Markov Networks

March 2, 2010 CS 886 University of Waterloo

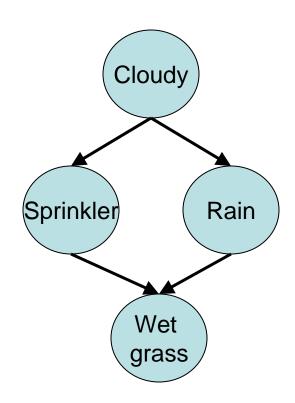
Outline

 Markov networks (a.k.a. Markov random fields)

 Reading: Michael Jordan, Graphical Models, Statistical Science (Special Issue on Bayesian Statistics), 19, 140-155, 2004.

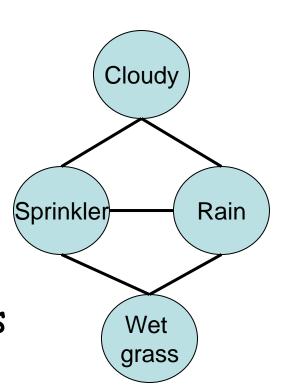
Recall Bayesian networks

- Directed acyclic graph
- Arcs often interpreted as causal relationships
- Joint distribution: product of conditional dist



Markov networks

- Undirected graph
- Arcs simply indicate direct correlations
- Joint distribution: normalized product of potentials
- Popular in computer vision and natural language processing



Parameterization

Joint: normalized product of potentials

$$Pr(X) = 1/k \prod_{i} f_{i}(CLIQUE_{i})$$

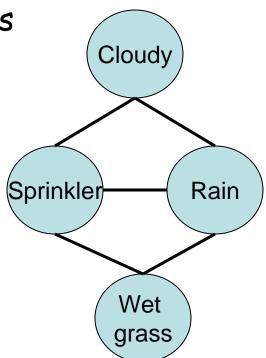
= 1/k f₁(C,S,R) f₂(S,R,W)

where k is a normalization constant

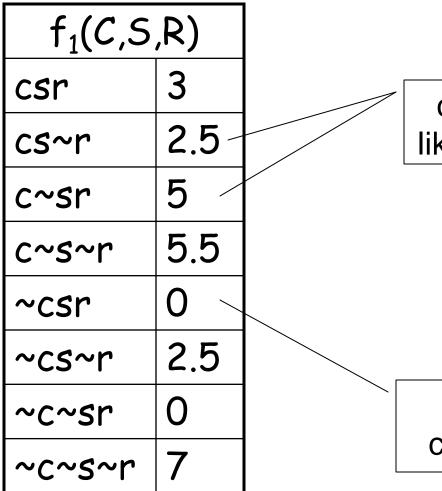
$$k = \sum_{X_i} \prod_j f_j(CLIQUE_j)$$

= $\sum_{C,S,R,W} f_1(C,S,R) f_2(S,R,W)$

- Non-negative factor
- Potential for each maximal clique in the graph
- Entries: "likelihood strength" of different configurations.



Potential Example



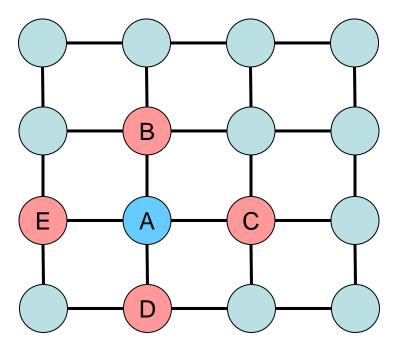
c~sr is more likely than cs~r

impossible configuration

Markov property

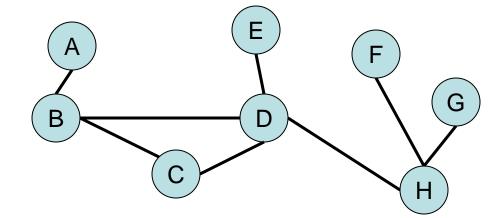
- Markov property: a variable is independent of all other variables given its immediate neighbours.
- Markov blanket: set of direct neighbours

 $MB(A) = \{B,C,D,E\}$



Conditional Independence

- X and Y are independent given Z iff there doesn't exist any path between X and Y that doesn't contain any of the variables in Z
- · Exercise:
 - A,E?
 - A,E|D?
 - A,E|C?
 - A,E|B,C?



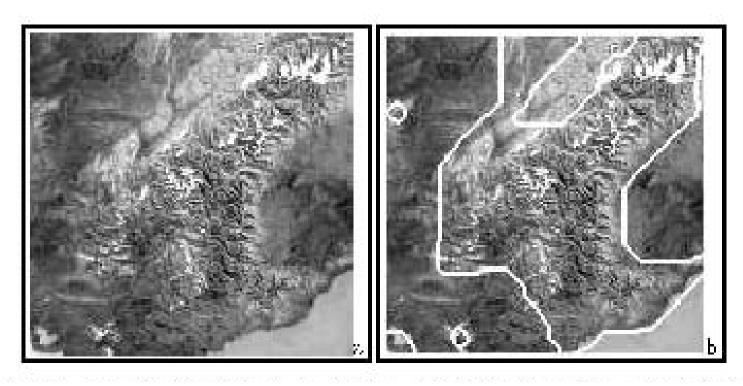
Interpretation

- Markov property has a price:
 - Numbers are not probabilities
- What are potentials?
 - They are indicative of local correlations
- · What do the numbers mean?
 - They are indicative of the likelihood of each configuration
 - Numbers are usually learnt from data since it is hard to specify them by hand given their lack of a clear interpretation

Applications

- · Natural language processing:
 - Part of speech tagging
- · Computer vision
 - Image segmentation
- Any other application where there is no clear causal relationship

Image Segmentation



Segmentation of the Alps Kervrann, Heitz (1995) A Markov Random Field model-based Approach to Unsupervised Texture Segmentation Using Local and Global Spatial Statistics, IEEE Transactions on Image Processing, vol 4, no 6, p 856-862

Image Segmentation

Variables

- Pixel features (e.g. intensities): X_{ij}

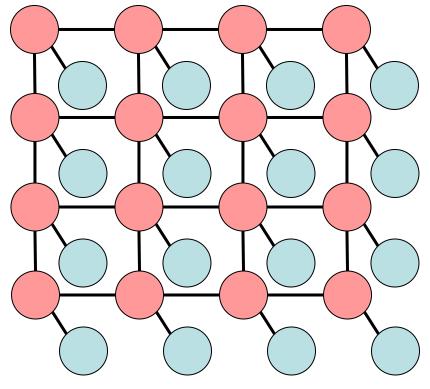
- Pixel labels: Yij

· Correlations:

- Neighbouring pixel labels are correlated
- Label and features of a pixel are correlated

Segmentation:

- argmaxy Pr(Y|X)?



Inference

- · Markov nets: factored representation
 - Use variable elimination
- P(X|E=e)?
 - Restrict all factors that contain E to e
 - Sumout all variables that are not X or in E
 - Normalize the answer

Parameter Learning

- Maximum likelihood
 - $\theta^* = \operatorname{argmax}_{\theta} P(\operatorname{data}|\theta)$
- Complete data
 - Convex optimization, but no closed form solution
 - Iterative techniques such as gradient descent
- Incomplete data
 - Non-convex optimization
 - EM algorithm

Maximum likelihood

- Let θ be the set of parameters and \mathbf{x}_i be the i^{th} instance in the dataset
- Optimization problem:

```
- \theta^* = \operatorname{argmax}_{\theta} P(\operatorname{data}|\theta)

= \operatorname{argmax}_{\theta} \Pi_i \Pr(\mathbf{x}_i|\theta)

= \operatorname{argmax}_{\theta} \Pi_i \frac{\Pi_j f(\mathbf{X}[j] = \mathbf{x}_i[j])}{\Sigma_{\mathbf{X}} \Pi_j f(\mathbf{X}[j] = \mathbf{x}_i[j])}

where \mathbf{X}[j] is the clique of variables that potential j depends on and \mathbf{x}[j] is a variable assignment for that clique
```

Maximum likelihood

- Let $\theta_x = f(X=x)$
- · Optimization continued:

$$\begin{aligned} & - \ \theta^{*} = argmax_{\theta} \ \Pi_{i} \ \frac{\Pi_{j} \ \theta_{X_{i}[j]}}{\Sigma_{X} \ \Pi_{j} \ \theta_{X_{i}[j]}} \\ & = argmax_{\theta} \ log \ \Pi_{i} \ \frac{\Pi_{j} \ \theta_{X_{i}[j]}}{\Sigma_{X} \ \Pi_{j} \ \theta_{X_{i}[j]}} \\ & = argmax_{\theta} \ \Sigma_{i} \ \Sigma_{j} \ log \ \theta_{X_{i}[j]} - log \ \Sigma_{X} \ \Pi_{j} \ \theta_{X_{i}[j]} \end{aligned}$$

This is a non-concave optimization problem

Maximum likelihood

- Substitute $\lambda = \log \theta$ and the problem becomes concave:
 - λ^* = argmax_{λ} Σ_i Σ_j $\lambda_{X_i[j]}$ $\log \Sigma_X$ e Σ_j $\lambda_{X_i[j]}$
- Possible algorithms:
 - Gradient ascent
 - Conjugate gradient

Feature-based Markov Networks

- Generalization of Markov networks
 - May not have a corresponding graph
 - Use features and weights instead of potentials
 - Use exponential representation
- $Pr(X=x) = 1/k e^{\sum_{j} \lambda_{j} \phi_{j}(x[j])}$ where x[j] is a variable assignment for a subset of variables specific to ϕ_{j}
- Feature ϕ_j : Boolean function that maps partial variable assignments to 0 or 1
- Weight λ_j : real number

Feature-based Markov Networks

 Potential-based Markov networks can always be converted to feature-based Markov networks

$$Pr(x) = 1/k \prod_{j} f_{j}(CLIQUE_{j} = x[j])$$

$$= 1/k e^{\sum_{j,clique_{j}} \lambda_{j,clique_{j}} \phi_{j,clique_{j}}(x[j])}$$

- $\lambda_{j,clique_j} = \log f_j(CLIQUE_j = x[j])$
- $\phi_{j,clique_j}(x[j])=1$ if $clique_j=x[j]$, 0 otherwise

Example

$f_1(C,S,R)$	
csr	3
cs~r	2.5
c~sr	5
c~s~r	5.5
~csr	0
~cs~r	2.5
~c~sr	0
~c~s~r	7

weights	features	
$\lambda_{1,csr} = \log 3$	$\phi_{1,csr}$ (CSR) =	1 if CSR = csr
		0 otherwise
$\lambda_{1,*s\sim r} = \log 2.5$	$\phi_{1,*s\sim r}(CSR) =$	1 if CSR = *s~r
		0 otherwise
$\lambda_{1,c\sim sr} = \log 5$	$\phi_{c\sim sr}(CSR) =$	1 if CSR = c~sr
		0 otherwise
$\lambda_{1,c\sim s\sim r} = \log 5.5$	$\phi_{1,c\sim s\sim r}$ (CSR) =	1 if CSR = c~s~r
	,	0 otherwise
$\lambda_{1,\sim c^*r} = \log O$	$\phi_{1,\sim c^*r}(CSR) =$	1 if CSR = ~c*r
		0 otherwise
$\lambda_{1,\sim c\sim s\sim r} = \log 7$	$\phi_{\sim c \sim s \sim r}(CSR) =$	1 if CSR = ~c~s~r
		0 otherwise

Features

- Features
 - Any Boolean function
 - Provide tremendous flexibility
- Example: text categorization
 - Simplest features: presence/absence of a word in a document
 - More complex features
 - · Presence/absence of specific expressions
 - · Presence/absence of two words within a certain window
 - · Presence/absence of any combination of words
 - · Presence/absence of a figure of style
 - Presence/absence of any linguistic feature