Module 15 POMDP Bounds

CS 886 Sequential Decision Making and Reinforcement Learning University of Waterloo

Bounds

- POMDP algorithms typically find approximations to optimal value function or optimal policy
 - Need some performance guarantees
- Lower bounds on V*
 - V^{π} for any policy π
 - Point-based value iteration
- Upper bounds on V*
 - QMDP
 - Fast-informed bound
 - Finite Belief-State MDP

Lower Bounds

- Lower bounds are easy to obtain
- For any policy π , V^{π} is a lower bound since $V^{\pi}(b) \leq V^{*}(b) \forall \pi, b$
- The main issue is to evaluate a policy π

Point-based Value Iteration

- Theorem: If V_0 is a lower bound, then the value functions V_n produced by point-based value iteration at each iteration n are lower bounds.
- Proof by induction
 - Base case: pick V_0 to be a lower bound
 - Inductive assumption: $V_n(b) \leq V^*(b) \forall b$
 - Induction:
 - Let T_{n+1} be the set of α -vectors for some set *B* of beliefs
 - Let T_{n+1}^* be the set of α -vectors for **all** beliefs
 - Hence $V_{n+1}(b) = \max_{\alpha \in \mathcal{T}_{n+1}} \alpha(b) \le \max_{\alpha \in \mathcal{T}_{n+1}^*} \alpha(b) \le V^*(b)$

- Idea: make decision based on more information than normally available to obtain higher value than optimal.
- POMDP: states are hidden
- MDP: states are observable
- Hence $V_{MDP} \ge V_{POMDP}$

QMDP Algorithm

- Derive upper bound from MDP Q-function by allowing the state to be observable
- Policy: $s_t \rightarrow a_t$

QMDP(POMDP)
Solve MDP to find
$$Q_{MDP}$$

 $Q_{MDP}(s,a) = R(s,a) + \gamma \sum_{s'} \Pr(s'|s,a) \max_{a'} Q_{MDP}(s',a')$
Let $\overline{V}(b) = \max_{a} \sum_{s} b(s) Q_{MDP}(s,a)$
Return \overline{V}

Fast Informed Bound

- QMDP upper bound is too loose
 - Actions depend on current state (too informative)
- Tighter upper bound: fast Informed bound (FIB)
 Actions depend on previous state (less informative)

$$V_{MDP} \ge V_{FIB} \ge V^*$$

FIB Algorithm

- Derive upper bound by allowing the previous state to be observable
- Policy: $s_{t-1}, a_{t-1}, o_t \rightarrow a_t$

FIB(POMDP) Find Q_{FIB} by value iteration $Q_{FIB}(s,a) = R(s,a) + \gamma \sum_{o'} \max_{a'} \sum_{s'} \Pr(s'|s,a) \Pr(o'|s',a) Q_{FIB}(s',a')$ Let $\overline{V}(b) = \max_{a} \sum_{s} b(s) Q_{FIB}(s,a)$ Return \overline{V}

FIB Analysis

- Theorem: $V_{MDP} \ge V_{FIB} \ge V^*$
- Proof:

1)
$$Q_{MDP}(s, a) = R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) \max_{a'} Q(s', a')$$

 $= R(s, a) + \gamma \sum_{s'o'} \Pr(s'|s, a) \Pr(o'|s', a) \max_{a'} Q(s', a')$
 $\ge R(s, a) + \gamma \sum_{o'} \max_{a'} \sum_{s'} \Pr(s'|s, a) \Pr(o'|s', a) Q(s', a')$
 $= Q_{FIB}(s, a)$

2) $V_{FIB} \ge V^*$ since V_{FIB} is based on observing the previous state (too informative)

Finite Belief-State MDP

- Belief state MDP: all beliefs are treated as states $V^*(b) = \max_a Q^*(b, a)$
- QMDP and FIB: value of each interior belief is interpolated: i.e., $\overline{V}(b) = \max_{a} \sum_{s} b(s) Q_{FIB}(s, a)$
- Idea: retain subset of beliefs

 Interpolate value of remaining beliefs

Finite Belief-State MDP

• Belief state MDP

$$Q(b,a) = R(b,a) + \gamma \sum_{o'} \Pr(o'|b,a) \max_{a'} Q(b^{a,o},a')$$

- Let *B* be a subset of representative beliefs
- Approximate $Q(b^{a,o}, a')$ with lowest interpolation
 - Linear program

$$Q(b^{a,o}, a') = \min_{c} \sum_{b \in B} c_b Q(b, a')$$

such that $\sum_b c_b = 1$ and $c_b \ge 0 \forall b$

Finite Belief-State MDP Algorithm

 Derive upper bound by interpolating values based on a finite subset of values

FiniteBeliefStateMDP(POMDP) Find Q_B by value iteration $Q_B(b,a) = R(b,a) + \gamma \sum_{o'} \Pr(o'|b,a) \max_{a'} Q_B(b^{ao'},a') \forall b \in B, a$ where $Q_B(b^{ao'},a') = \min_{c} \sum_{b \in B} c_b Q_B(b,a')$ such that $\sum_{b \in B} c_b = 1$ and $c_b \ge 0 \forall b \in B$ Let $\overline{V}(b) = \max_{a} \sum_{s} b(s) Q_B(s,a)$ Return \overline{V}