
Reinforcement Learning

January 28, 2010
CS 886

University of Waterloo

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

2

Outline

• Russell & Norvig Sect 21.1-21.3
• What is reinforcement learning
• Temporal-Difference learning
• Q-learning

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

3

Machine Learning

• Supervised Learning
– Teacher tells learner what to remember

• Reinforcement Learning
– Environment provides hints to learner

• Unsupervised Learning
– Learner discovers on its own

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

4

What is RL?
• Reinforcement learning is learning what

to do so as to maximize a numerical
reward signal
– Learner is not told what actions to take,

but must discover them by trying them out
and seeing what the reward is

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

5

What is RL

• Reinforcement learning differs from
supervised learning

Don’t
touch. You

will get
burnt

Supervised learning Reinforcement learning

Ouch!

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

6

Animal Psychology

• Negative reinforcements:
– Pain and hunger

• Positive reinforcements:
– Pleasure and food

• Reinforcements used to train animals

• Let’s do the same with computers!

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

7

RL Examples

• Game playing (backgammon, solitaire)
• Operations research (pricing, vehicule

routing)
• Elevator scheduling
• Helicopter control

• http://neuromancer.eecs.umich.edu/cgi-
bin/twiki/view/Main/SuccessesOfRL

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

8

Reinforcement Learning
• Definition:

– Markov decision process with unknown
transition and reward models

• Set of states S
• Set of actions A

– Actions may be stochastic
• Set of reinforcement signals (rewards)

– Rewards may be delayed

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

9

Policy optimization

• Markov Decision Process:
– Find optimal policy given transition and

reward model
– Execute policy found

• Reinforcement learning:
– Learn an optimal policy while interacting

with the environment

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

10

Reinforcement Learning Problem

Agent

Environment

State
Reward Action

s0 s1 s2
r0

a0 a1

r1 r2

a2
…

Goal: Learn to choose actions that maximize r0+γ r1+γ2r2+…, where 0· γ <1

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

11

Example: Inverted Pendulum

• State: x(t),x’(t), θ(t),
θ’(t)

• Action: Force F
• Reward: 1 for any step

where pole balanced

Problem: Find δ:S→A that
maximizes rewards

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

12

Rl Characterisitics
• Reinforcements: rewards
• Temporal credit assignment: when a reward is

received, which action should be credited?
• Exploration/exploitation tradeoff: as agent

learns, should it exploit its current knowledge
to maximize rewards or explore to refine its
knowledge?

• Lifelong learning: reinforcement learning

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

13

Types of RL
• Passive vs Active learning

– Passive learning: the agent executes a fixed policy
and tries to evaluate it

– Active learning: the agent updates its policy as it
learns

• Model based vs model free
– Model-based: learn transition and reward model

and use it to determine optimal policy
– Model free: derive optimal policy without learning

the model

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

14

Passive Learning

• Transition and reward model known:
– Evaluate δ:
– Vδ(s) = R(s) + γ Σs’ Pr(s’|s,δ(s)) Vδ(s’)

• Transition and reward model unknown:
– Estimate policy value as agent executes

policy: Vδ(s) = Eδ[Σt γt R(st)]
– Model based vs model free

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

15

Passive learning

lllu
-1uu
+1rrr

1

2

3

1 2 3 4

γ = 1

ri = -0.04 for non-terminal states

Do not know the transition
probabilities

(1,1) (1,2) (1,3) (1,2) (1,3) (2,3) (3,3) (4,3)+1
(1,1) (1,2) (1,3) (2,3) (3,3) (3,2) (3,3) (4,3)+1
(1,1) (2,1) (3,1) (3,2) (4,2)-1

What is the value V(s) of being in state s?

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

16

Passive ADP

• Adaptive dynamic programming (ADP)
– Model-based
– Learn transition probabilities and rewards

from observations
– Then update the values of the states

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

17

ADP Example

lllu
-1uu
+1rrr

1

2

3

1 2 3 4

(1,1) (1,2) (1,3) (1,2) (1,3) (2,3) (3,3) (4,3)+1
(1,1) (1,2) (1,3) (2,3) (3,3) (3,2) (3,3) (4,3)+1
(1,1) (2,1) (3,1) (3,2) (4,2)-1

γ = 1

ri = -0.04 for non-terminal states

P((2,3)|(1,3),r) =2/3
P((1,2)|(1,3),r) =1/3

Use this information in

We need to learn all the transition probabilities!

Vδ(s) = R(s) + γ Σs’ Pr(s’|s,δ(s)) Vδ(s’)

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

18

Passive TD

• Temporal difference (TD)
– Model free

• At each time step
– Observe: s,a,s’,r
– Update Vδ(s) after each move
– Vδ(s) = Vδ(s) + α (R(s) + γ Vδ(s’) – Vδ(s))

Learning rate Temporal difference

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

19

TD Convergence
Thm: If α is appropriately decreased

with number of times a state is visited
then Vδ(s) converges to correct value

• α must satisfy:
• Σt αt ∞
• Σt (αt)2 < ∞

• Often α(s) = 1/n(s)
• n(s) = # of times s is visited

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

20

Active Learning

• Ultimately, we are interested in
improving δ

• Transition and reward model known:
– V*(s) = maxa R(s) + γ Σs’ Pr(s’|s,a) V*(s’)

• Transition and reward model unknown:
– Improve policy as agent executes policy
– Model based vs model free

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

21

Q-learning (aka active temporal difference)

• Q-function: Q:S×A→ℜ
– Value of state-action pair
– Policy δ(s) = argmaxa Q(s,a) is the optimal policy

• Bellman’s equation:

Q*(s,a) = R(s) + γ Σs’ Pr(s’|s,a) maxa’ Q*(s’,a’)

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

22

Q-learning
• For each state s and action a initialize

Q(s,a) (0 or random)
• Observe current state
• Loop

– Select action a and execute it
– Receive immediate reward r
– Observe new state s’
– Update Q(s,a)

• Q(s,a) = Q(s,a) + α(r(s)+γ maxa’Q(s’,a’) – Q(s,a))
– s=s’

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

23

Q-learning example

s1
73 100

66 81

s2
81.5 100

66 81

r=0 for non-terminal states
γ=0.9
α=0.5

Q(s1,right) = Q(s1,right) + α (r(s1) + γ maxa’ Q(s2,a’) – Q(s1,right))
= 73 + 0.5 (0 + 0.9 max[66,81,100] – 73)
= 73 + 0.5 (17)
= 81.5

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

24

Q-learning
• For each state s and action a initialize

Q(s,a) (0 or random)
• Observe current state
• Loop

– Select action a and execute it
– Receive immediate reward r
– Observe new state s’
– Update Q(a,s)

• Q(s,a) = Q(s,a) + α(r(s)+γ maxa’Q(s’,a’) – Q(s,a))
– s=s’

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

25

Exploration vs Exploitation
• If an agent always chooses the action with

the highest value then it is exploiting
– The learned model is not the real model
– Leads to suboptimal results

• By taking random actions (pure exploration) an
agent may learn the model
– But what is the use of learning a complete model if

parts of it are never used?
• Need a balance between exploitation and

exporation

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

26

Common exploration methods

• ε-greedy:
– With probability ε execute random action
– Otherwise execute best action a*

a* = argmaxa Q(s,a)

• Boltzmann exploration

P(a) = eQ(s,a)/T

ΣaeQ(s,a)/T

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

27

Exploration and Q-learning

• Q-learning converges to optimal Q-
values if
– Every state is visited infinitely often (due

to exploration)
– The action selection becomes greedy as

time approaches infinity
– The learning rate a is decreased fast

enough but not too fast

CS886 Lecture Slides (c) 2010 K. Larson and P. Poupart

28

A Triumph for Reinforcement
Learning: TD-Gammon

• Backgammon player: TD learning with a neural
network representation of the value function:

