
Reinforcement Learning

January 28, 2010
CS 886

University of Waterloo



CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

2

Outline

• Russell & Norvig Sect 21.1-21.3
• What is reinforcement learning
• Temporal-Difference learning
• Q-learning
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Machine Learning

• Supervised Learning
– Teacher tells learner what to remember

• Reinforcement Learning
– Environment provides hints to learner

• Unsupervised Learning
– Learner discovers on its own
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What is RL?
• Reinforcement learning is learning what 

to do so as to maximize a numerical 
reward signal
– Learner is not told what actions to take, 

but must discover them by trying them out 
and seeing what the reward is
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What is RL

• Reinforcement learning differs from 
supervised learning

Don’t  
touch. You 

will get 
burnt

Supervised learning Reinforcement learning

Ouch!
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Animal Psychology

• Negative reinforcements:
– Pain and hunger

• Positive reinforcements:
– Pleasure and food

• Reinforcements used to train animals

• Let’s do the same with computers!
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RL Examples

• Game playing (backgammon, solitaire)
• Operations research (pricing, vehicule

routing)
• Elevator scheduling
• Helicopter control

• http://neuromancer.eecs.umich.edu/cgi-
bin/twiki/view/Main/SuccessesOfRL
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Reinforcement Learning
• Definition:

– Markov decision process with unknown 
transition and reward models

• Set of states S
• Set of actions A

– Actions may be stochastic
• Set of reinforcement signals (rewards)

– Rewards may be delayed
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Policy optimization

• Markov Decision Process:
– Find optimal policy given transition and 

reward model
– Execute policy found

• Reinforcement learning:
– Learn an optimal policy while interacting 

with the environment
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Reinforcement Learning Problem

Agent

Environment

State
Reward Action

s0 s1 s2
r0

a0 a1

r1 r2

a2
…

Goal: Learn to choose actions that maximize r0+γ r1+γ2r2+…, where 0· γ <1
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Example: Inverted Pendulum

• State: x(t),x’(t), θ(t), 
θ’(t)

• Action: Force F 
• Reward: 1 for any step 

where pole balanced

Problem: Find δ:S→A that
maximizes rewards
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Rl Characterisitics
• Reinforcements: rewards
• Temporal credit assignment: when a reward is 

received, which action should be credited?
• Exploration/exploitation tradeoff: as agent 

learns, should it exploit its current knowledge 
to maximize rewards or explore to refine its 
knowledge?

• Lifelong learning: reinforcement learning
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Types of RL
• Passive vs Active learning

– Passive learning: the agent executes a fixed policy 
and tries to evaluate it

– Active learning: the agent updates its policy as it 
learns

• Model based vs model free
– Model-based: learn transition and reward model 

and use it to determine optimal policy
– Model free: derive optimal policy without learning 

the model
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Passive Learning

• Transition and reward model known:
– Evaluate δ:
– Vδ(s) = R(s) + γ Σs’ Pr(s’|s,δ(s)) Vδ(s’)

• Transition and reward model unknown:
– Estimate policy value as agent executes 

policy: Vδ(s) = Eδ[ Σt γt R(st)]
– Model based vs model free
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Passive learning

lllu
-1uu
+1rrr

1

2

3

1 2 3 4

γ = 1

ri = -0.04 for non-terminal states

Do not know the transition 
probabilities

(1,1) (1,2) (1,3) (1,2) (1,3) (2,3) (3,3) (4,3)+1
(1,1) (1,2) (1,3) (2,3) (3,3) (3,2) (3,3) (4,3)+1
(1,1) (2,1) (3,1) (3,2) (4,2)-1

What is the value V(s) of being in state s?



CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

16

Passive ADP

• Adaptive dynamic programming (ADP) 
– Model-based
– Learn transition probabilities and rewards 

from observations
– Then update the values of the states
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ADP Example

lllu
-1uu
+1rrr

1

2

3

1 2 3 4

(1,1) (1,2) (1,3) (1,2) (1,3) (2,3) (3,3) (4,3)+1
(1,1) (1,2) (1,3) (2,3) (3,3) (3,2) (3,3) (4,3)+1
(1,1) (2,1) (3,1) (3,2) (4,2)-1

γ = 1

ri = -0.04 for non-terminal states

P((2,3)|(1,3),r) =2/3
P((1,2)|(1,3),r) =1/3

Use this information in

We need to learn all the transition probabilities!

Vδ(s) = R(s) + γ Σs’ Pr(s’|s,δ(s)) Vδ(s’)
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Passive TD

• Temporal difference (TD)
– Model free

• At each time step
– Observe: s,a,s’,r
– Update Vδ(s) after each move
– Vδ(s) = Vδ(s) + α (R(s) + γ Vδ(s’) – Vδ(s))

Learning rate Temporal difference
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TD Convergence
Thm:  If α is appropriately decreased 

with number of times a state is visited 
then Vδ(s) converges to correct value

• α must satisfy:
• Σt αt ∞
• Σt (αt)2 < ∞

• Often α(s) = 1/n(s)
• n(s) = # of times s is visited
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Active Learning

• Ultimately, we are interested in 
improving δ

• Transition and reward model known:
– V*(s) = maxa R(s) + γ Σs’ Pr(s’|s,a) V*(s’)

• Transition and reward model unknown:
– Improve policy as agent executes policy
– Model based vs model free
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Q-learning (aka active temporal difference)

• Q-function: Q:S×A→ℜ
– Value of state-action pair
– Policy δ(s) = argmaxa Q(s,a) is the optimal policy

• Bellman’s equation:

Q*(s,a) = R(s) + γ Σs’ Pr(s’|s,a) maxa’ Q*(s’,a’)
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Q-learning
• For each state s and action a initialize 

Q(s,a) (0 or random)
• Observe current state
• Loop

– Select action a and execute it
– Receive immediate reward r
– Observe new state s’
– Update Q(s,a)

• Q(s,a) = Q(s,a) + α(r(s)+γ maxa’Q(s’,a’) – Q(s,a))
– s=s’
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Q-learning example

s1
73 100

66 81

s2
81.5 100

66 81

r=0 for non-terminal states
γ=0.9
α=0.5

Q(s1,right) = Q(s1,right) + α (r(s1) + γ maxa’ Q(s2,a’) – Q(s1,right))
= 73 + 0.5 (0 + 0.9 max[66,81,100] – 73)
= 73 + 0.5 (17)
= 81.5
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Q-learning
• For each state s and action a initialize 

Q(s,a) (0 or random)
• Observe current state
• Loop

– Select action a and execute it
– Receive immediate reward r
– Observe new state s’
– Update Q(a,s)

• Q(s,a) = Q(s,a) + α(r(s)+γ maxa’Q(s’,a’) – Q(s,a))
– s=s’
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Exploration vs Exploitation
• If an agent always chooses the action with 

the highest value then it is exploiting
– The learned model is not the real model
– Leads to suboptimal results

• By taking random actions (pure exploration) an 
agent may learn the model
– But what is the use of learning a complete model if 

parts of it are never used?
• Need a balance between exploitation and 

exporation
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Common exploration methods

• ε-greedy:
– With probability ε execute random action
– Otherwise execute best action a*

a* = argmaxa Q(s,a)

• Boltzmann exploration

P(a) = eQ(s,a)/T

ΣaeQ(s,a)/T
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Exploration and Q-learning

• Q-learning converges to optimal Q-
values if
– Every state is visited infinitely often (due 

to exploration)
– The action selection becomes greedy as 

time approaches infinity
– The learning rate a is decreased fast 

enough but not too fast
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A Triumph for Reinforcement 
Learning: TD-Gammon

• Backgammon player: TD learning with a neural 
network representation of the value function:


