Module 7
Policy Iteration

CS 886 Sequential Decision Making and Reinforcement Learning
University of Waterloo
Policy Optimization

• Value iteration
 – Optimize value function
 – Extract induced policy

• Can we directly optimize the policy?
 – Yes, by policy iteration
Policy Iteration

• Alternate between two steps

1. Policy evaluation

\[V^\pi(s) = R(s, \pi(s)) + \gamma \sum_{s'} \Pr(s'|s, \pi(s)) V^\pi(s') \quad \forall s \]

2. Policy improvement

\[\pi(s) \leftarrow \arg\max_a R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V^\pi(s') \quad \forall s \]
Algorithm

policyIleration(MDP)

Initialize π_0 to any policy

$n \leftarrow 0$

Repeat

Eval: $V_n = R^{\pi_n} + \gamma T^{\pi_n} V_n$

Improve: $\pi_{n+1} \leftarrow \text{argmax}_a R^a + \gamma T^a V_n$

$n \leftarrow n + 1$

Until $\pi_{n+1} = \pi_n$

Return π_n
Monotonic Improvement

• **Lemma 1:** Let V_n and V_{n+1} be successive value functions in policy iteration. Then $V_{n+1} \geq V_n$.

• **Proof:**
 – We know that $H^*(V_n) \geq H^\pi_n(V_n) = V_n$
 – Let $\pi_{n+1} = \text{argmax}_a R^a + \gamma T^a V_n$
 – Then $H^*(V_n) = R^{\pi_{n+1}} + \gamma T^{\pi_{n+1}} V_n \geq V_n$
 – Rearranging: $R^{\pi_{n+1}} \geq (I - \gamma T^{\pi_{n+1}}) V_n$
 – Hence $V_{n+1} = (I - \gamma T^{\pi_{n+1}})^{-1} R^{\pi_{n+1}} \geq V_n$
Convergence

• **Theorem 2:** Policy iteration converges to π^* & V^* in finitely many iterations when S and A are finite.

• **Proof:**

 - We know that $V_{n+1} \geq V_n \ \forall n$ by Lemma 1.

 - Since A and S are finite, there are finitely many policies and therefore the algorithm terminates in finitely many iterations.

 - At termination, $\pi_{n+1} = \pi_n$ and therefore V_n satisfies Bellman’s equation:

 $$V_n = V_{n+1} = \max_a R^a + \gamma T^a V_n$$
Complexity

• Value Iteration:
 – Each iteration: $O(|S|^2 |A|)$
 – Many iterations: linear convergence

• Policy Iteration:
 – Each iteration: $O(|S|^3 + |S|^2 |A|)$
 – Few iterations: linear-quadratic convergence
Modified Policy Iteration

• Alternate between two steps

1. **Partial** Policy evaluation

 Repeat k times:

 $$V^\pi(s) \leftarrow R(s, \pi(s)) + \gamma \sum_{s'} \Pr(s'|s, \pi(s)) V^\pi(s') \ \forall s$$

2. Policy improvement

 $$\pi(s) \leftarrow \arg\max_a R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V^\pi(s') \ \forall s$$
Algorithm

modifiedPolicyIteration(MDP)

Initialize \(\pi_0 \) and \(V_0 \) to anything

\(n \leftarrow 0 \)

Repeat

Eval: Repeat \(k \) times

\[
V_n \leftarrow R^{\pi_n} + \gamma T^{\pi_n}V_n
\]

Improve:

\[
\pi_{n+1} \leftarrow \arg \max_a \ R^a \ + \ \gamma T^a V_n
\]

\[
V_{n+1} \leftarrow \max_a \ R^a \ + \ \gamma T^a V_n
\]

\(n \leftarrow n + 1 \)

Until \(\|V_n - V_{n-1}\|_\infty \leq \epsilon \)

Return \(\pi_n \)
Convergence

• Same convergence guarantees as value iteration:
 • Value function V_n:
 \[||V_n - V^*||_\infty \leq \frac{\epsilon}{1-\gamma} \]
 • Value function V^{π_n} of policy π_n:
 \[||V^{\pi_n} - V^*||_\infty \leq \frac{2\epsilon}{1-\gamma} \]

• Proof: somewhat complicated (see Section 6.5 of Puterman’s book)
Complexity

• Value Iteration:
 – Each iteration: $O(|S|^2|A|)$
 – Many iterations: linear convergence

• Policy Iteration:
 – Each iteration: $O(|S|^3 + |S|^2|A|)$
 – Few iterations: linear-quadratic convergence

• Modified Policy Iteration:
 – Each iteration: $O(k|S|^2 + |S|^2|A|)$
 – Few iterations: linear-quadratic convergence
Summary

• Policy iteration
 – Iteratively refine policy

• Can we treat the search for a good policy as an optimization problem?
 – Yes: by linear programming