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Bounds 

• POMDP algorithms typically find approximations 

to optimal value function or optimal policy 

– Need some performance guarantees 

 

• Lower bounds on 𝑉∗ 

– 𝑉𝜋 for any policy 𝜋 

– Point-based value iteration 

• Upper bounds on 𝑉∗ 

– QMDP 

– Fast-informed bound 

– Finite Belief-State MDP 
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Lower Bounds 

 

• Lower bounds are easy to obtain 

 

• For any policy 𝜋, 𝑉𝜋 is a lower bound  

since 𝑉𝜋 𝑏 ≤ 𝑉∗ 𝑏  ∀𝜋, 𝑏 

 

• The main issue is to evaluate a policy 𝜋 
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Point-based Value Iteration 
 

• Theorem: If 𝑉0 is a lower bound, then the value 

functions 𝑉𝑛 produced by point-based value 

iteration at each iteration 𝑛 are lower bounds. 
 

• Proof by induction 

– Base case: pick 𝑉0 to be a lower bound 

– Inductive assumption: 𝑉𝑛 𝑏 ≤ 𝑉
∗ 𝑏  ∀𝑏 

– Induction: 

• Let Τ𝑛+1 be the set of 𝛼-vectors for some set 𝐵 of beliefs 

• Let Τ𝑛+1
∗  be the set of 𝛼-vectors for all beliefs  

• Hence 𝑉𝑛+1 𝑏 = max
𝛼∈Τ𝑛+1

 𝛼(𝑏) ≤ max
𝛼∈Τ𝑛+1
∗
𝛼 𝑏 ≤ 𝑉∗(𝑏) 
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Upper Bounds 
 

• Idea: make decision based on more information 

than normally available to obtain higher value 

than optimal. 

 

• POMDP: states are hidden 

• MDP: states are observable 

• Hence 𝑉𝑀𝐷𝑃 ≥ 𝑉𝑃𝑂𝑀𝐷𝑃 
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QMDP Algorithm 
 

• Derive upper bound from MDP Q-function by 

allowing the state to be observable 

• Policy: 𝑠𝑡 → 𝑎𝑡 

 

QMDP(POMDP) 

    Solve MDP to find 𝑄𝑀𝐷𝑃 
    𝑄𝑀𝐷𝑃 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾  Pr 𝑠

′ 𝑠, 𝑎 max
𝑎′
𝑄𝑀𝐷𝑃(𝑠′, 𝑎′)𝑠′  

    Let 𝑉 𝑏 = max
𝑎
 𝑏 𝑠 𝑄𝑀𝐷𝑃(𝑠, 𝑎)𝑠  

Return 𝑉  
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Fast Informed Bound 
 

• QMDP upper bound is too loose 

– Actions depend on current state (too informative) 

 

• Tighter upper bound: fast Informed bound (FIB) 

– Actions depend on previous state (less informative) 

 

𝑉𝑀𝐷𝑃 ≥ 𝑉𝐹𝐼𝐵 ≥ 𝑉
∗ 
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FIB Algorithm 
 

• Derive upper bound by allowing the previous 

state to be observable 

• Policy: 𝑠𝑡−1, 𝑎𝑡−1, 𝑜𝑡 → 𝑎𝑡 

 

FIB(POMDP) 

    Find 𝑄𝐹𝐼𝐵 by value iteration 
    𝑄𝐹𝐼𝐵 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾  max

𝑎′
 Pr 𝑠′ 𝑠, 𝑎 Pr 𝑜′ 𝑠′, 𝑎𝑠′ 𝑄𝐹𝐼𝐵(𝑠

′, 𝑎′)𝑜′  

    Let 𝑉 𝑏 = max
𝑎
 𝑏 𝑠 𝑄𝐹𝐼𝐵(𝑠, 𝑎)𝑠  

Return 𝑉  
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FIB Analysis 
 

• Theorem: 𝑉𝑀𝐷𝑃 ≥ 𝑉𝐹𝐼𝐵 ≥ 𝑉
∗ 

 

• Proof: 

1) 𝑄𝑀𝐷𝑃 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾  Pr 𝑠
′ 𝑠, 𝑎 max

𝑎′
𝑄 𝑠′, 𝑎′𝑠′  

 = 𝑅 𝑠, 𝑎 + 𝛾  Pr 𝑠′ 𝑠, 𝑎 Pr 𝑜′ 𝑠′, 𝑎 max
𝑎′
𝑄(𝑠′, 𝑎′)𝑠′𝑜′      

≥ 𝑅 𝑠, 𝑎 + 𝛾  max
𝑎′
 Pr 𝑠′ 𝑠, 𝑎 Pr 𝑜′ 𝑠′, 𝑎𝑠′ 𝑄(𝑠′, 𝑎′)𝑜′  

 = 𝑄𝐹𝐼𝐵(𝑠, 𝑎) 
 

    2) 𝑉𝐹𝐼𝐵 ≥ 𝑉
∗ since 𝑉𝐹𝐼𝐵 is based on observing the 

previous state (too informative) 
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Finite Belief-State MDP 
 

• Belief state MDP:  all beliefs are treated as states 
𝑉∗ 𝑏 = max

𝑎
𝑄∗(𝑏, 𝑎) 

• QMDP and FIB: value of each interior belief is 

interpolated: i.e., 𝑉 𝑏 = max
𝑎
 𝑏 𝑠 𝑄𝐹𝐼𝐵(𝑠, 𝑎)𝑠  

 

• Idea: retain subset of beliefs 

– Interpolate value of remaining beliefs 
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Finite Belief-State MDP 
 

• Belief state MDP 

𝑄 𝑏, 𝑎 = 𝑅 𝑏, 𝑎 + 𝛾 Pr 𝑜′ 𝑏, 𝑎

𝑜′

max
𝑎′
𝑄(𝑏𝑎,𝑜, 𝑎′) 

 

• Let 𝐵 be a subset of representative beliefs 

• Approximate 𝑄(𝑏𝑎,𝑜, 𝑎′) with lowest interpolation 

– Linear program 

              𝑄 𝑏𝑎,𝑜, 𝑎′ = min
𝑐
 𝑐𝑏𝑄 𝑏, 𝑎

′
𝑏∈𝐵   

               such that   𝑐𝑏 = 1𝑏  and 𝑐𝑏 ≥ 0 ∀𝑏 
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Finite Belief-State MDP Algorithm 
 

• Derive upper bound by interpolating values 

based on a finite subset of values 

 
FiniteBeliefStateMDP(POMDP) 

    Find 𝑄𝐵 by value iteration 

    𝑄𝐵 𝑏, 𝑎 = 𝑅 𝑏, 𝑎 + 𝛾  Pr 𝑜
′ 𝑏, 𝑎 max

𝑎′
𝑄𝐵(𝑏

𝑎𝑜′ , 𝑎′)𝑜′  ∀𝑏 ∈ 𝐵, 𝑎 

         where 𝑄𝐵 𝑏
𝑎𝑜′ , 𝑎′ = min

𝑐
 𝑐𝑏𝑄𝐵(𝑏, 𝑎

′)𝑏∈𝐵  

           such that  𝑐𝑏𝑏∈𝐵 = 1 and 𝑐𝑏 ≥ 0 ∀𝑏 ∈ 𝐵 

    Let 𝑉 𝑏 = max
𝑎
 𝑏 𝑠 𝑄𝐵(𝑠, 𝑎)𝑠  

Return 𝑉  


