb{E}\left[\ \nabla^{-}f\ _{q}^{p} \right]$	• [Khot-Minzer-Safra'18] $(L^1, \ell^2) \implies \widetilde{O}(\sqrt{d}/\varepsilon^2)$ • [Chakrabarty-Seshadhri'16] Margulis $\implies o(d)$ • [edge tester] $(L^1, \ell^1) \implies O(d/\varepsilon)$	• [this work] $(L^2, \ell^2) \implies \widetilde{O}(\sqrt{d}M^2/\varepsilon^2)$ • [F'23] $(L^1, \ell^1) \implies O(dM/\varepsilon)$
$\frac{Classical}{dist_p^{const}(f)^p} \lesssim \mathbb{E}\left[\ \nabla f\ _q^p \right]$	• [Talagrand'93] (L^1, ℓ^2) • [Margulis'74] • classical $(L^2, \ell^2) \implies (L^1, \ell^1)$	• classical (L^2,ℓ^2) • [Bobkov-Houdré'97] $(L^1,\ell^2) \implies (L^1,\ell^1)$

	$\begin{array}{c} \textbf{Discrete} \\ f: \{0,1\}^d \rightarrow \{0,1\} \end{array}$	$\begin{array}{c} \textbf{Continuous} \\ f:[0,1]^d \rightarrow \mathbb{R} \end{array}$
Directed $\operatorname{dist}_{p}^{\operatorname{mono}}(f)^{p} \lesssim \mathbb{E}\left[\ \nabla^{-}f\ _{q}^{p} \right]$	• [Khot-Minzer-Safra'18] $(L^1, \ell^2) \implies \widetilde{O}(\sqrt{d}/\varepsilon^2)$ • [Chakrabarty-Seshadhri'16] Margulis $\implies o(d)$ • [edge tester] $(L^1, \ell^1) \implies O(d/\varepsilon)$	• [this work] $(L^2, \ell^2) \implies \widetilde{O}(\sqrt{d}M^2/\varepsilon^2)$ • [F'23] $(L^1, \ell^1) \implies O(dM/\varepsilon)$
$Classical \\ dist_p^{const}(f)^p \lesssim \mathbb{E}\left[\ \nabla f\ _q^p \right]$	• [Talagrand'93] (L^1, ℓ^2) • [Margulis'74] • classical $(L^2, \ell^2) \implies (L^1, \ell^1)$	• classical (L^2,ℓ^2) • [Bobkov-Houdré'97] $(L^1,\ell^2) \implies (L^1,\ell^1)$

	$\begin{array}{c} \textbf{Discrete} \\ f: \{0,1\}^d \rightarrow \{0,1\} \end{array}$	$\begin{array}{c} \textbf{Continuous} \\ f: [0,1]^d \rightarrow \mathbb{R} \end{array}$
Directed $dist_p^{mono}(f)^p \lesssim \mathbb{E}\left[\ \nabla^- f\ _{t^2}^p \right]$	• [Khot-Minzer-Safra'18] $(L^1, \ell^2) \implies \widetilde{O}(\sqrt{d}/\varepsilon^2)$ • [Chakrabarty-Seshadhri'16] Margulis $\implies o(d)$ • [edge tester] $(L^1, \ell^1) \implies O(d/\varepsilon)$	• [this work] $(L^2, \ell^2) \implies \widetilde{O}(\sqrt{d}M^2/\varepsilon^2)$ • [F'23] $(L^1, \ell^1) \implies O(dM/\varepsilon)$
$Classical \\ \operatorname{dist}_{p}^{\operatorname{const}}(f)^{p} \lesssim \mathbb{E}\left[\ \nabla f\ _{q}^{p} \right]$	• [Talagrand'93] (L^1, ℓ^2) • [Margulis'74] • classical $(L^2, \ell^2) \implies (L^1, \ell^1)$	• classical (L^2,ℓ^2) • [Bobkov-Houdré'97] $(L^1,\ell^2) \implies (L^1,\ell^1)$

	$\begin{array}{c} \textbf{Discrete} \\ f: \{0,1\}^d \rightarrow \{0,1\} \end{array}$	$\frac{\text{Continuous}}{f:[0,1]^d \to \mathbb{R}}$
Directed $dist_{p}^{mono}(f)^{p} \lesssim \mathbb{E}\left[\ \nabla^{-}f\ _{q}^{p} \right]$	• [Khot-Minzer-Safra'18] $(L^1, \ell^2) \implies \widetilde{O}(\sqrt{d}/\varepsilon^2)$] • [Chakrabarty-Seshadhri'16] Margulis $\implies o(d)$ • [edge tester] $(L^1, \ell^1) \implies O(d/\varepsilon)$	• [this work] $(L^2, \ell^2) \implies \widetilde{O}(\sqrt{d}M^2/\varepsilon^2)$ • [F'23] $(L^1, \ell^1) \implies O(dM/\varepsilon)$
$Classical \\ \operatorname{dist}_{p}^{\operatorname{const}}(f)^{p} \lesssim \mathbb{E}\left[\ \nabla f\ _{q}^{p} \right]$	• [Talagrand'93] (L^1, ℓ^2) • [Margulis'74] • classical $(L^2, \ell^2) \implies (L^1, \ell^1)$	• classical (L^2, ℓ^2) • [Bobkov-Houdré'97] $(L^1, \ell^2) \implies (L^1, \ell^1)$

	$\begin{array}{c} \textbf{Discrete} \\ f: \{0,1\}^d \rightarrow \{0,1\} \end{array}$	$\begin{array}{c} \textbf{Continuous} \\ f: [0,1]^d \rightarrow \mathbb{R} \end{array}$
Directed $\operatorname{dist}_{p}^{\operatorname{mono}}(f)^{p} \lesssim \mathbb{E}\left[\ \nabla^{-}f\ _{q}^{p} \right]$	• [Khot-Minzer-Safra'18] $(L^1, \ell^2) \implies \widetilde{O}(\sqrt{d}/\varepsilon^2)$] • [Chakrabarty-Seshadhri'16] Margulis $\implies o(d)$ • [edge tester] $(L^1, \ell^1) \implies O(d/\varepsilon)$	• [this work] $(L^2, \ell^2) \implies \widetilde{O}(\sqrt{d}M^2/\varepsilon^2)$ • [F'23] $(L^1, \ell^1) \implies O(dM/\varepsilon)$
$Classical \\ \operatorname{dist}_{p}^{\operatorname{const}}(f)^{p} \lesssim \mathbb{E}\left[\ \nabla f\ _{q}^{p} \right]$	• [Talagrand'93] (L^1, ℓ^2) • [Margulis'74] • classical $(L^2, \ell^2) \implies (L^1, \ell^1)$	• classical (L^2, ℓ^2) • [Bobkov-Houdré'97] $(L^1, \ell^2) \implies (L^1, \ell^1)$

	$\begin{array}{c} \textbf{Discrete} \\ f: \{0,1\}^d \rightarrow \{0,1\} \end{array}$	$\begin{array}{c} \textbf{Continuous} \\ f:[0,1]^d \rightarrow \mathbb{R} \end{array}$
Directed $\operatorname{dist}_{p}^{\operatorname{mono}}(f)^{p} \lesssim \mathbb{E}\left[\ \nabla^{-}f\ _{q}^{p} \right]$	• [Khot-Minzer-Safra'18] $(L^1, \ell^2) \implies \widetilde{O}(\sqrt{d}/\varepsilon^2)$] • [Chakrabarty-Seshadhri'16] Margulis $\implies o(d)$ • [edge tester] $(L^1, \ell^1) \implies O(d/\varepsilon)$	• [this work] $(L^2, \ell^2) \implies \widetilde{O}(\sqrt{d}M^2/\varepsilon^2)$ • [F'23] $(L^1, \ell^1) \implies O(dM/\varepsilon)$
$Classical \\ \operatorname{dist}_{p}^{\operatorname{const}}(f)^{p} \lesssim \mathbb{E}\left[\ \nabla f\ _{q}^{p} \right]$	• [Talagrand'93] (L^1, ℓ^2) • [Margulis'74] • classical $(L^2, \ell^2) \implies (L^1, \ell^1)$	• classical (L^2,ℓ^2) • [Bobkov-Houdré'97] $(L^1,\ell^2) \implies (L^1,\ell^1)$

	$\begin{array}{c} \textbf{Discrete} \\ f: \{0,1\}^d \rightarrow \{0,1\} \end{array}$	$\frac{\textbf{Continuous}}{f:[0,1]^d \to \mathbb{R}}$
Directed $\operatorname{dist}_{p}^{\operatorname{mono}}(f)^{p} \leq \mathbb{E}\left[\ \nabla^{-}f\ _{q}^{p} \right]$	• [Khot-Minzer-Safra'18] $(L^1, \ell^2) \implies \widetilde{O}(\sqrt{d}/\varepsilon^2)$ • [Chakrabarty-Seshadhri'16] Margulis $\implies o(d)$ • [edge tester] $(L^1, \ell^1) \implies O(d/\varepsilon)$	• [this work] $(L^2, \ell^2) \implies \widetilde{O}(\sqrt{d}M^2/\varepsilon^2)$ • [F'23] $(L^1, \ell^1) \implies O(dM/\varepsilon)$
$Classical \\ dist_p^{const}(f)^p \lesssim \mathbb{E}\left[\ \nabla f\ _q^p \right]$	• [Talagrand'93] (L^1, ℓ^2) • [Margulis'74] • classical $(L^2, \ell^2) \implies (L^1, \ell^1)$	• classical (L^2,ℓ^2) • [Bobkov-Houdré'97] $(L^1,\ell^2) \implies (L^1,\ell^1)$

	$\begin{array}{c} \textbf{Discrete} \\ f: \{0,1\}^d \rightarrow \{0,1\} \end{array}$	$\frac{\text{Continuous}}{f:[0,1]^d \to \mathbb{R}}$
Directed $\operatorname{dist}_{p}^{\operatorname{mono}}(f)^{p} \lesssim \mathbb{E}\left[\ \nabla^{-}f\ _{q}^{p} \right]$	• [Khot-Minzer-Safra'18] $(L^1, \ell^2) \implies \widetilde{O}(\sqrt{d}/\varepsilon^2)$] • [Chakrabarty-Seshadhri'16] Margulis $\implies o(d)$ • [edge tester] $(L^1, \ell^1) \implies O(d/\varepsilon)$	• [this work] $(L^2, \ell^2) \implies \widetilde{O}(\sqrt{d}M^2/\varepsilon^2)$ • [F'23] $(L^1, \ell^1) \implies O(dM/\varepsilon)$
$Classical \\ dist_p^{const}(f)^p \lesssim \mathbb{E}\left[\ \nabla f\ _q^p \right]$	• [Talagrand'93] (L^1, ℓ^2) • [Margulis'74] • classical $(L^2, \ell^2) \implies (L^1, \ell^1)$	• classical (L^2,ℓ^2) • [Bobkov-Houdré'97] $(L^1,\ell^2) \implies (L^1,\ell^1)$

- Guiding question [F'23]: is there a o(d) monotonicity tester in the continuous setting?
- Conceptual motivation: answering this question should require a deeper understanding of the connection between classical and directed isoperimetry.

Our answers:

- **()** Yes: in fact, roughly \sqrt{d} queries suffice.
- Main insight: a common phenomenon underlying classical and directed Poincaré inequalities in continuous space, namely convergence properties of a partial differential equation (PDE) – the (classical or directed) heat equation.

- Guiding question [F'23]: is there a o(d) monotonicity tester in the continuous setting?
- Conceptual motivation: answering this question should require a deeper understanding of the connection between classical and directed isoperimetry.

Our answers:

- **9** Yes: in fact, roughly \sqrt{d} queries suffice.
- Main insight: a common phenomenon underlying classical and directed Poincaré inequalities in continuous space, namely convergence properties of a partial differential equation (PDE) – the (classical or directed) heat equation.

- Give the idea behind the $\widetilde{O}(\sqrt{d}M^2/\varepsilon^2)$ tester, using the directed Poincaré inequality.
- **②** Overview the proof ideas underlying the directed Poincaré inequality.

Provide some intuition for the directed heat equation, the main new ingredient toward proving the directed Poincaré inequality.

Input: *M*-Lipschitz $f : [0,1]^d \to \mathbb{R}$. Accept if f is monotone, reject if $dist_2^{mono}(f) \ge \varepsilon$. **Oracle queries**:

- Value query given x, obtain f(x).
- Directional derivative query given x, v, obtain $\nabla_v f(x) = v \cdot \nabla f(x)$.

[F'23]: tester with query complexity $O(dM/\varepsilon)$.¹ Left open: sublinear tester?

¹Actually a bit stronger than this, since in [F'23] M can be the Lipschitz constant in ℓ^1 geometry.

Input: *M*-Lipschitz $f : [0,1]^d \to \mathbb{R}$. Accept if f is monotone, reject if $dist_2^{mono}(f) \ge \varepsilon$. Oracle queries:

- Value query given x, obtain f(x).
- Directional derivative query given x, v, obtain $\nabla_v f(x) = v \cdot \nabla f(x)$.

[F'23]: tester with query complexity $O(dM/\varepsilon)$.¹ Left open: sublinear tester?

¹Actually a bit stronger than this, since in [F'23] M can be the Lipschitz constant in ℓ^1 geometry.

Input: *M*-Lipschitz $f : [0,1]^d \to \mathbb{R}$. Accept if f is monotone, reject if $dist_2^{mono}(f) \ge \varepsilon$. **Oracle queries**:

- Value query given x, obtain f(x).
- Directional derivative query given x, v, obtain $\nabla_v f(x) = v \cdot \nabla f(x)$.

[F'23]: tester with query complexity $O(dM/\varepsilon)$.¹ Left open: sublinear tester?

¹Actually a bit stronger than this, since in [F'23] M can be the Lipschitz constant in ℓ^1 geometry.

Input: *M*-Lipschitz $f : [0,1]^d \to \mathbb{R}$. Accept if f is monotone, reject if $dist_2^{mono}(f) \ge \varepsilon$. **Oracle queries**:

- Value query given x, obtain f(x).
- Directional derivative query given x, v, obtain $\nabla_v f(x) = v \cdot \nabla f(x)$.

[F'23]: tester with query complexity $O(dM/\varepsilon)$.¹ Left open: sublinear tester?

¹Actually a bit stronger than this, since in [F'23] M can be the Lipschitz constant in ℓ^1 geometry.

Theorem (Directed Poincaré inequality)

There exists a universal constant C > 0 such that, for all $f \in H^1((0,1)^d)$,

 $\operatorname{dist}_2^{\operatorname{mono}}(f)^2 \leq C \operatorname{\mathbb{E}}\left[\|
abla^- f \|_2^2
ight] \,.$

Theorem (Monotonicity tester)

There exists a nonadaptive, directional derivative L^2 monotonicity tester for M-Lipschitz functions $f : [0,1]^d \to \mathbb{R}$ with query complexity $\widetilde{O}(\sqrt{d}M^2/\varepsilon^2)$ and one-sided error.

Also, the \sqrt{d} dependence is optimal among a natural generalization of *pair testers* to the continuous setting.

Idea of the tester

Tester: sample uniform $\boldsymbol{x} \in [0,1]^d$, $\boldsymbol{v} \sim \mathcal{D}$, and reject if $\boldsymbol{v} \cdot \nabla f(\boldsymbol{x}) < 0$.

Lemma (Detecting negative entries with subset sums)

There exists a distribution \mathcal{D} over $\{0,1\}^d$ and universal constant c > 0 such that, for any nonzero $u \in \mathbb{R}^d$, we have

$$\mathbb{P}_{\sim \mathcal{D}}[u \cdot \mathbf{v} < 0] \geq c \cdot \frac{\|u^-\|_2^2}{\sqrt{d}\log(d) \cdot \|u\|_2^2}.$$

Essentially a *signed* version of the **group testing** problem [Dorfman'43].

Rejection probability when $dist_2^{mono}(f) \ge \varepsilon$:

$$\mathbb{E}_{\mathbf{x}}\left[\mathbb{P}\left[\mathbf{v}\cdot\nabla f(\mathbf{x})<0\right]\right] \gtrsim \mathbb{E}_{\mathbf{x}}\left[\frac{\|\nabla^{-}f(\mathbf{x})\|_{2}^{2}}{\sqrt{d}\log(d)\|\nabla f(\mathbf{x})\|_{2}^{2}}\right] \geq \frac{1}{\sqrt{d}\log(d)M^{2}}\mathbb{E}\left[\|\nabla^{-}f\|_{2}^{2}\right]$$
$$\gtrsim \frac{\operatorname{dist}_{2}^{\operatorname{mono}}(f)^{2}}{\sqrt{d}\log(d)M^{2}} \geq \frac{\varepsilon^{2}}{\sqrt{d}\log(d)M^{2}}.$$

Idea of the tester

Tester: sample uniform $\boldsymbol{x} \in [0,1]^d$, $\boldsymbol{v} \sim \mathcal{D}$, and reject if $\boldsymbol{v} \cdot \nabla f(\boldsymbol{x}) < 0$.

Lemma (Detecting negative entries with subset sums)

There exists a distribution \mathcal{D} over $\{0,1\}^d$ and universal constant c > 0 such that, for any nonzero $u \in \mathbb{R}^d$, we have

$$\mathbb{P}_{\boldsymbol{v}\sim\mathcal{D}}[\boldsymbol{u}\cdot\boldsymbol{v}<\boldsymbol{0}]\geq \boldsymbol{c}\cdot\frac{\|\boldsymbol{u}^-\|_2^2}{\sqrt{d}\log(d)\cdot\|\boldsymbol{u}\|_2^2}$$

Essentially a *signed* version of the **group testing** problem [Dorfman'43].

Rejection probability when $dist_2^{mono}(f) \geq \varepsilon$:

$$\begin{split} \mathbb{E}_{\mathbf{x}} \left[\mathbb{P}\left[\mathbf{v} \cdot \nabla f(\mathbf{x}) < 0 \right] \right] \gtrsim \mathbb{E}_{\mathbf{x}} \left[\frac{\|\nabla^{-} f(\mathbf{x})\|_{2}^{2}}{\sqrt{d} \log(d) \|\nabla f(\mathbf{x})\|_{2}^{2}} \right] \geq \frac{1}{\sqrt{d} \log(d) M^{2}} \mathbb{E}\left[\|\nabla^{-} f\|_{2}^{2} \right] \\ \gtrsim \frac{\operatorname{dist}_{2}^{\operatorname{mono}}(f)^{2}}{\sqrt{d} \log(d) M^{2}} \geq \frac{\varepsilon^{2}}{\sqrt{d} \log(d) M^{2}} \,. \end{split}$$

Idea of the tester

Tester: sample uniform $\boldsymbol{x} \in [0,1]^d$, $\boldsymbol{v} \sim \mathcal{D}$, and reject if $\boldsymbol{v} \cdot \nabla f(\boldsymbol{x}) < 0$.

Lemma (Detecting negative entries with subset sums)

There exists a distribution \mathcal{D} over $\{0,1\}^d$ and universal constant c > 0 such that, for any nonzero $u \in \mathbb{R}^d$, we have

$$\mathbb{P}_{\boldsymbol{v}\sim\mathcal{D}}[u\cdot oldsymbol{v}<0]\geq c\cdot rac{\|u^-\|_2^2}{\sqrt{d}\log(d)\cdot\|u\|_2^2}$$

Essentially a *signed* version of the **group testing** problem [Dorfman'43].

Rejection probability when $dist_2^{mono}(f) \geq \varepsilon$:

$$\begin{split} \mathbb{E}_{\mathbf{x}} \left[\mathbb{P}\left[\mathbf{v} \cdot \nabla f(\mathbf{x}) < 0 \right] \right] \gtrsim \mathbb{E}_{\mathbf{x}} \left[\frac{\|\nabla^{-} f(\mathbf{x})\|_{2}^{2}}{\sqrt{d} \log(d) \|\nabla f(\mathbf{x})\|_{2}^{2}} \right] \geq \frac{1}{\sqrt{d} \log(d) M^{2}} \mathbb{E}\left[\|\nabla^{-} f\|_{2}^{2} \right] \\ \gtrsim \frac{\operatorname{dist}_{2}^{\operatorname{mono}}(f)^{2}}{\sqrt{d} \log(d) M^{2}} \geq \frac{\varepsilon^{2}}{\sqrt{d} \log(d) M^{2}} \,. \end{split}$$

There exists a distribution \mathcal{D} over $\{0,1\}^d$ and universal constant c > 0 such that, for any nonzero $u \in \mathbb{R}^d$, we have

$$\mathbb{P}_{\boldsymbol{v}\sim\mathcal{D}}\left[u\cdotoldsymbol{v}<0
ight]\geq c\cdotrac{\|u^-\|_2^2}{\sqrt{d}\log(d)\cdot\|u\|_2^2}$$

- For simplicity, suppose $||u||_2^2 \approx ||u^-||_2^2 \approx 1$.
- If $|\operatorname{supp}(u^-)| \gtrsim \sqrt{d}$, guessing singleton $v_i = 1$ works.
- Suppose $|\operatorname{supp}(u^-)| = 1$, so $u_i \approx -1$ for some i, and $u_j \approx 1/\sqrt{d}$ for $j \neq i$.
 - Guessing $v \in \{0,1\}^d$ with $||v||_1 \approx \sqrt{d}$ works.
- General case: guess expected ||v||₁ from 1, 2, 4, ..., d, and argue via thresholds of the form u_i < -τ that one of these granularities works.

There exists a distribution \mathcal{D} over $\{0,1\}^d$ and universal constant c > 0 such that, for any nonzero $u \in \mathbb{R}^d$, we have

$$\mathbb{P}_{\sim \mathcal{D}}[u \cdot oldsymbol{v} < 0] \geq c \cdot rac{\|u^-\|_2^2}{\sqrt{d}\log(d) \cdot \|u\|_2^2}$$

- For simplicity, suppose $\|u\|_2^2 \approx \|u^-\|_2^2 \approx 1$.
- If $|\operatorname{supp}(u^-)| \gtrsim \sqrt{d}$, guessing singleton $v_i = 1$ works.
- Suppose $|\operatorname{supp}(u^-)| = 1$, so $u_i \approx -1$ for some i, and $u_j \approx 1/\sqrt{d}$ for $j \neq i$.
 - Guessing $v \in \{0,1\}^d$ with $||v||_1 \approx \sqrt{d}$ works.
- General case: guess expected ||v||₁ from 1, 2, 4, ..., d, and argue via thresholds of the form u_i < -τ that one of these granularities works.

There exists a distribution \mathcal{D} over $\{0,1\}^d$ and universal constant c > 0 such that, for any nonzero $u \in \mathbb{R}^d$, we have

$$\mathbb{P}_{\sim \mathcal{D}}[u \cdot oldsymbol{v} < 0] \geq c \cdot rac{\|u^-\|_2^2}{\sqrt{d}\log(d) \cdot \|u\|_2^2}$$

- For simplicity, suppose $\|u\|_2^2 \approx \|u^-\|_2^2 \approx 1$.
- If $|\operatorname{supp}(u^{-})| \gtrsim \sqrt{d}$, guessing singleton $v_i = 1$ works.
- Suppose $|\operatorname{supp}(u^-)| = 1$, so $u_i \approx -1$ for some i, and $u_j \approx 1/\sqrt{d}$ for $j \neq i$.

• Guessing $v \in \{0,1\}^d$ with $||v||_1 \approx \sqrt{d}$ works.

 General case: guess expected ||v||₁ from 1, 2, 4, ..., d, and argue via thresholds of the form u_i < -τ that one of these granularities works.

There exists a distribution \mathcal{D} over $\{0,1\}^d$ and universal constant c > 0 such that, for any nonzero $u \in \mathbb{R}^d$, we have

$$\mathbb{P}_{\sim \mathcal{D}}\left[u \cdot oldsymbol{v} < 0
ight] \geq c \cdot rac{\|u^-\|_2^2}{\sqrt{d}\log(d) \cdot \|u\|_2^2}$$

- For simplicity, suppose $\|u\|_2^2 \approx \|u^-\|_2^2 \approx 1$.
- If $|\operatorname{supp}(u^{-})| \gtrsim \sqrt{d}$, guessing singleton $v_i = 1$ works.
- Suppose $|\operatorname{supp}(u^{-})| = 1$, so $u_i \approx -1$ for some *i*, and $u_j \approx 1/\sqrt{d}$ for $j \neq i$.
 - Guessing $v \in \{0,1\}^d$ with $\|v\|_1 \approx \sqrt{d}$ works.
- General case: guess expected ||v||₁ from 1, 2, 4, ..., d, and argue via thresholds of the form u_i < -τ that one of these granularities works.

There exists a distribution \mathcal{D} over $\{0,1\}^d$ and universal constant c > 0 such that, for any nonzero $u \in \mathbb{R}^d$, we have

$$\mathbb{P}_{\sim \mathcal{D}}\left[u \cdot oldsymbol{v} < 0
ight] \geq c \cdot rac{\|u^-\|_2^2}{\sqrt{d}\log(d) \cdot \|u\|_2^2}$$

- For simplicity, suppose $\|u\|_2^2 \approx \|u^-\|_2^2 \approx 1.$
- If $|\operatorname{supp}(u^{-})| \gtrsim \sqrt{d}$, guessing singleton $v_i = 1$ works.
- Suppose $|\operatorname{supp}(u^{-})| = 1$, so $u_i \approx -1$ for some i, and $u_j \approx 1/\sqrt{d}$ for $j \neq i$.
 - Guessing $v \in \{0,1\}^d$ with $||v||_1 \approx \sqrt{d}$ works.
- General case: guess expected ||v||₁ from 1, 2, 4, ..., d, and argue via thresholds of the form u_i < −τ that one of these granularities works.

Our tester is the natural continuous analogue of the $\widetilde{O}(\sqrt{d})$ path tester of [KMS'18].

- [KMS'18]: sample x ≤ y in {0,1}^d joined by a path of length 2^k, for k sampled uniformly from [log d].
- For us, taking edge *i* in the path tester roughly corresponds to sampling $v_i = 1$ for the directional derivative query.

Directed Poincaré inequality – proof overview

Directed Poincaré inequality:

$$\mathsf{dist}^{\mathsf{mono}}_2(f)^2 \lesssim \mathbb{E}\left[\|
abla^- f \|_2^2
ight] \,.$$

Main ideas:

- Introduce and study a 1D dynamical process, the directed heat equation.
- **②** Use it to prove the 1D *transport-energy inequality*

$$W_2^2(\mu,\mu_\infty) \lesssim \int_{[0,1]} (\partial_x^- u)^2 \,\mathrm{d}x \,.$$

• Tensorize the transport-energy inequality to $[0, 1]^d$:

$$W_2^2(\mu o \mu^*) \lesssim \int_{[0,1]^d} \left|
abla^- f \right|^2 \mathrm{d}x \,.$$

() Use Kantorovich duality to go from Wasserstein to L^p distance:

$$\mathsf{dist}_2^{\mathsf{mono}}(f)^2 \lesssim \mathbb{E}\left[\|
abla^- f \|_2^2
ight]$$

Directed Poincaré inequality – proof overview

Directed Poincaré inequality:

$$\mathsf{dist}^{\mathsf{mono}}_2(f)^2 \lesssim \mathbb{E}\left[\|
abla^- f \|_2^2
ight] \,.$$

Main ideas:

- Introduce and study a 1D dynamical process, the directed heat equation.
- **2** Use it to prove the 1D *transport-energy inequality*

$$W_2^2(\mu,\mu_\infty) \lesssim \int_{[0,1]} (\partial_x^- u)^2 \,\mathrm{d}x \,.$$

• Tensorize the transport-energy inequality to $[0, 1]^d$:

$$W_2^2(\mu \to \mu^*) \lesssim \int_{[0,1]^d} |\nabla^- f|^2 \,\mathrm{d}x.$$

• Use Kantorovich duality to go from Wasserstein to L^p distance:

 ${\sf dist}_2^{\sf mono}(f)^2 \lesssim \mathbb{E}\left[\|
abla^- f \|_2^2
ight] \, .$

Goal: find a robust approach to the classical Poincaré inequality, such that "toggling" one aspect of this approach yields the **directed** version.

Main idea: the classical Poincaré inequality characterizes the convergence of the heat equation toward equilibrium.

Let $x \in [0,1]^d$ denote space and $t \ge 0$ time. For u = u(t,x), the heat equation is

 $\partial_t u = \Delta u$,

where $\Delta = \sum_i \partial_i \partial_i$ is the Laplacian operator. In one dimension,

$$\partial_t u = \partial_x \underbrace{\partial_x u}_{\text{"flux"}}$$
.

Value view

Particle view

Exponential convergence

Variance decay: assuming *u* has mean zero,

$$\partial_t \operatorname{Var} \left[u(t) \right] = \partial_t \int u(t)^2 \, \mathrm{d}x$$

= $\int \partial_t u(t)^2 \, \mathrm{d}x$
= $2 \int u(t) \Delta u(t) \, \mathrm{d}x$ (Heat equation)
= $-2 \int \nabla u(t) \cdot \nabla u(t)$ (Integration by parts)
= $-2\mathbb{E} \left[\|\nabla u(t)\|_2^2 \right]$.

So $\partial_t \operatorname{Var}[u(t)] \leq -C \operatorname{Var}[u(t)]$ iff $\operatorname{dist}_2^{\operatorname{const}}(u(t))^2 = \operatorname{Var}[u(t)] \leq \frac{2}{C} \mathbb{E}\left[\|\nabla u(t)\|_2^2 \right].$

Exponential decay of variance is equivalent to the Poincaré inequality.

Looking ahead at the **directed** case: analyze decay of $dist_2^{mono}(f)^2$? Maybe, but does not seem to lead to a proof.

Another relevant quantity: the Dirichlet energy

$$\mathcal{E}(f) = \frac{1}{2} \int (\partial_x f)^2 \,\mathrm{d}x \,.$$

Intuition: measure the local violations of the "constant" property.

By similar calculation, $\mathcal{E}(u(t))$ also enjoys exponential decay under the heat equation.

Directed heat equation

Sticking to one dimension for now, we study the directed heat equation

$$\partial_t u = \partial_x \partial_x^- u(t)$$
.

Particle view, directed version

"Should" converge to a *monotone* limit \implies learn about distance to monotonicity?

Analyze via the directed Dirichlet energy

$$\mathcal{E}^{-}(f) = \frac{1}{2} \int (\partial_x^{-} f)^2 \,\mathrm{d}x$$

- The directed heat equation has a solution $u \mapsto P_t u$ (directed heat semigroup).
- $\mathcal{E}^{-}(P_t u)$ decays exponentially in time.
- The solution converges to a **monotone** limit $P_{\infty}u$ as $t \to \infty$.
- Nice analytic properties such as
 - Nonexpansiveness: $||P_t u P_t v||_{L^2} \le ||u v||_{L^2}$.
 - Order preservation: $u \leq v \implies P_t u \leq P_t v$.
 - Regularity preservation: u "regular" $\implies P_t u$ "regular" (concretely: Lipschitz, Sobolev class H^1).
- Main idea: canonical decomposition $u = u \uparrow + u \downarrow$.
 - $u\downarrow$ is "well-behaved" (\approx differentiable), $u\uparrow$ can be "wild" (e.g. jump up).

- The directed heat equation has a solution $u \mapsto P_t u$ (directed heat semigroup).
- $\mathcal{E}^{-}(P_t u)$ decays exponentially in time.
- The solution converges to a **monotone** limit $P_{\infty}u$ as $t \to \infty$.
- Nice analytic properties such as
 - Nonexpansiveness: $||P_t u P_t v||_{L^2} \le ||u v||_{L^2}$.
 - Order preservation: $u \leq v \implies P_t u \leq P_t v$.
 - Regularity preservation: u "regular" $\implies P_t u$ "regular" (concretely: Lipschitz, Sobolev class H^1).
- Main idea: canonical decomposition $u = u \uparrow + u \downarrow$.
 - $u\downarrow$ is "well-behaved" (\approx differentiable), $u\uparrow$ can be "wild" (e.g. jump up).

- The directed heat equation has a solution $u \mapsto P_t u$ (directed heat semigroup).
- $\mathcal{E}^{-}(P_t u)$ decays exponentially in time.
- The solution converges to a **monotone** limit $P_{\infty}u$ as $t \to \infty$.
- Nice analytic properties such as
 - Nonexpansiveness: $||P_t u P_t v||_{L^2} \le ||u v||_{L^2}$.
 - Order preservation: $u \leq v \implies P_t u \leq P_t v$.
 - Regularity preservation: u "regular" $\implies P_t u$ "regular" (concretely: Lipschitz, Sobolev class H^1).
- Main idea: canonical decomposition $u = u \uparrow + u \downarrow$.
 - $u\downarrow$ is "well-behaved" (\approx differentiable), $u\uparrow$ can be "wild" (e.g. jump up).

- The directed heat equation has a solution $u \mapsto P_t u$ (directed heat semigroup).
- $\mathcal{E}^{-}(P_t u)$ decays exponentially in time.
- The solution converges to a **monotone** limit $P_{\infty}u$ as $t \to \infty$.
- Nice analytic properties such as
 - Nonexpansiveness: $||P_t u P_t v||_{L^2} \le ||u v||_{L^2}$.
 - Order preservation: $u \leq v \implies P_t u \leq P_t v$.
 - Regularity preservation: u "regular" $\implies P_t u$ "regular" (concretely: Lipschitz, Sobolev class H^1).
- Main idea: canonical decomposition $u = u \uparrow + u \downarrow$.
 - $u\downarrow$ is "well-behaved" (\approx differentiable), $u\uparrow$ can be "wild" (e.g. jump up).

- The directed heat equation has a solution $u \mapsto P_t u$ (directed heat semigroup).
- $\mathcal{E}^{-}(P_t u)$ decays exponentially in time.
- The solution converges to a **monotone** limit $P_{\infty}u$ as $t \to \infty$.
- Nice analytic properties such as
 - Nonexpansiveness: $||P_t u P_t v||_{L^2} \le ||u v||_{L^2}$.
 - Order preservation: $u \leq v \implies P_t u \leq P_t v$.
 - Regularity preservation: u "regular" $\implies P_t u$ "regular" (concretely: Lipschitz, Sobolev class H^1).
- Main idea: canonical decomposition $u = u \uparrow + u \downarrow$.
 - $u\downarrow$ is "well-behaved" (\approx differentiable), $u\uparrow$ can be "wild" (e.g. jump up).

- The directed heat equation has a solution $u \mapsto P_t u$ (directed heat semigroup).
- $\mathcal{E}^{-}(P_t u)$ decays exponentially in time.
- The solution converges to a **monotone** limit $P_{\infty}u$ as $t \to \infty$.
- Nice analytic properties such as
 - Nonexpansiveness: $||P_t u P_t v||_{L^2} \le ||u v||_{L^2}$.
 - Order preservation: $u \leq v \implies P_t u \leq P_t v$.
 - Regularity preservation: u "regular" $\implies P_t u$ "regular" (concretely: Lipschitz, Sobolev class H^1).
- Main idea: canonical decomposition $u = u \uparrow + u \downarrow$.
 - $u\downarrow$ is "well-behaved" (\approx differentiable), $u\uparrow$ can be "wild" (e.g. jump up).

Directed Poincaré inequality – proof overview

Directed Poincaré inequality:

$$\mathsf{dist}^{\mathsf{mono}}_2(f)^2 \lesssim \mathbb{E}\left[\|
abla^- f \|_2^2
ight] \,.$$

Main ideas:

- **()** Introduce and study a 1D dynamical process, the **directed heat equation**.
- **②** Use it to prove the 1D *transport-energy inequality*

$$W_2^2(\mu,\mu_\infty) \lesssim \int_{[0,1]} (\partial_x^- u)^2 \,\mathrm{d}x$$

• Tensorize the transport-energy inequality to $[0, 1]^d$:

$$W_2^2(\mu \to \mu^*) \lesssim \int_{[0,1]^d} |\nabla^- f|^2 \,\mathrm{d}x.$$

• Use Kantorovich duality to go from Wasserstein to L^p distance:

 ${
m dist}_2^{
m mono}(f)^2 \lesssim \mathbb{E}\left[\|
abla^- f \|_2^2
ight] \, .$

Optimal transport

Intimate connection between PDEs and optimal transport. For probability measures ρ_0, ρ_1 , the squared Wasserstein distance

 $W_2^2(\varrho_0, \varrho_1) =$ minimum cost of moving mass from ϱ_0 to ϱ_1 ,

if moving mass from x to y costs $|x - y|^2$.

Connection to PDEs via the Benamou-Brenier formula:

 $W_2^2(\varrho_0, \varrho_1) = \min\left\{\int_0^1 \|v_t\|_{L^2(\varrho_t)}^2 dt : v_t \text{ velocity field taking } \varrho_0 \text{ to } \varrho_1 \text{ from time 0 to } 1\right\}$

Optimal transport

Intimate connection between PDEs and optimal transport. For probability measures ρ_0, ρ_1 , the squared Wasserstein distance

 $W_2^2(\varrho_0, \varrho_1) =$ minimum cost of moving mass from ϱ_0 to ϱ_1 ,

if moving mass from x to y costs $|x - y|^2$.

Connection to PDEs via the Benamou-Brenier formula:

 $W_2^2(\varrho_0,\varrho_1) = \min\left\{\int_0^1 \|v_t\|_{L^2(\varrho_t)}^2 \,\mathrm{d}t : v_t \text{ velocity field taking } \varrho_0 \text{ to } \varrho_1 \text{ from time 0 to } 1\right\} \,.$

Directed heat equation $\partial_t u = \partial_x \partial_x^- u$

Suggests connection to the directed Dirichlet energy, $\mathcal{E}^{-}(f) = \frac{1}{2} \int (\partial_x^{-} f)^2 \, \mathrm{d}x.$

"velocity $v_t \approx \text{momentum} \approx \text{flux} \approx \partial_x^- f$ "

Step 2 – 1D Transport-energy inequality

Exploit the exponential decay of \mathcal{E}^- , via Benamou-Brenier, to conclude

Theorem (Transport-energy inequality in one dimension)

There exists a constant C > 0 such that the following holds. Let $u \in \mathcal{U}$ be positive, bounded away from zero, and satisfy $\int_{(0,1)} u \, dx = 1$. Define the measures $d\mu := u \, dx$ and $d\mu_{\infty} := (P_{\infty}u) \, dx$. Then

$$W_2^2(\mu,\mu_\infty) \leq rac{\mathcal{C}}{\inf u} \mathcal{E}^-(u) \,.$$

Directed Poincaré inequality – proof overview

Directed Poincaré inequality:

$$\mathsf{dist}^{\mathsf{mono}}_2(f)^2 \lesssim \mathbb{E}\left[\|
abla^- f \|_2^2
ight] \, .$$

Main ideas:

- **()** Introduce and study a 1D dynamical process, the **directed heat equation**.
- **2** Use it to prove the 1D *transport-energy inequality*

$$W_2^2(\mu,\mu_\infty) \lesssim \int_{[0,1]} (\partial_x^- u)^2 \,\mathrm{d}x \,.$$

③ Tensorize the transport-energy inequality to $[0, 1]^d$:

$$W_2^2(\mu o \mu^*) \lesssim \int_{[0,1]^d} \left|
abla^- f \right|^2 \mathrm{d} x \, .$$

• Use Kantorovich duality to go from Wasserstein to L^p distance: $\operatorname{dist}_2^{\operatorname{mono}}(f)^2 \leq \mathbb{E} \left[\|\nabla^- f\|_2^2 \right].$

Step 3 – Tensorizing the transport-energy inequality

How to **tensorize** into a multidimensional result? Key: move along one coordinate at a time, compose the costs $|x - y|^2$ via the Pythagorean theorem.

- Make all rows monotone, particles move horizontally.
- Ø Make all columns monotone, particles move vertically.
- 3 ...

Theorem (Transport-energy inequality)

There exists a universal constant C > 0 such that the following holds. Let $a \in (0, 1)$, and let $f \in \text{Lip}$ satisfy $1 - a \leq f \leq 1 + a$ and $\int_{[0,1]^d} f \, dx = 1$. Define the probability measures $d\mu := f \, dx$ and $d\mu^* := f^* \, dx$ on $[0,1]^d$. Then

$$W_2^2(\mu o \mu^*) \leq rac{C(1+a)^2}{(1-a)^3} \int_{[0,1]^d} |
abla^- f|^2 \,\mathrm{d}x \,.$$

Note above directed Wasserstein distance!

Directed Poincaré inequality – proof overview

Directed Poincaré inequality:

$$\mathsf{dist}^{\mathsf{mono}}_2(f)^2 \lesssim \mathbb{E}\left[\|
abla^- f \|_2^2
ight] \, .$$

Main ideas:

- **()** Introduce and study a 1D dynamical process, the **directed heat equation**.
- **2** Use it to prove the 1D *transport-energy inequality*

$$W_2^2(\mu,\mu_\infty) \lesssim \int_{[0,1]} (\partial_x^- u)^2 \,\mathrm{d}x$$

• Tensorize the transport-energy inequality to $[0, 1]^d$:

$$W_2^2(\mu \to \mu^*) \lesssim \int_{[0,1]^d} |\nabla^- f|^2 \,\mathrm{d}x \,.$$

• Use Kantorovich duality to go from Wasserstein to L^p distance:

 ${\sf dist}_2^{\sf mono}(f)^2 \lesssim \mathbb{E}\left[\|
abla^- f \|_2^2
ight] \,.$

Step 4 – From Wasserstein to L^p

Classically: close connections between transport-energy inequalities, Poincaré inequalities, Talagrand concentration inequalities, and log-Sobolev inequalities [Villani'09]. In particular [Liu'19] gives equivalence between:

1 Transport-energy inequality:

 $W_2^2(\mu,\mu_{\mathsf{unif}}) \lesssim \mathbb{E}\left[\|
abla f\|_2^2
ight] \,, \qquad ext{where } \mathrm{d}\mu \coloneqq f \, \mathrm{d}x = f \, \mathrm{d}\mu_{\mathsf{unif}} \,.$

2 Poincaré inequality:

 ${\sf dist}_2^{{\sf const}}(f)^2 \lesssim \mathbb{E}\left[\|
abla f\|_2^2
ight] \,.$

We show a directed *implication*. If the **directed transport energy inequality** holds:

 $W_2^2(\mu o \mu^*) \lesssim \mathbb{E}\left[\|
abla^- f\|_2^2
ight], ext{ where } \mu^*: ext{ monotone equilibrium of } \mu,$

then the directed Poincaré inequality holds:

$$\operatorname{dist}_2^{\operatorname{mono}}(f)^2 \lesssim \mathbb{E}\left[\|
abla^- f \|_2^2
ight] \, .$$

Step 4 – From Wasserstein to L^p

Classically: close connections between transport-energy inequalities, Poincaré inequalities, Talagrand concentration inequalities, and log-Sobolev inequalities [Villani'09]. In particular [Liu'19] gives equivalence between:

1 Transport-energy inequality:

 $W_2^2(\mu,\mu_{\mathsf{unif}}) \lesssim \mathbb{E}\left[\|
abla f\|_2^2
ight], \qquad ext{where } \mathrm{d}\mu \coloneqq f \, \mathrm{d}x = f \, \mathrm{d}\mu_{\mathsf{unif}}.$

2 Poincaré inequality:

$$\mathsf{dist}^{\mathsf{const}}_2(f)^2 \lesssim \mathbb{E}\left[\|
abla f \|_2^2
ight] \,.$$

We show a directed *implication*. If the **directed transport energy inequality** holds:

 $W_2^2(\mu o \mu^*) \lesssim \mathbb{E}\left[\|
abla^- f \|_2^2
ight], ext{ where } \mu^*: ext{ monotone equilibrium of } \mu,$

then the directed Poincaré inequality holds:

$${
m dist}_2^{
m mono}(f)^2 \lesssim \mathbb{E}\left[\|
abla^- f \|_2^2
ight] \, .$$

Step 4 – From Wasserstein to L^p

Classically: close connections between transport-energy inequalities, Poincaré inequalities, Talagrand concentration inequalities, and log-Sobolev inequalities [Villani'09]. In particular [Liu'19] gives equivalence between:

1 Transport-energy inequality:

 $W_2^2(\mu,\mu_{\mathsf{unif}}) \lesssim \mathbb{E}\left[\|
abla f\|_2^2
ight] \,, \qquad ext{where } \mathrm{d}\mu \coloneqq f \, \mathrm{d}x = f \, \mathrm{d}\mu_{\mathsf{unif}} \,.$

2 Poincaré inequality:

$${\sf dist}_2^{{\sf const}}(f)^2 \lesssim \mathbb{E}\left[\|
abla f \|_2^2
ight] \, .$$

We show a directed *implication*. If the **directed transport energy inequality** holds:

 $W_2^2(\mu o \mu^*) \lesssim \mathbb{E}\left[\|
abla^- f \|_2^2
ight], ext{ where } \mu^*: ext{ monotone equilibrium of } \mu,$

then the directed Poincaré inequality holds:

 $\operatorname{dist}_{2}^{\operatorname{mono}}(f)^{2} \leq \mathbb{E}\left[\|\nabla^{-}f\|_{2}^{2} \right]$. Main ingredient: Kantorovich duality

(:)

Conclusion and open questions

- Main message: convergence properties of a PDE are the principle underlying classical and directed Poincaré inequalities.
- We extend the connection between directed isoperimetry and monotonicity testing, which proves to be robust to the choice of continuous/discrete setting.

Questions

- Our tester is a continuous analogue of the path tester of [KMS'18]. Is there a *formal connection* between the discrete and continuous cases?
- Lower bounds for general testers in the continuous setting?
- Other applications of the dynamical approach (PDEs, optimal transport theory) to property testing? Maybe other questions in TCS?