Lecture 4: Bayes nets

- Bayesian networks
- Variable elimination algorithm

Inference: Computational Bottleneck

- Semantically/conceptually, picture is clear; but several issues must be addressed
- ■Issue 1: How do we specify the full joint distribution over $X_1, X_2, ..., X_n$?
 - exponential number of possible worlds
 - e.g., if the X_i are boolean, then 2^n numbers (or 2^n -1 parameters/degrees of freedom, since they sum to 1)
 - these numbers are not robust/stable
 - these numbers are not natural to assess (what is probability that "Craig wants coffee; it's raining in Coquitlam; robot charge level is low; ..."?)

Inference: Computational Bottleneck

- Issue 2: Inference in this rep'n frightfully slow
 - Must sum over exponential number of worlds to answer query $Pr(\alpha)$ or to condition on evidence e to determine $Pr_e(\alpha)$
- •How do we avoid these two problems?
 - no solution in general
 - but in practice there is structure we can exploit
- We'll use conditional independence

Independence

- Recall that x and y are *independent* iff:
 - Pr(x) = Pr(x|y) iff Pr(y) = Pr(y|x) iff Pr(xy) = Pr(x)Pr(y)
 - intuitively, learning y doesn't influence beliefs about x
- x and y are conditionally independent given z iff:
 - Pr(x|z) = Pr(x|yz) iff Pr(y|z) = Pr(y|xz) iff Pr(xy|z) = Pr(x|z)Pr(y|z) iff ...
 - intuitively, learning y doesn't influence your beliefs about x if you already know z
 - e.g., learning someone's mark on 886 project can influence the probability you assign to a specific GPA; but if you already knew final 886 grade, learning the project mark would not influence GPA assessmnt

What does independence buy us?

- Suppose (say, boolean) variables $X_1, X_2, ..., X_n$ are mutually independent
 - we can specify full joint distribution using only n parameters (linear) instead of 2ⁿ -1 (exponential)
- ■How? Simply specify $Pr(x_1)$, ... $Pr(x_n)$
 - from this I can recover probability of any world or any (conjunctive) query easily
 - e.g. $Pr(x_1 \sim x_2 x_3 x_4) = Pr(x_1) (1 Pr(x_2)) Pr(x_3) Pr(x_4)$
 - we can condition on observed value $X_k = x_k$ trivially by changing $Pr(x_k)$ to 1, leaving $Pr(x_i)$ untouched for $i \neq k$

The Value of Independence

- ■Complete independence reduces both representation of joint and inference from O(2ⁿ) to O(n): pretty significant!
- •Unfortunately, such complete mutual independence is very rare. Most realistic domains do not exhibit this property.
- •Fortunately, most domains do exhibit a fair amount of conditional independence. And we can exploit conditional independence for representation and inference as well.
- Bayesian networks do just this

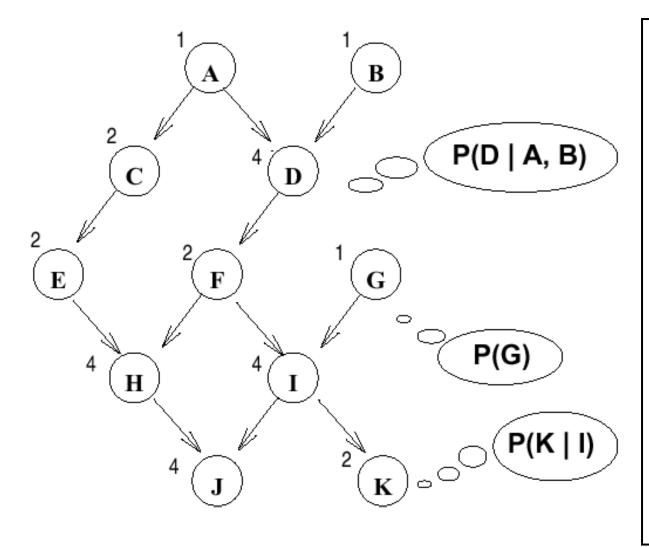
Bayesian Networks

- A Bayesian Network is a *graphical* representation of the direct dependencies over a set of variables, together with a set of conditional probability tables (CPTs) quantifying the strength of those influences.
- Bayes nets exploit conditional independence in very interesting ways, leading to effective means of representation and inference under uncertainty.

Bayesian Networks

- **A** BN over variables $\{X_1, X_2, ..., X_n\}$ consists of:
 - a DAG whose nodes are the variables
 - a set of CPTs $Pr(X_i | Par(X_i))$ for each X_i
- Key notions (see text for defn's, all are intuitive):
 - parents of a node: $Par(X_i)$
 - children of node
 - descendents of a node
 - ancestors of a node
 - family: set of nodes consisting of X_i and its parents
 - CPTs are defined over families in the BN

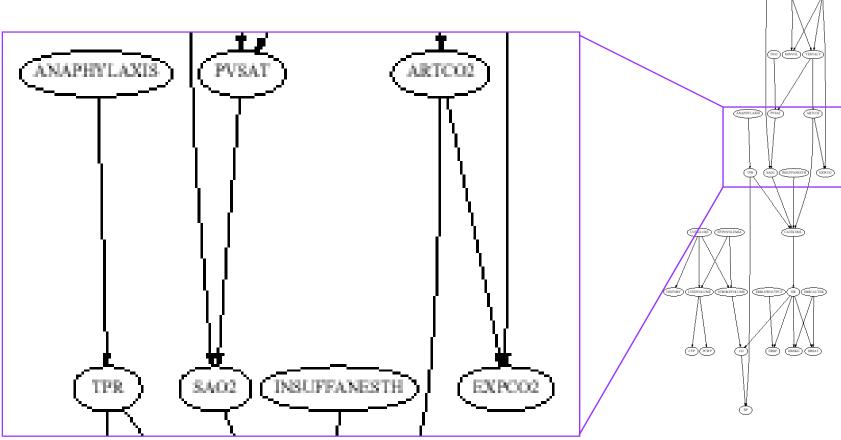
An Example Bayes Net



- A couple CPTS are "shown"
- Explicit jointrequires 2¹¹ -1=2047 parmtrs
- BN requires
 only 27 parmtrs
 (the number of
 entries for each
 CPT is listed)

Alarm Network

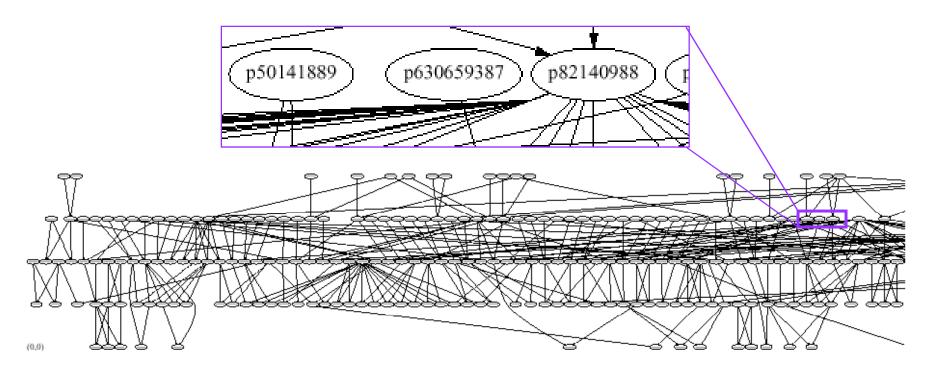
Monitoring system for patients in intensive care



10

Pigs Network

- Determines pedigree of breeding pigs
 - used to diagnose PSE disease
 - half of the network show here



Semantics of a Bayes Net

The structure of the BN means: every X_i is conditionally independent of all of its nondescendants given its parents:

$$Pr(X_i \mid S \cup Par(X_i)) = Pr(X_i \mid Par(X_i))$$

for any subset $S \subseteq NonDescendants(X_i)$

Semantics of Bayes Nets (2)

- If we ask for $Pr(x_1, x_2, ..., x_n)$ we obtain
 - assuming an ordering consistent with network
- By the chain rule, we have:

$$Pr(x_1, x_2,..., x_n)$$

= $Pr(x_n | x_{n-1},...,x_1) Pr(x_{n-1} | x_{n-2},...,x_1)... Pr(x_1)$
= $Pr(x_n | Par(X_n)) Pr(x_{n-1} | Par(x_{n-1}))... Pr(x_1)$

Thus, the joint is recoverable using the parameters (CPTs) specified in an arbitrary BN

Bayes net queries

- Example Query: Pr(X|Y=y)?
- Intuitively, want to know value of X given some information about the value of Y
- Concrete examples:
 - Doctor: Pr(Disease|Symptoms)?
 - Car: Pr(condition|mechanicsReport)?
 - Fault diag.: Pr(pieceMalfunctioning|systemStatistics)?
- Use Bayes net structure to quickly compute Pr(X|Y=y)

Algorithms to answer Bayes net queries

- There are many...
 - Variable elimination (very simple!)
 - Clique tree propagation (quite popular!)
 - Cut-set conditioning
 - Arc reversal node reduction
 - Symbolic probabilistic inference
- They all exploit conditional independence to speed up computation

Potentials

- ■A function $f(X_1, X_2,..., X_k)$ is also called a *potential*. We can view this as table of numbers, one for each instantiation of the variables X_1 , X_2 ,..., X_k .
- A tabular rep'n of a potential is exponential in k
- Each CPT in a Bayes net is a potential:
 - e.g., Pr(C|A,B) is a function of three variables, A, B, C
- Notation: f(X,Y) denotes a potential over the variables X ∪ Y. (Here X, Y are sets of variables.)

The Product of Two Potentials

- Let f(X,Y) & g(Y,Z) be two potentials with variables Y in common
- ■The product of f and g, denoted h = f x g (or sometimes just h = fg), is defined:

$$h(X,Y,Z) = f(X,Y) \times g(Y,Z)$$

f(A,B)		g(B,C)		h(A,B,C)				
ab	0.9	bc	0.7	abc	0.63	ab~c	0.27	
a~b	0.1	b~c	0.3	a~bc	0.08	a~b~c	0.02	
~ab	0.4	~bc	8.0	~abc	0.28	~ab~c	0.12	
~a~b	0.6	~b~c	0.2	~a~bc	0.48	~a~b~c	0.12	

Summing a Variable Out of a Potential

- Let f(X,Y) be a factor with variable X (Y is a set)
- •We sum out variable X from f to produce a new potential $h = \Sigma_X f$, which is defined:

$$h(\mathbf{Y}) = \sum_{x \in Dom(X)} f(x, \mathbf{Y})$$

f(A	,B)	h(B)			
ab	0.9	b	1.3		
a~b	0.1	b	0.7		
~ab	0.4				
~a~b	0.6				

Restricting a Potential

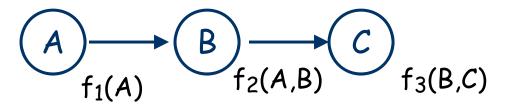
- ■Let f(X,Y) be a potential with var. X (Y is a set)
- •We *restrict* potential f *to* X=x by setting X to the value x and "deleting". Define $h = f_{X=x}$ as:

$$h(\mathbf{Y}) = f(x, \mathbf{Y})$$

f(A	,B)	$h(B) = f_{A=a}$			
ab	0.9	b	0.9		
a~b	0.1	~b	0.1		
~ab	0.4				
~a~b	0.6				

Variable Elimination: No Evidence

Compute prior probability of var C



$$P(C) = \Sigma_{A,B} P(A,B,C)$$

$$= \Sigma_{A,B} P(C|B) P(B|A) P(A)$$

$$= \Sigma_{B} P(C|B) \Sigma_{A} P(B|A) P(A)$$

$$= \Sigma_{B} f_{3}(B,C) \Sigma_{A} f_{2}(A,B) f_{1}(A)$$

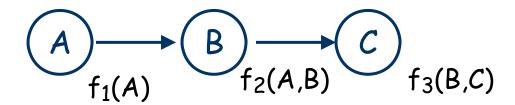
$$= \Sigma_{B} f_{3}(B,C) f_{4}(B)$$

$$= f_{5}(C)$$

Define new potentials: $f_4(B) = \Sigma_A f_2(A,B) f_1(A)$ and $f_5(C) = \Sigma_B f_3(B,C) f_4(B)$

Variable Elimination: No Evidence

Here's the example with some numbers



f ₁ (A)		$f_2(A,B)$		f ₃ (B,C)		f ₄ (B)		f ₅ (C)	
а	0.9	ab	0.9	bc	0.7	b	0.85	С	0.625
~a	0.1	a~b	0.1	b~c	0.3	~b	0.15	~C	0.375
		~ab	0.4	~bc	0.2				
		~a~b	0.6	~b~c	8.0				

Variable Elimination: One View

- One way to think of variable elimination:
 - write out desired computation using the chain rule, exploiting the independence relations in the network
 - arrange the terms in a convenient fashion
 - distribute each sum (over each variable) in as far as it will go
 - ■i.e., the sum over variable X can be "pushed in" as far as the "first" potential mentioning X
 - apply operations "inside out", repeatedly eliminating and creating new potentials (note that each step/removal of a sum eliminates one variable)

Variable Elimination Algorithm

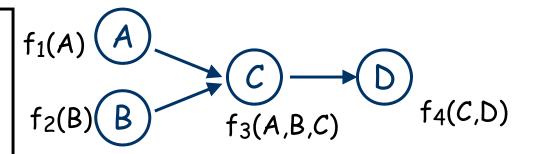
- Given query var Q, remaining vars Z. Let F be set of potentials corresponding to CPTs for {Q} ∪ Z.
- 1. Choose an elimination ordering $Z_1, ..., Z_n$ of variables in **Z**.
- 2. For each Z_j -- in the order given -- eliminate $Z_j \in \mathbf{Z}$ as follows:
 - (a) Compute new potential $g_j = \sum_{Z_j} f_1 \times f_2 \times ... \times f_k$, where the f_i are the potentials in F that include Z_i
 - (b) Remove the potentials f_i (that mention Z_j) from F and add new potential g_i to F
- 3. The remaining potentials refer only to the query variable Q. Take their product and normalize to produce P(Q)

VE: Example 2

Factors: $f_1(A) f_2(B)$ $f_3(A,B,C) f_4(C,D)$

Query: P(D)?

Elim. Order: A, B, C



Step 1: Add $f_5(B,C) = \Sigma_A f_3(A,B,C) f_1(A)$

Remove: $f_1(A)$, $f_3(A,B,C)$

Step 2: Add $f_6(C) = \Sigma_B f_2(B) f_5(B,C)$

Remove: $f_2(B)$, $f_5(B,C)$

Step 3: Add $f_7(D) = \sum_{C} f_4(C,D) f_6(C)$

Remove: $f_4(C,D)$, $f_6(C)$

Last factor $f_7(D)$ is (possibly unnormalized) probability P(D)

Variable Elimination with Evidence

Given query var Q, evidence vars **E** (observed to be **e**), remaining vars **Z**. Let F be set of factors involving CPTs for {Q} ∪ **Z**.

- Replace each potential f∈F that mentions variable(s) in E
 with its restriction f_{E=e} (somewhat abusing notation)
- 2. Choose an elimination ordering $Z_1, ..., Z_n$ of variables in **Z**.
- 3. Run variable elimination as above.
- 4. The remaining potentials refer only to query variable Q. Take their product and normalize to produce P(Q)

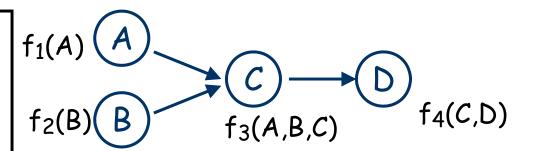
VE: Example 2 again with Evidence

Factors: $f_1(A) f_2(B)$ $f_3(A,B,C) f_4(C,D)$

Query: P(A)?

Evidence: D = d

Elim. Order: C, B



Restriction: replace $f_4(C,D)$ with $f_5(C) = f_4(C,d)$

Step 1: Add $f_6(A,B) = \Sigma_C f_5(C) f_3(A,B,C)$

Remove: $f_3(A,B,C)$, $f_5(C)$

Step 2: Add $f_7(A) = \Sigma_B f_6(A,B) f_2(B)$

Remove: $f_6(A,B)$, $f_2(B)$

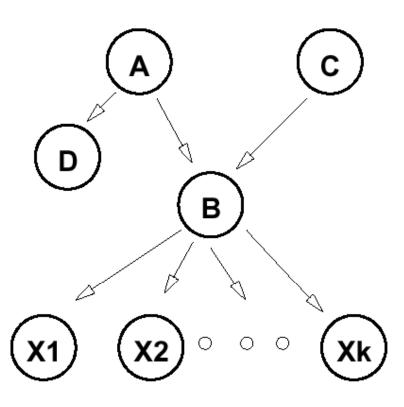
Last potent.: $f_7(A)$, $f_1(A)$. The product $f_1(A) \times f_7(A)$ is (possibly unnormalized) posterior. So... $P(A|d) = \alpha f_1(A) \times f_7(A)$.

Some Notes on the VE Algorithm

- The size of the resulting factors is determined by elimination ordering!
- For *polytrees*, easy to find good ordering (e.g., work outside in).
- For general BNs, sometimes good orderings exist, sometimes they don't (then inference is exponential in number of vars).
 - Simply finding the optimal elimination ordering for general BNs is NP-hard.
 - Inference in general is NP-hard in general BNs

Elimination Ordering: Polytrees

- Inference is linear in size of network
 - ordering: eliminate only "singly-connected" nodes
 - e.g., in this network, eliminate
 D, A, C, X1,...; or eliminate
 X1,... Xk, D, A, C; or mix up...
 - result: no factor ever larger than original CPTs
 - eliminating B before these gives factors that include all of A,C, X1,... X_k !!!



Effect of Different Orderings

Suppose query variable is D. Consider different orderings for this network

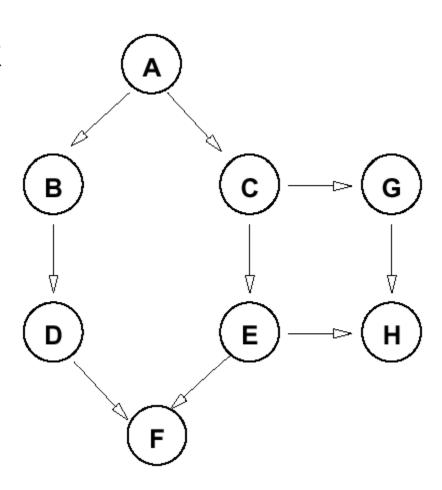
• A,F,H,G,B,C,E:

good: why?

• E,C,A,B,G,H,F:

bad: why?

- Which ordering creates smallest factors?
 - either max size or total
- •which creates largest factors?



Relevance

- Certain variables have no impact on the query. In ABC network, computing Pr(A) with no evidence requires elimination of B and C.
 - But when you sum out these vars, you compute a trivial potential (all values are ones); for example:
 - eliminating C: $f_4(B) = \Sigma_C f_3(B,C) = \Sigma_C Pr(C|B)$
 - 1 for any value of B (e.g., $Pr(c|b) + Pr(\sim c|b) = 1$)
- No need to think about B or C for this query

Pruning irrelevant variables

- Can restrict attention to relevant variables. Given query Q, evidence E:
 - Q is relevant
 - if any node Z is relevant, its parents are relevant
 - if E∈E is a descendent of a relevant node, then E is relevant
- We can restrict our attention to the subnetwork comprising only relevant variables when evaluating a query Q

Relevance: Examples

- Query: P(F)
 - relevant: F, C, B, A
- Query: P(F|E)
 - relevant: F, C, B, A
 - also: E, hence D, G
 - intuitively, we need to compute P(C|E)=α P(C) P(E|C) to accurately compute P(F|E)
- Query: P(F|E,C)
 - algorithm says all vars relevant; but really none except C, F (since C cuts of all influence of others)
 - algorithm is overestimating relevant set

