CS886: Influence diagrams

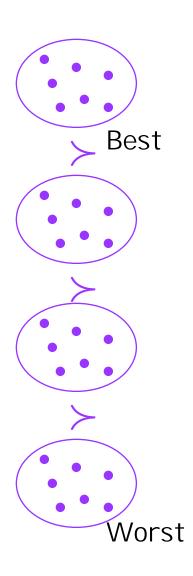
- January 25th
- Intro to utility theory and decision theory
- Influence diagrams (or decision networks)
- Decision making under uncertainty

Preference Orderings

- ■A preference ordering > is a ranking of all possible states of affairs (worlds) S
 - these could be outcomes of actions, truth assts, states in a search problem, etc.
 - s ≽ t: means that state s is at least as good as t
 - s > t: means that state s is *strictly preferred to* t
- ■We insist that > is
 - reflexive: i.e., s ≽ s for all states s
 - transitive: i.e., if $s \ge t$ and $t \ge w$, then $s \ge w$
 - connected: for all states s,t, either $s \ge t$ or $t \ge s$

Why Impose These Conditions?

- Structure of preference ordering imposes certain "rationality requirements" (it is a weak ordering)
- E.g., why transitivity?
 - Suppose you (strictly) prefer coffee to tea, tea to OJ, OJ to coffee
 - If you prefer X to Y, you'll trade me Y plus \$1 for X
 - I can construct a "money pump" and extract arbitrary amounts of money from you



Utilities

- Rather than just ranking outcomes, we must quantify our degree of preference
 - e.g., how much more important is chc than ~mess
- ■A *utility function* U:S $\rightarrow \mathbb{R}$ associates a realvalued *utility* with each outcome.
 - U(s) measures your degree of preference for s
- Note: U induces a preference ordering ≽_U over S defined as: s ≽_U t iff U(s) ≥ U(t)
 - obviously ≽∪ will be reflexive, transitive, connected

Expected Utility

- •Under conditions of uncertainty, each decision d induces a distribution Pr_d over possible outcomes
 - Pr_d(s) is probability of outcome s under decision d
- The expected utility of decision d is defined

$$EU(d) = \sum_{s \in S} \Pr_d(s)U(s)$$

The MEU Principle

- The principle of maximum expected utility (MEU) states that the optimal decision under conditions of uncertainty is that with the greatest expected utility.
- In our example
 - if my utility function is the first one, my robot should get coffee
 - if your utility function is the second one, your robot should do nothing

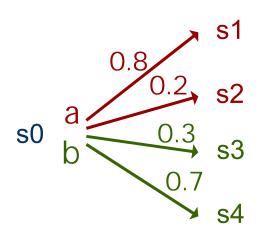
Decision Problems: Uncertainty

- A decision problem under uncertainty is:
 - a set of decisions D
 - a set of outcomes or states S
 - an outcome function $Pr : D \rightarrow \Delta(S)$
 - $\bullet \Delta(S)$ is the set of distributions over S (e.g., Pr_d)
 - a utility function U over S
- ■A *solution* to a decision problem under uncertainty is any $d^*\epsilon$ D such that $EU(d^*) \succcurlyeq EU(d)$ for all $d\epsilon$ D
- Again, for single-shot problems, this is trivial

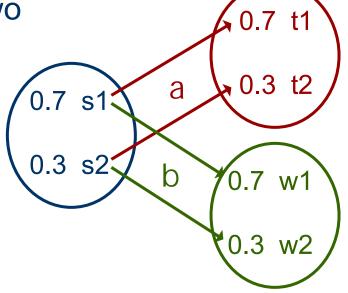
Expected Utility: Notes

- Note that this viewpoint accounts for both:
 - uncertainty in action outcomes
 - uncertainty in state of knowledge

any combination of the two



Stochastic actions



Uncertain knowledge

Expected Utility: Notes

- Why MEU? Where do utilities come from?
 - underlying foundations of utility theory tightly couple utility with action/choice
 - a utility function can be determined by asking someone about their preferences for actions in specific scenarios (or "lotteries" over outcomes)
- Utility functions needn't be unique
 - if I multiply U by a positive constant, all decisions have same relative utility
 - if I add a constant to U, same thing
 - U is unique up to positive affine transformation

So What are the Complications?

- Outcome space is large
 - like all of our problems, states spaces can be huge
 - don't want to spell out distributions like Pr_d explicitly
 - Soln: Bayes nets (or related: influence diagrams)
- Decision space is large
 - usually our decisions are not one-shot actions
 - rather they involve sequential choices (like plans)
 - if we treat each plan as a distinct decision, decision space is too large to handle directly
 - Soln: use dynamic programming methods to construct optimal plans (actually generalizations of plans, called policies... like in game trees)

Decision Networks

- Decision networks (more commonly known as influence diagrams) provide a way of representing sequential decision problems
 - basic idea: represent the variables in the problem as you would in a BN
 - add decision variables variables that you "control"
 - add utility variables how good different states are

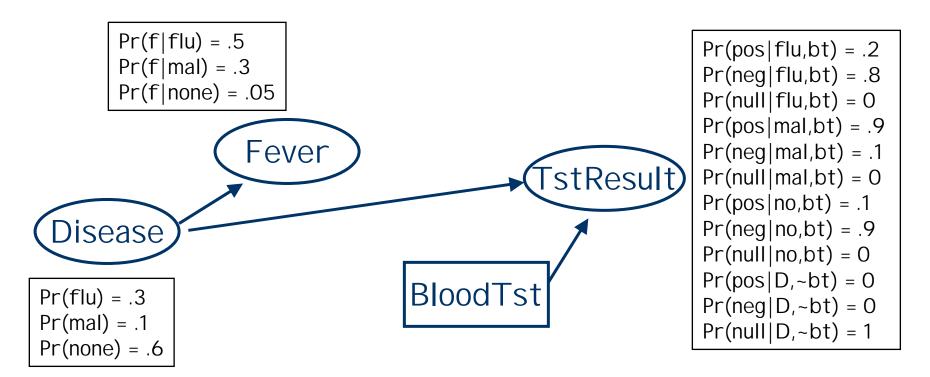
Sample Decision Network



Decision Networks: Chance Nodes

Chance nodes

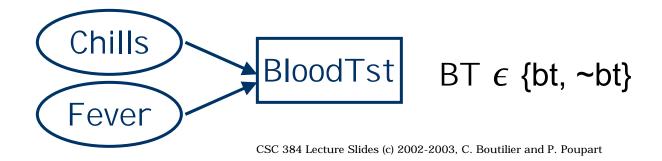
- random variables, denoted by circles
- as in a BN, probabilistic dependence on parents



Decision Networks: Decision Nodes

Decision nodes

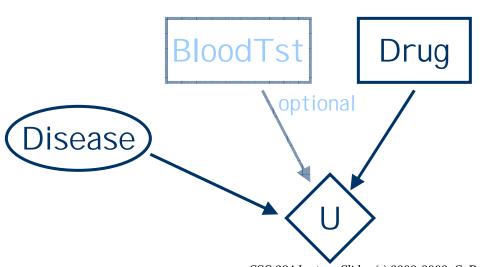
- variables decision maker sets, denoted by squares
- parents reflect information available at time decision is to be made
- In example decision node: the actual values of Ch and Fev will be observed before the decision to take test must be made
 - agent can make different decisions for each instantiation of parents (i.e., policies)



Decision Networks: Value Node

Value node

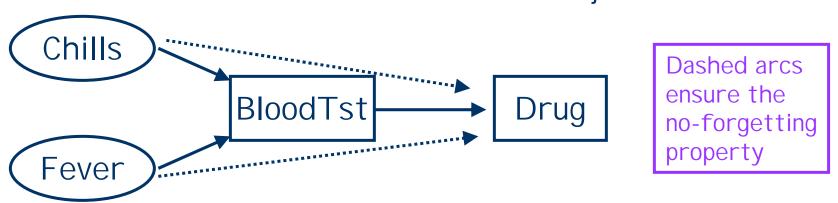
- specifies utility of a state, denoted by a diamond
- utility depends only on state of parents of value node
- generally: only one value node in a decision network
- Utility depends only on disease and drug



U(fludrug, flu) = 20 U(fludrug, mal) = -300 U(fludrug, none) = -5 U(maldrug, flu) = -30 U(maldrug, mal) = 10 U(maldrug, none) = -20 U(no drug, flu) = -10 U(no drug, mal) = -285 U(no drug, none) = 30

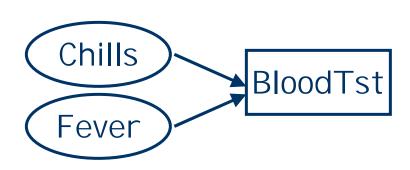
Decision Networks: Assumptions

- Decision nodes are totally ordered
 - decision variables D₁, D₂, ..., D_n
 - decisions are made in sequence
 - e.g., BloodTst (yes,no) decided before Drug (fd,md,no)
- No-forgetting property
 - any information available when decision D_i is made is available when decision D_j is made (for i < j)
 - thus all parents of D_i are parents of D_i



Policies

- Let $Par(D_i)$ be the parents of decision node D_i
 - Dom(Par(D_i)) is the set of assignments to parents
- ■A policy δ is a set of mappings δ_i , one for each decision node D_i
 - $\delta_i : Dom(Par(D_i)) \rightarrow Dom(D_i)$
 - δ_i associates a decision with each parent asst for D_i
- For example, a policy for BT might be:
 - δ_{BT} (c,f) = bt
 - δ_{BT} $(c, \sim f) = \sim bt$
 - δ_{BT} (~c,f) = bt
 - δ_{BT} (~c,~f) = ~bt



Value of a Policy

- Value of a policy δ is the expected utility given that decision nodes are executed according to δ
- •Given asst \mathbf{x} to the set \mathbf{X} of all chance variables, let $\delta(\mathbf{x})$ denote the asst to decision variables dictated by δ
 - e.g., asst to D_1 determined by it's parents' asst in **x**
 - e.g., asst to D_2 determined by it's parents' asst in \mathbf{x} along with whatever was assigned to D_1
 - etc.
- •Value of δ :

$$EU(\delta) = \sum_{\mathbf{X}} P(\mathbf{X}, \, \delta(\mathbf{X})) \, U(\mathbf{X}, \, \delta(\mathbf{X}))$$

Optimal Policies

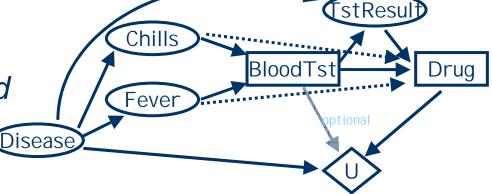
- ■An *optimal policy* is a policy δ^* such that $EU(\delta^*) \ge EU(\delta)$ for all policies δ
- We can use the dynamic programming principle yet again to avoid enumerating all policies
- •We can also use the structure of the decision network to use variable elimination to aid in the computation

Computing the Best Policy

- We can work backwards as follows
- First compute optimal policy for Drug (last dec'n)
 - for each asst to parents (C,F,BT,TR) and for each decision value (D = md,fd,none), compute the expected value of choosing that value of D

 set policy choice for each value of parents to be the value of D that has max value

• eg: $\delta_D(c,f,bt,pos) = md$



Computing the Best Policy

- Next compute policy for BT given policy $\delta_D(C,F,BT,TR)$ just determined for Drug
 - since $\delta_D(C,F,BT,TR)$ is fixed, we can treat Drug as a normal random variable with deterministic probabilities
 - i.e., for any instantiation of parents, value of Drug is fixed by policy δ_D
 - this means we can solve for optimal policy for BT just as before
 - only uninstantiated vars are random vars (once we fix its parents)

Computing the Best Policy

- •How do we compute these expected values?
 - suppose we have asst <*c*,*f*,*bt*,*pos*> to parents of *Drug*
 - we want to compute EU of deciding to set Drug = md
 - we can run variable elimination!
- ■Treat *C,F,BT,TR,Dr* as evidence
 - this reduces factors (e.g., *U* restricted to *bt,md*: depends on *Dis*)
 - eliminate remaining variables (e.g., only *Disease* left)
 - left with factor: $U() = \sum_{Dis} P(Dis|c,f,bt,pos,md)U(Dis)$

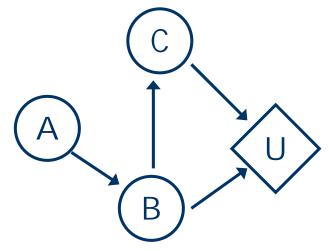


Computing Expected Utilities

- The preceding illustrates a general phenomenon
 - computing expected utilities with BNs is quite easy
 - utility nodes are just factors that can be dealt with using variable elimination

$$EU = \Sigma_{A,B,C} P(A,B,C) U(B,C)$$
$$= \Sigma_{A,B,C} P(C|B) P(B|A) P(A) U(B,C)$$

Just eliminate variables in the usual way



Optimizing Policies: Key Points

- If a decision node D has no decisions that follow it, we can find its policy by instantiating each of its parents and computing the expected utility of each decision for each parent instantiation
 - no-forgetting means that all other decisions are instantiated (they must be parents)
 - its easy to compute the expected utility using VE
 - the number of computations is quite large: we run expected utility calculations (VE) for each parent instantiation together with each possible decision D might allow
 - policy: choose max decision for each parent instant'n

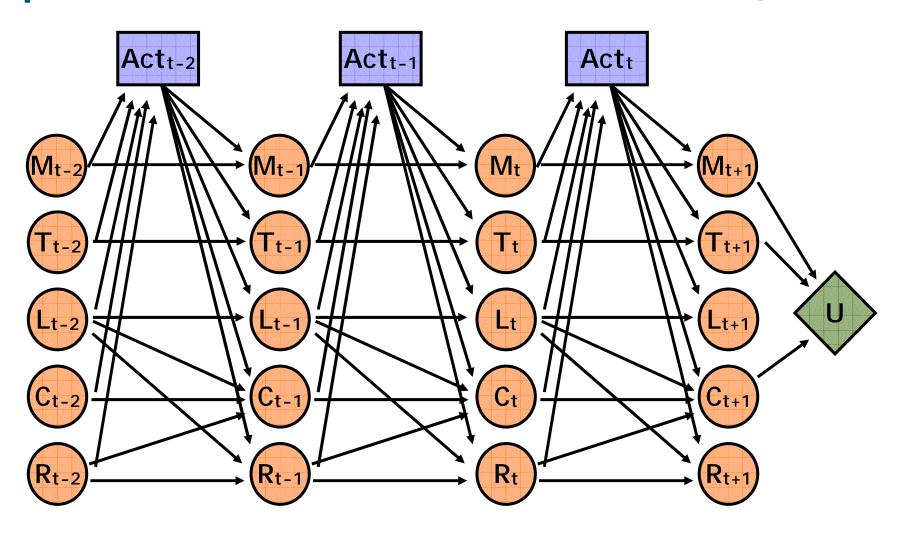
Optimizing Policies: Key Points

- When a decision D node is optimized, it can be treated as a random variable
 - for each instantiation of its parents we now know what value the decision should take
 - just treat policy as a new CPT: for a given parent instantiation \mathbf{x} , D gets $\delta(\mathbf{x})$ with probability 1(all other decisions get probability zero)
- If we optimize from last decision to first, at each point we can optimize a specific decision by (a bunch of) simple VE calculations
 - it's successor decisions (optimized) are just normal nodes in the BNs (with CPTs)

Decision Network Notes

- Decision networks commonly used by decision analysts to help structure decision problems
- •Much work put into computationally effective techniques to solve these
 - common trick: replace the decision nodes with random variables at outset and solve a plain Bayes net (a subtle but useful transformation)
- Complexity much greater than BN inference
 - we need to solve a number of BN inference problems
 - one BN problem for each setting of decision node parents and decision node value

DBN-Decision Nets for Planning



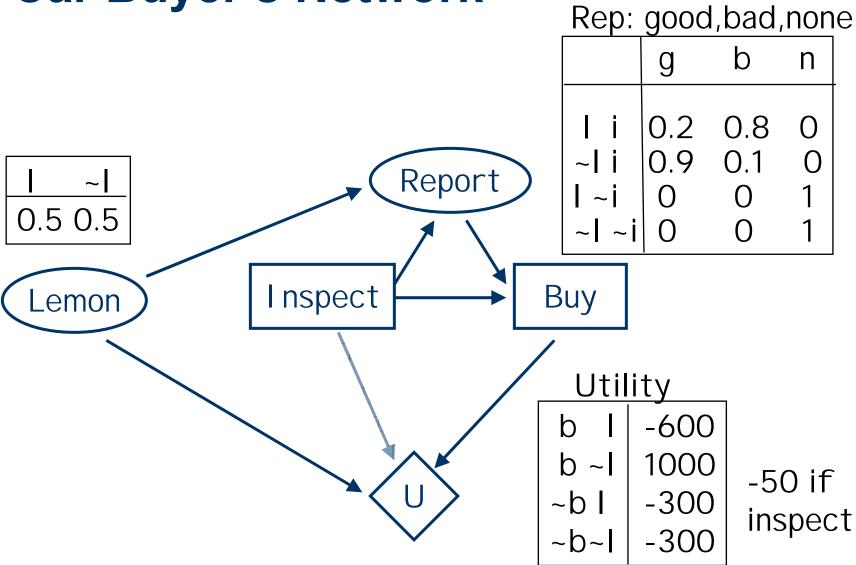
DBN Decision Networks

- In example on previous slide:
 - we assume the state (of the variables at any stage) is fully observable
 - hence all time t vars point to time t decision
 - this means the state at time t d-separates the decision at time t-1 from the decision at time t-2
 - so we ignore "no-forgetting" arcs between decisions
 - •once you know the state at time t, what you did at time t-1 to get there is irrelevant to the decision at time t-1
- If the state were not fully observable, we could not ignore the "no-forgetting" arcs

A Detailed Decision Net Example

- Setting: you want to buy a used car, but there's a good chance it is a "lemon" (i.e., prone to breakdown). Before deciding to buy it, you can take it to a mechanic for inspection. S/he will give you a report on the car, labelling it either "good" or "bad". A good report is positively correlated with the car being sound, while a bad report is positively correlated with the car being a lemon.
- ■The report costs \$50 however. So you could risk it, and buy the car without the report.
- Owning a sound car is better than having no car, which is better than owning a lemon.

Car Buyer's Network



Evaluate Last Decision: Buy (1)

- $=EU(B|I,R) = \Sigma_L P(L|I,R,B) U(L,B)$
- \blacksquare I = i, R = g:
 - EU(buy) = P(I|i, g) U(I,buy) + P(I|i, g) U(I,buy) 50 = .18*-600 + .82*1000 50 = 662
 - EU(~buy) = P(I|i, g) U(I,~buy) + P($\sim I|i, g$) U($\sim I,~buy$) 50 = -300 50 = -350 (-300 indep. of lemon)
 - So optimal δ_{Buy} (i,g) = buy

Evaluate Last Decision: Buy (2)

- ■I = i, R = b:
 - EU(buy) = P(I|i, b) U(I,buy) + P($\sim I$ |i, b) U($\sim I$,buy) 50 = .89*-600 + .11*1000 50 = -474
 - EU(~buy) = P(I|i, b) U(I,~buy) + P(~I|i, b) U(~I,~buy) 50 = -300 50 = -350 (-300 indep. of lemon)
 - So optimal $\delta_{Buy}(i,b) = \sim buy$

Evaluate Last Decision: Buy (3)

- ■I = ~i, R = n (note: no inspection cost subtracted)
 - EU(buy) = $P(I|\sim i, n)$ U(I,buy) + $P(\sim I|\sim i, n)$ U($\sim I,buy$) = .5*-600 + .5*1000 = 200
 - EU(~buy) = P(I|~i, n) U(I,~buy) + P(~I|~i, n) U(~I,~buy) = -300 50 = -350 (-300 indep. of lemon)
 - So optimal δ_{Buy} ($\sim i, n$) = buy
- So optimal policy for Buy is:
 - $\delta_{Buy}\left(i,g\right)=buy$; $\delta_{Buy}\left(i,b\right)=\sim buy$; $\delta_{Buy}\left(\sim i,n\right)=buy$
- ■Note: we don't bother computing policy for (i,~n), (~i, g), or (~i, b), since these occur with probability 0

Evaluate First Decision: Inspect

- \blacksquare EU(I) = $\Sigma_{L,R}$ P(L,R|I) U(L, δ_{Buy} (I,R))
 - where P(R,L|I) = P(R|L,I)P(L|I)
 - EU(i) = .1*-600 + .4*-300 + .45*1000 + .05*-300 50 = 237.5 - 50 = 187.5
 - EU(\sim i) = P(I| \sim i, n) U(I,buy) + P(\sim I| \sim i, n) U(\sim I,buy) = .5*-600 + .5*1000 = 200
 - So optimal $\delta_{Inspect}$ (~i) = buy

	P(R,L I)	δ_{Buy}	U(L, δ_{Buy})
g,l	0.1	buy	-600 - 50 = -650
b,l	0.4	~buy	-300 - 50 = -350
g,~l	0.45	buy	1000 - 50 = 950
b,~l	0.05	~buy	-300 - 50 = -350

CSC 384 Lecture Slides (c) 2002-2003, C. Boutilier and P. Poupart

Value of Information

- So optimal policy is: don't inspect, buy the car
 - EU = 200
 - Notice that the EU of inspecting the car, then buying it iff you get a good report, is 237.5 less the cost of the inspection (50). So inspection not worth the improvement in EU.
 - But suppose inspection cost \$25: then it would be worth it (EU = 237.5 – 25 = 212.5 > EU(~i))
 - The expected value of information associated with inspection is 37.5 (it improves expected utility by this amount ignoring cost of inspection). How? Gives opportunity to change decision (~buy if bad).
 - You should be willing to pay up to \$37.5 for the report