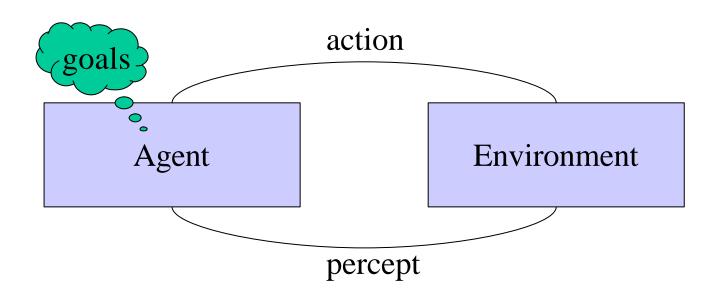
CS886 Winter 2005 Topics in Al: Reasoning under Uncertainty

Instructor: Pascal Poupart


Email: ppoupart@cs.uwaterloo.ca

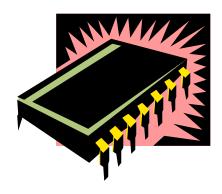
Office: DC2514

Lectures: Tu & Th 2:30-4 pm (DC3313)

Web: www.cs.uwaterloo.ca/~ppoupart/teaching/cs886.html

Rational Agent

Robot Control


Consider a multi-purpose robot

- How can we design a robust controller?
 - Interdependent sequence of decisions/controls
 - Imprecise grippers
 - Noisy cameras & microphones
 - Unknown user habits/preferences
 - Tradeoff: escort someone or deliver a parcel first?

Quality Assurance

Chip manufacturing

- What would be an effective testing schedule?
 - Tradeoff: testing costs vs. failure costs
 - Tests are noisy, but correlated
 - Sequential aspect: decide about future tests based on results of past tests

Assistive Technology

 People affected by Alzheimer's disease lose their autonomy

- What prompts should a system give to assist in simple daily tasks?
 - Interdependent sequence of prompts
 - Uncertain prompt effects
 - Imperfect / noisy task monitoring
 - Unknown user preferences / abilities

Common Characteristics

- Sequential decision problem
 - Control sequence, test sequence, prompt sequence
- Noisy sensors & imperfect actuators
 - Cameras, microphones, tests, grippers, prompts
- Partially unknown environment
 - User habits, preferences and abilities
- Tradeoff between complex concurrent goals
 - Testing costs vs. quality, delivery vs. escort
- General approach: Reasoning under uncertainty

Topics

- Reasoning under uncertainty
 - Probabilistic inference, statistical inference
 - Bayesian networks and Markov networks
 - Utility theory, decision theory
 - Influence diagrams or decision networks
- Temporal reasoning
 - Sequential inference
 - Dynamic Bayesian networks and hidden Markov models
 - Sequential decision making
 - Markov decision processes

Topics

- Adaptation
 - Machine learning, statistical learning
 - Reinforcement learning, Bayesian learning
- Multi-agent reasoning
 - Game theory
 - Stochastic games, equilibrium concepts

Some applications

- Jan 20: PROVERB: a crossword-puzzle solver
- Jan 25: office assistant (a.k.a. paper clip) and printer wizard in Microsoft Windows
- Feb 1: MINERVA: robotic tour-guide for museums
- Feb 15: TD-Gammon: a world-champion backgammon program
- March 3: Helicopter control

PROVERB: crossword puzzle solver

- Keim, Shazeer, Littman, Agarwal, CCheves, Fitgerald, Grosland, Jiang, Pollard, Weinmeister, PROVERB: The Probabilistic Cruciverbalist
- Shazeer, Littman, Keim, Solving Crossword puzzles as probabilistic constraint satisfaction
- Looks up online databases of clues
- Probabilistic constraint satisfaction
- Can solve New York Times crossword puzzles with 95% accuracy in 15 minutes

Microsoft Windows

- Horvitz, Breese, Heckerman, Hovel, Rommelse, The lumiere project: Bayesian user modeling for inferring the goals and needs of software users
- Breese, Heckerman, Topics in decision-theoretic troubleshooting: repair and experiment
- Printer wizard (Windows 95)
- Lumiere project: office assistant (Office 97)
- User modeling with Bayesian networks and decision networks

MINERVA: mobile tour-guide robot

- Fox, Burgard, Dellaert, Thrun, Monte Carlo localization: efficient position estimation for mobile robots
- Thrun, Bennewitz, Burgard, Dellaert, Fox, Haehnel, Rosenberg, Schulte, Schulz, MINERVA: A second generation mobile tour-guide robot
- Robot localization:
 - Problem: imprecise odometry
 - Solution: probabilistic inference

TD-Gammon: backgammon program

- Tesauro, TD-Gammon, a self-teaching backgammon program achieves master-level play
- Tesauro, Temporal difference learning and TD-Gammon
- Reinforcement learning with neural networks
- TD-Gammon is now the world champion
- TD-Gammon often serves as an oracle

Helicopter control

- Ng, Jordan, PEGASUS: a policy search method for large MDPs and POMDPs
- Ng, Kim, Jordan, Sastry, Autonomous helicopter flight via reinforcement learning
- Ng, Coates, Diel, Ganapathi, Schulte, Tse, Berger, Liang, Inverted autonomous helicopter flight via reinforcement learning
- POMDP and reinforcement learning techniques

Inverted flight

Many other applications

- Speech recognition
- Spoken dialogue systems
- Autonomic computing
- Database query optimization
- Stochastic resource allocation
- Maintenance scheduling
- Medical diagnosis
- Gene sequencing
- Assistive technologies
- Preference elicitation

Course Structure

- Every lecture:
 - Discuss one (or a few) papers
 - Present material for next paper(s) to read
- What you must do:
 - Read assigned papers
 - Course project
 - Participate in class

Course Evaluation

- Course project (50%)
 - Report (30%)
 - Presentation (20%)
- Paper critiques (40%)
 - 2 paper critiques (10% each)
 - 2 presentations of the critiqued papers (10% each)
- Participation (10%)
 - Discussions in class (5%)
 - Brief summary of every paper (5%)

Course Project

- Choose an application
- Report
 - Literature survey
 - Propose model/technique for application
 - Discuss advantages/disadvantages of model/technique
 - Optional: implement model/technique
- Presentation
 - 15 minutes
 - Describe application
 - Overview of model/technique proposed

Paper critiques

- Choose 2 papers from those assigned for reading
- Each critique
 - 2 pages maximum
 - Review for conference/journal
- Each presentation
 - 15 minutes
 - Overview
 - Lead discussion

Participation

- Paper summaries
 - For each paper assigned for reading
 - At most half a page
 - Brief summary that outlines the main contribution
- Contribute to discussions