Intro to Machine Learning and Decision Trees Lecture 3: Sept 18, 2013 CS886-2 Natural Language Understanding University of Waterloo CS886 Lecture Slides (c) 2013 P. Poupart 1 ## What is Machine Learning? - Definition: - A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. [T Mitchell, 1997] CS886 Lecture Slides (c) 2013 P. Poupart - #### **Examples** - Backgammon (reinforcement learning): - T: playing backgammon - P: percent of games won against an opponent - E: playing practice games against itself - Handwriting recognition (supervised learning): - T: recognize handwritten words within images - P: percent of words correctly recognized - E: database of handwritten words with given classifications - Customer profiling (unsupervised learning): - T: cluster customers based on transaction patterns - P: homogeneity of clusters - E: database of customer transactions CS886 Lecture Slides (c) 2013 P. Poupart 3 #### Inductive Learning (aka concept learning) - Induction: - Given a training set of examples of the form (x,f(x)) - x is the input, f(x) is the output - Return a function h that approximates f - h is called the hypothesis CS886 Lecture Slides (c) 2013 P. Poupart ## Classification • Training set: | Training sec. | | | | | | | | | | | |---------------|---------------|---------------|---------------|---------------|----------------------|--|--|--|--|--| | STAT231 | <i>C</i> S341 | <i>CS</i> 350 | <i>CS</i> 485 | <i>C</i> S486 | <i>C</i> 5886
NLU | | | | | | | statistics | algorithms | 05 | ML | AI | | | | | | | | Α | Α | В | Α | Α | Α | | | | | | | Α | В | В | В | Α | Α | | | | | | | В | В | В | В | В | В | | | | | | | В | Α | В | Α | Α | A | | | | | | | | | | | | 7 | | | | | | | | | | f(x) | | | | | | | | - Possible hypotheses: - h_1 : CS485=A → CS886=A - $-h_2$: CS485=A v STAT231=A → CS886=A CS886 Lecture Slides (c) 2013 P. Poupart 5 # Regression • Find function **h** that fits f at instances x CS886 Lecture Slides (c) 2013 P. Poupart # Regression • Find function **h** that fits f at instances x CS886 Lecture Slides (c) 2013 P. Poupart 7 ## **Hypothesis Space** - Hypothesis space H - Set of all hypotheses h that the learner may consider - Learning is a search through hypothesis space - Objective: - Find hypothesis that agrees with training examples - But what about unseen examples? CS886 Lecture Slides (c) 2013 P. Poupart #### Generalization - A good hypothesis will generalize well (i.e. predict unseen examples correctly) - Usually... - Any hypothesis h found to approximate the target function f well over a sufficiently large set of training examples will also approximate the target function well over any unobserved examples CS886 Lecture Slides (c) 2013 P. Poupart 9 ## **Inductive Learning** - Construct/adjust h to agree with f on training set - (h is consistent if it agrees with f on all examples) - E.g., curve fitting: CS886 Lecture Slides (c) 2013 P. Poupart ## **Inductive Learning** - Construct/adjust h to agree with f on training set - (h is consistent if it agrees with f on all examples) - E.g., curve fitting: CS886 Lecture Slides (c) 2013 P. Poupart 11 # **Inductive Learning** - Construct/adjust h to agree with f on training set - (h is consistent if it agrees with f on all examples) - E.g., curve fitting: CS886 Lecture Slides (c) 2013 P. Poupart ## **Inductive Learning** - Construct/adjust h to agree with f on training set - (h is consistent if it agrees with f on all examples) - E.g., curve fitting: CS886 Lecture Slides (c) 2013 P. Poupart 13 ## **Inductive Learning** - Construct/adjust h to agree with f on training set - (h is consistent if it agrees with f on all examples) - E.g., curve fitting: Ockham's razor: prefer the simplest hypothesis consistent with data CS886 Lecture Slides (c) 2013 P. Poupart ## **Inductive Learning** - Finding a consistent hypothesis depends on the hypothesis space - For example, it is not possible to learn exactly f(x)=ax+b+xsin(x) when H=space of polynomials of finite degree - A learning problem is realizable if the hypothesis space contains the true function, otherwise it is unrealizable - Difficult to determine whether a learning problem is realizable since the true function is not known CS886 Lecture Slides (c) 2013 P. Poupart 15 ## **Inductive Learning** - It is possible to use a very large hypothesis space - For example, H=class of all Turing machines - But there is a tradeoff between expressiveness of a hypothesis class and complexity of finding simple, consistent hypothesis within the space - Fitting straight lines is easy, fitting high degree polynomials is hard, fitting Turing machines is very hard! CS886 Lecture Slides (c) 2013 P. Poupart #### **Decision trees** - Decision tree classification - Nodes: labeled with attributes - Edges: labeled with attribute values - Leaves: labeled with classes - Classify an instance by starting at the root, testing the attribute specified by the root, then moving down the branch corresponding to the value of the attribute - Continue until you reach a leaf - Return the class CS886 Lecture Slides (c) 2013 P. Poupart #### Decision tree representation Decision trees can represent disjunctions of conjunctions of constraints on attribute values ## Decision tree representation - Decision trees are fully expressive within the class of propositional languages - Any Boolean function can be written as a decision tree - Trivially by allowing each row in a truth table correspond to a path in the tree - Can often use small trees - Some functions require exponentially large trees (majority function, parity function) - However, there is no representation that is efficient for all functions CS886 Lecture Slides (c) 2013 P. Poupart ## Inducing a decision tree - Aim: find a small tree consistent with the training examples - Idea: (recursively) choose "most significant" attribute as root of (sub)tree CS886 Lecture Slides (c) 2013 P. Poupart 21 ## **Decision Tree Learning** ``` function DTL(examples, attributes, default) returns a decision tree if examples is empty then return default else if all examples have the same classification then return the classification else if attributes is empty then return Mode(examples) else best \leftarrow \texttt{Choose-Attribute}(attributes, examples) \\ tree \leftarrow \texttt{a} \text{ new decision tree with root test } best \\ \text{for each value } v_i \text{ of } best \text{ do} \\ examples_i \leftarrow \{\text{elements of } examples \text{ with } best = v_i\} \\ subtree \leftarrow \texttt{DTL}(examples_i, attributes - best, \texttt{Mode}(examples)) \\ \text{add a branch to } tree \text{ with label } v_i \text{ and subtree } subtree \\ \text{return } tree ``` CS886 Lecture Slides (c) 2013 P. Poupart # Choosing attribute tests - The central choice is deciding which attribute to test at each node - We want to choose an attribute that is most useful for classifying examples CS886 Lecture Slides (c) 2013 P. Poupart 23 # Example -- Restaurant | Example | Attributes | | | | | | | | | | Target | |-----------|------------|-----|-----|-----|------|--------|------|-----|---------|-------|--------| | Literipie | Alt | Bar | Fri | Hun | Pat | Price | Rain | Res | Type | Est | Wait | | X_1 | Т | F | F | Т | Some | \$\$\$ | F | Т | French | 0-10 | Т | | X_2 | Т | F | F | T | Full | \$ | F | F | Thai | 30–60 | F | | X_3 | F | Т | F | F | Some | \$ | F | F | Burger | 0-10 | Т | | X_4 | Т Т | F | Т | T | Full | \$ | F | F | Thai | 10-30 | Т | | X_5 | Т Т | F | Т | F | Full | \$\$\$ | F | Т | French | >60 | F | | X_6 | F | Т | F | T | Some | \$\$ | Т | Т | Italian | 0-10 | Т | | X_7 | F | Т | F | F | None | \$ | Т | F | Burger | 0-10 | F | | X_8 | F | F | F | T | Some | \$\$ | Т | Т | Thai | 0-10 | Т | | X_9 | F | Т | Т | F | Full | \$ | Т | F | Burger | >60 | F | | X_{10} | т | Т | Т | T | Full | \$\$\$ | F | Т | Italian | 10-30 | F | | X_{11} | F | F | F | F | None | \$ | F | F | Thai | 0-10 | F | | X_{12} | т | Т | Т | T | Full | \$ | F | F | Burger | 30-60 | Т | CS886 Lecture Slides (c) 2013 P. Poupart #### Choosing an attribute • Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative" • Patrons? is a better choice CS886 Lecture Slides (c) 2013 P. Poupart 25 ## Using information theory - To implement **Choose-Attribute** in the DTL algorithm - Measure uncertainty (Entropy): $$I(P(v_1), ..., P(v_n)) = \Sigma_{i=1} - P(v_i) \log_2 P(v_i)$$ For a training set containing p positive examples and n negative examples: $$I(\frac{p}{p+n}, \frac{n}{p+n}) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$ CS886 Lecture Slides (c) 2013 P. Poupart ## Information gain A chosen attribute A divides the training set E into subsets E₁, ..., E_v according to their values for A, where A has v distinct values. $$remainder(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i})$$ • Information Gain (IG) or reduction in uncertainty from the attribute test: $$IG(A) = I(\frac{p}{p+n}, \frac{n}{p+n}) - remainder(A)$$ Choose the attribute with the largest IG CS886 Lecture Slides (c) 2013 P. Poupart 27 ## Information gain For the training set, p = n = 6, I(6/12, 6/12) = 1 bit Consider the attributes *Patrons* and *Type* (and others too): $$IG(Patrons) = 1 - \left[\frac{2}{12}I(0,1) + \frac{4}{12}I(1,0) + \frac{6}{12}I(\frac{2}{6}, \frac{4}{6})\right] = .541 \text{ bits}$$ $$IG(Type) = 1 - \left[\frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{2}{12}I(\frac{1}{2}, \frac{1}{2}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4}) + \frac{4}{12}I(\frac{2}{4}, \frac{2}{4})\right] = 0 \text{ bits}$$ Patrons has the highest IG of all attributes and so is chosen by the DTL algorithm as the root CS886 Lecture Slides (c) 2013 P. Poupart #### Example • Decision tree learned from the 12 examples: Substantially simpler than "true" tree---a more complex hypothesis isn't justified by little data CS886 Lecture Slides (c) 2013 P. Poupart 29 #### Performance of a learning algorithm - A learning algorithm is good if it produces a hypothesis that does a good job of predicting classifications of unseen examples - Verify performance with a test set - 1. Collect a large set of examples - 2. Divide into 2 disjoint sets: training set and test set - 3. Learn hypothesis h with training set - 4. Measure percentage of correctly classified examples by h in the test set - 5. Repeat 2-4 for different randomly selected training sets of varying sizes CS886 Lecture Slides (c) 2013 P. Poupart ## **Overfitting** - Decision-tree grows until all training examples are perfectly classified - But what if... - Data is noisy - Training set is too small to give a representative sample of the target function - May lead to Overfitting! - Common problem with most learning algo CS886 Lecture Slides (c) 2013 P. Poupart ## Overfitting - Definition: Given a hypothesis space H, a hypothesis h ∈ H is said to overfit the training data if there exists some alternative hypothesis h' ∈ H such that h has smaller error than h' over the training examples but h' has smaller error than h over the entire distribution of instances - Overfitting has been found to decrease accuracy of decision trees by 10-25% CS886 Lecture Slides (c) 2013 P. Poupart 33 #### Avoiding overfitting Two popular techniques: - 1. Prune statistically irrelevant nodes - Measure irrelevance with χ^2 test, information gain - 2. Stop growing tree when test set performance starts decreasing - Use cross-validation ## **Cross-validation** - Split data in two parts, one for training, one for testing the accuracy of a hypothesis - K-fold cross validation means you run k experiments, each time putting aside 1/k of the data to test on CS886 Lecture Slides (c) 2013 P. Poupart