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Outline

• Markov Decision Processes
– Dynamic Decision Networks
– Russell and Norvig: Sect 17.1, 17.2 (up to p. 

620), 17.4, 17.5
• Reinforcement learning

– Temporal-Difference learning
– Q-learning
– Russell & Norvig Sect 21.1-21.3
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Sequential Decision Making

Static Inference
Bayesian Networks

Sequential Inference
Hidden Markov Models

Dynamic Bayesian Networks

Static Decision Making
Decision Networks

Sequential Decision Making
Markov Decision Processes
Dynamic Decision Networks
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Sequential Decision Making
• Wide range of applications

– Robotics (e.g., control)
– Investments (e.g., portfolio management)
– Computational linguistics (e.g., dialogue 

management)
– Operations research (e.g., inventory 

management, resource allocation, call 
admission control)

– Assistive technologies (e.g., patient 
monitoring and support)
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• Intuition: Markov Process with…
– Decision nodes
– Utility nodes

Markov Decision Process

s0 s1 s2 s3 s4

a0 a1 a2 a3

r1 r2 r3 r4
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Stationary Preferences
• Hum… but why many utility nodes?

• U(s0,s1,s2,…)
– Infinite process  infinite utility function

• Solution: 
– Assume stationary and additive preferences
– U(s0,s1,s2,…) = Σt R(st)
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Discounted/Average Rewards
• If process infinite, isn’t Σt R(st) infinite?

• Solution 1: discounted rewards
– Discount factor: 0 ≤ γ ≤ 1
– Finite utility: Σt γtR(st) is a geometric sum 
– γ is like an inflation rate of 1/γ - 1
– Intuition: prefer utility sooner than later

• Solution 2: average rewards
– More complicated computationally
– Beyond the scope of this course
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Markov Decision Process
• Definition

– Set of states: S
– Set of actions (i.e., decisions): A
– Transition model: Pr(st|at-1,st-1)
– Reward model (i.e., utility): R(st)
– Discount factor: 0 ≤ γ ≤ 1
– Horizon (i.e., # of time steps): h

• Goal: find optimal policy
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Inventory Management
• Markov Decision Process

– States: inventory levels
– Actions: {doNothing, orderWidgets}
– Transition model: stochastic demand
– Reward model: Sales – Costs - Storage
– Discount factor: 0.999
– Horizon: ∞

• Tradeoff: increasing supplies decreases odds 
of missed sales but increases storage costs
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Policy
• Choice of action at each time step

• Formally:
– Mapping from states to actions
– i.e., δ(st) = at

– Assumption: fully observable states
• Allows at to be chosen only based on current 

state st. Why?
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Policy Optimization
• Policy evaluation:

– Compute expected utility
– EU(δ) = Σt=0 γt Pr(st|δ) R(st)

• Optimal policy:
– Policy with highest expected utility
– EU(δ) ≤ EU(δ*) for all δ

h
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Policy Optimization
• Three algorithms to optimize policy:

– Value iteration
– Policy iteration
– Linear Programming

• Value iteration:
– Equivalent to variable elimination
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Value  Iteration

s0 s1 s2 s3 s4

a0 a1 a2 a3

r1 r2 r3 r4

• Nothing more than variable elimination 
• Performs dynamic programming
• Optimize decisions in reverse order
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Value  Iteration

s0 s1 s2 s3 s4

a0 a1 a2 a3

r1 r2 r3 r4

• At each t, starting from t=h down to 0:
– Optimize at: EU(at|st)?
– Factors: Pr(si+1|ai,si), R(si), for 0≤i≤h
– Restrict st

– Eliminate st+1,…,sh,at+1,…,ah
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Value  Iteration
• Value when no time left:

– V(sh) = R(sh)
• Value with one time step left:

– V(sh-1) = maxah-1
R(sh-1) + γ Σsh

Pr(sh|sh-1,ah-1) V(sh)
• Value with two time steps left:

– V(sh-2) = maxah-2
R(sh-2) + γ Σsh-1

Pr(sh-1|sh-2,ah-2)V(sh-1)
• …
• Bellman’s equation:

– V(st) = maxat
R(st) + γ Σst+1

Pr(st+1|st,at) V(st+1)
– at* = argmaxat

R(st) + γ Σst+1
Pr(st+1|st,at) V(st+1)
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A Markov Decision Process
1

Poor &
Unknown

+0

Poor &
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+0

Rich &
Famous
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1
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½

½

½

½

½
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γ = 0.9

You own a 
company

In every state 
you must 
choose between 
Saving money or 
Advertising
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1

PU
+0

PF
+0

RF
+10

RU
+10

S

S

S

S

A

A

A

A

1

1

½
½½

½

½
½

½
½½

½ γ = 0.9

t V(PU) V(PF) V(RU) V(RF)

h 0 0 10 10
h-1 0 4.5 14.5 19
h-2 2.03 8.55 16.53 25.08
h-3 4.76 12.20 18.35 28.72
h-4 7.63 15.07 20.40 31.18
h-5 10.21 17.46 22.61 33.21
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Finite Horizon

• When h is finite,
• Non-stationary optimal policy
• Best action different at each time step
• Intuition: best action varies with the amount 

of time left
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Infinite Horizon

• When h is infinite,
• Stationary optimal policy
• Same best action at each time step
• Intuition: same (infinite) amount of time left 

at each time step, hence same best action

• Problem: value iteration does an infinite 
number of iterations…
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Infinite Horizon

• Assuming a discount factor γ, after k time 
steps, rewards are scaled down by γk

• For large enough k, rewards become 
insignificant since γk  0

• Solution: 
– pick large enough k 
– run value iteration for k steps
– Execute policy found at the kth iteration
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Computational Complexity
• Space and time: O(k|A||S|2) 

– Here k is the number of iterations

• But what if |A| and |S| are defined by 
several random variables and 
consequently exponential?

• Solution: exploit conditional 
independence
– Dynamic decision network
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Dynamic Decision Network

Tt

Lt

Ct

Nt

Tt+1

Lt+1
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Tt-1
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Partial Observability
• What if states are not fully observable?
• Solution: Partially Observable Markov 

Decision Process

s0 s1 s2 s3 s4

a0 a1 a2 a3

r1 r2 r3 r4

o1oo o2 o3
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Partially Observable Markov 
Decision Process (POMDP)

• Definition
– Set of states: S
– Set of actions (i.e., decisions): A
– Set of observations: O
– Transition model: Pr(st|at-1,st-1)
– Observation model: Pr(ot|st)
– Reward model (i.e., utility): R(st)
– Discount factor: 0 ≤ γ ≤ 1
– Horizon (i.e., # of time steps): h

• Policy: mapping from past obs. to actions
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POMDP

• Problem: action choice generally depends 
on all previous observations…

• Two solutions:
– Consider only policies that depend on a 

finite history of observations
– Find stationary sufficient statistics

encoding relevant past observations
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Reinforcement Learning
• Definition:

– Markov decision process with unknown 
transition and reward models

• Set of states S
• Set of actions A

– Actions may be stochastic
• Set of reinforcement signals (rewards)

– Rewards may be delayed
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Policy optimization

• Markov Decision Process:
– Find optimal policy given transition and 

reward model
– Execute policy found

• Reinforcement learning:
– Learn an optimal policy while interacting 

with the environment



CS886 Lecture Slides (c) 2010  P. Poupart

28

Reinforcement Learning Problem

Agent

Environment

State
Reward Action

s0 s1 s2
r0

a0 a1

r1 r2

a2
…

Goal: Learn to choose actions that maximize r0+γ r1+γ2r2+…, where 0· γ <1
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Example: Inverted Pendulum

• State: x(t),x’(t), θ(t), 
θ’(t)

• Action: Force F 
• Reward: 1 for any step 

where pole balanced

Problem: Find δ:S→A that
maximizes rewards
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RL Examples

• Game playing (backgammon, solitaire)
• Operations research (pricing, vehicule 

routing)
• Elevator scheduling
• Helicopter control

• http://neuromancer.eecs.umich.edu/cgi-
bin/twiki/view/Main/SuccessesOfRL
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Types of RL
• Passive vs Active learning

– Passive learning: the agent executes a fixed policy 
and tries to evaluate it

– Active learning: the agent updates its policy as it 
learns

• Model based vs model free
– Model-based: learn transition and reward model 

and use it to determine optimal policy
– Model free: derive optimal policy without learning 

the model
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Passive Learning

• Transition and reward model known:
– Evaluate δ:
– Vδ(s) = R(s) + γ Σs’ Pr(s’|s,δ(s)) Vδ(s’)

• Transition and reward model unknown:
– Estimate policy value as agent executes 

policy: Vδ(s) = Eδ[ Σt γt R(st)]
– Model based vs model free
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Passive learning

lllu
-1uu
+1rrr

1

2

3

1 2 3 4

γ = 1

ri = -0.04 for non-terminal states

Do not know the transition 
probabilities

(1,1) (1,2) (1,3) (1,2) (1,3) (2,3) (3,3) (4,3)+1
(1,1) (1,2) (1,3) (2,3) (3,3) (3,2) (3,3) (4,3)+1
(1,1) (2,1) (3,1) (3,2) (4,2)-1

What is the value V(s) of being in state s?
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Passive ADP

• Adaptive dynamic programming (ADP) 
– Model-based
– Learn transition probabilities and rewards 

from observations
– Then update the values of the states
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ADP Example

lllu
-1uu
+1rrr

1

2

3

1 2 3 4

(1,1) (1,2) (1,3) (1,2) (1,3) (2,3) (3,3) (4,3)+1
(1,1) (1,2) (1,3) (2,3) (3,3) (3,2) (3,3) (4,3)+1
(1,1) (2,1) (3,1) (3,2) (4,2)-1

γ = 1

ri = -0.04 for non-terminal 
states

P((2,3)|(1,3),r) =2/3
P((1,2)|(1,3),r) =1/3

Use this information in

We need to learn all the transition probabilities!

Vδ(s) = R(s) + γ Σs’ Pr(s’|s,δ(s)) Vδ(s’)
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Passive TD

• Temporal difference (TD)
– Model free

• At each time step
– Observe: s,a,s’,r
– Update Vδ(s) after each move
– Vδ(s) = Vδ(s) + α (R(s) + γ Vδ(s’) – Vδ(s))

Learning rate Temporal difference
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TD Convergence
Thm:  If α is appropriately decreased 

with number of times a state is visited 
then Vδ(s) converges to correct value

• α must satisfy:
• Σt αt  ∞
• Σt (αt)2 < ∞

• Often α(s) = 1/n(s)
• n(s) = # of times s is visited
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Active Learning

• Ultimately, we are interested in 
improving δ

• Transition and reward model known:
– V*(s) = maxa R(s) + γ Σs’ Pr(s’|s,a) V*(s’)

• Transition and reward model unknown:
– Improve policy as agent executes policy
– Model based vs model free
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Q-learning (aka active temporal difference)

• Q-function: Q:S×A→ℜ
– Value of state-action pair
– Policy δ(s) = argmaxa Q(s,a) is the optimal policy

• Bellman’s equation:

Q*(s,a) = R(s) + γ Σs’ Pr(s’|s,a) maxa’ Q*(s’,a’)
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Q-learning
• For each state s and action a initialize 

Q(s,a) (0 or random)
• Observe current state
• Loop

– Select action a and execute it
– Receive immediate reward r
– Observe new state s’
– Update Q(a,s)

• Q(s,a) = Q(s,a) + α(r(s)+γ maxa’Q(s’,a’) – Q(s,a))
– s=s’
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Q-learning example

s1
73 100

66 81

s2
81.5 100

66 81

r=0 for non-terminal states
γ=0.9
α=0.5

Q(s1,right) = Q(s1,right) + α (r(s1) + γ maxa’ Q(s2,a’) – Q(s1,right))
= 73 + 0.5 (0 + 0.9 max[66,81,100] – 73)
= 73 + 0.5 (17)
= 81.5
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Q-learning
• For each state s and action a initialize 

Q(s,a) (0 or random)
• Observe current state
• Loop

– Select action a and execute it
– Receive immediate reward r
– Observe new state s’
– Update Q(a,s)

• Q(s,a) = Q(s,a) + α(r(s)+γ maxa’Q(s’,a’) – Q(s,a))
– s=s’
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Exploration vs Exploitation
• If an agent always chooses the action with 

the highest value then it is exploiting
– The learned model is not the real model
– Leads to suboptimal results

• By taking random actions (pure exploration) an 
agent may learn the model
– But what is the use of learning a complete model if 

parts of it are never used?
• Need a balance between exploitation and 

exporation
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Common exploration methods

• ε-greedy:
– With probability ε execute random action
– Otherwise execute best action a*

a* = argmaxa Q(s,a)

• Boltzmann exploration

P(a) = eQ(s,a)/T

ΣaeQ(s,a)/T
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Exploration and Q-learning

• Q-learning converges to optimal Q-
values if
– Every state is visited infinitely often (due 

to exploration)
– The action selection becomes greedy as 

time approaches infinity
– The learning rate a is decreased fast 

enough but not too fast
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A Triumph for Reinforcement 
Learning: TD-Gammon

• Backgammon player: TD learning with a neural 
network representation of the value function:
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