What is Machine Learning?

- Definition:
 - A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

[T Mitchell, 1997]

Inductive learning (aka concept learning)

- Induction:
 - Given a training set of examples of the form (x,f(x))
 - x is the input, f(x) is the output
 - Return a function h that approximates f
 - h is called the hypothesis

Classification

Training set:

Sky	Humidity	Wind	Water	Forecast	EnjoySport
Sunny	Normal	Strong	Warm	Same	Yes
Sunny	High	Strong	Warm	Same	Yes
Sunny	High	Strong	Warm	Change	No
Sunny	High	Strong	Cool	Change	Yes

- Possible hypotheses:
 - $h_1: S=sunny \rightarrow ES=yes$
 - h_2 : Wa=cool or F=same \rightarrow enjoySport

• Find function **h** that fits f at instances x

Regression

• Find function **h** that fits f at instances x

Hypothesis Space

- Hypothesis space H
 - Set of all hypotheses h that the learner may consider
 - Learning is a search through hypothesis space
- Objective:
 - Find hypothesis that agrees with training examples
 - But what about unseen examples?

Generalization

- A good hypothesis will generalize well
 (i.e. predict unseen examples correctly)
- Usually...
 - Any hypothesis h found to approximate the target function f well over a sufficiently large set of training examples will also approximate the target function well over any unobserved examples

- Construct/adjust h to agree with f on training set
- (*h* is consistent if it agrees with *f* on all examples)
- E.g., curve fitting:

- Construct/adjust h to agree with f on training set
- (*h* is consistent if it agrees with *f* on all examples)
- E.g., curve fitting:

- Construct/adjust h to agree with f on training set
- (*h* is consistent if it agrees with *f* on all examples)
- E.g., curve fitting:

- Construct/adjust h to agree with f on training set
- (*h* is consistent if it agrees with *f* on all examples)
- E.g., curve fitting:

- Construct/adjust h to agree with f on training set
- (*h* is consistent if it agrees with *f* on all examples)
- E.g., curve fitting:

 Ockham's razor: prefer the simplest hypothesis consistent with data

Performance of a learning algorithm

- A learning algorithm is good if it produces a hypothesis that does a good job of predicting classifications of unseen examples
- Verify performance with a test set
 - 1. Collect a large set of examples
 - 2. Divide into 2 disjoint sets: training set and test set
 - 3. Learn hypothesis h with training set
 - 4. Measure percentage of correctly classified examples by h in the test set
 - 5. Repeat 2-4 for different randomly selected training sets of varying sizes

Overfitting

- **Definition**: Given a hypothesis space H, a hypothesis $h \in H$ is said to overfit the training data if there exists some alternative hypothesis $h' \in H$ such that h has smaller error than h' over the training examples but h' has smaller error than h over the entire distribution of instances
- Overfitting has been found to decrease accuracy of many algorithms by 10-25%

Statistical Learning

 View: we have uncertain knowledge of the world

Idea: learning simply reduces this uncertainty

Candy Example

- Favorite candy sold in two flavors:
 - Lime (hugh)
 - Cherry (yum)
- Same wrapper for both flavors
- Sold in bags with different ratios:
 - 100% cherry
 - 75% cherry + 25% lime
 - 50% cherry + 50% lime
 - 25% cherry + 75% lime
 - 100% lime

Candy Example

 You bought a bag of candy but don't know its flavor ratio

- After eating k candies:
 - What's the flavor ratio of the bag?
 - What will be the flavor of the next candy?

Statistical Learning

- Hypothesis H: probabilistic theory of the world
 - h₁: 100% cherry
 - h_2 : 75% cherry + 25% lime
 - h_3 : 50% cherry + 50% lime
 - h₄: 25% cherry + 75% lime
 - h₅: 100% lime
- Data D: evidence about the world
 - d_1 : 1st candy is cherry
 - d₂: 2nd candy is lime
 - d₃: 3rd candy is lime

Bayesian Learning

- Prior: Pr(H)
- Likelihood: Pr(d|H)
- Evidence: **d** = <d₁,d₂,...,d_n>
- Bayesian Learning amounts to computing the posterior using Bayes' Theorem: Pr(H|d) = k Pr(d|H)Pr(H)

Bayesian Prediction

- Suppose we want to make a prediction about an unknown quantity X (i.e., the flavor of the next candy)
- $Pr(X|d) = \Sigma_i Pr(X|d,h_i)P(h_i|d)$ = $\Sigma_i Pr(X|h_i)P(h_i|d)$
- Predictions are weighted averages of the predictions of the individual hypotheses
- Hypotheses serve as "intermediaries" between raw data and prediction

Candy Example

- Assume prior P(H) = <0.1, 0.2, 0.4, 0.2, 0.1>
- Assume candies are i.i.d. (identically and independently distributed)

- $P(d|h) = \Pi_j P(d_j|h)$

- Suppose first 10 candies all taste lime:
 - $P(d|h_5) = 1^{10} = 1$
 - $P(d|h_3) = 0.5^{10} = 0.00097$
 - $P(d|h_1) = 0^{10} = 0$

Posterior

Posteriors given data generated from h_5

Prediction

Bayesian Learning

- Bayesian learning properties:
 - Optimal (i.e. given prior, no other prediction is correct more often than the Bayesian one)
 - No overfitting (prior can be used to penalize complex hypotheses)
- There is a price to pay:
 - When hypothesis space is large Bayesian learning may be intractable
 - i.e. sum (or integral) over hypothesis often intractable
- Solution: approximate Bayesian learning

Maximum a posteriori (MAP)

- Idea: make prediction based on most probable hypothesis h_{MAP}
 - h_{MAP} = $argmax_{h_i} P(h_i|d)$
 - $P(X|d) \approx P(X|h_{MAP})$
- In contrast, Bayesian learning makes prediction based on all hypotheses weighted by their probability

Candy Example (MAP)

- Prediction after
 - 1 lime: $h_{MAP} = h_3$, Pr(lime| h_{MAP}) = 0.5
 - 2 limes: $h_{MAP} = h_4$, Pr(lime| h_{MAP}) = 0.75
 - 3 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$
 - 4 limes: $h_{MAP} = h_5$, $Pr(lime|h_{MAP}) = 1$

- After only 3 limes, it correctly selects $h_{\rm 5}$

Candy Example (MAP)

- But what if correct hypothesis is h₄?
 h₄: P(lime) = 0.75 and P(cherry) = 0.25
- After 3 limes
 - MAP incorrectly predicts h_5
 - MAP yields $P(lime|h_{MAP}) = 1$
 - Bayesian learning yields P(lime|d) = 0.8

MAP properties

- MAP prediction less accurate than Bayesian prediction since it relies only on one hypothesis h_{MAP}
- But MAP and Bayesian predictions converge as data increases
- No overfitting (prior can be used to penalize complex hypotheses)
- Finding h_{MAP} may be intractable:
 - h_{MAP} = argmax P(h|d)
 - Optimization may be difficult

MAP computation

- Optimization:
 - h_{MAP} = $argmax_h P(h|d)$ = $argmax_h P(h) P(d|h)$ = $argmax_h P(h) \Pi_i P(d_i|h)$
- Product induces non-linear optimization
- Take the log to linearize optimization

- h_{MAP} = argmax_h log P(h) + $\Sigma_i \log P(d_i|h)$

Maximum Likelihood (ML)

- Idea: simplify MAP by assuming uniform prior (i.e., P(h_i) = P(h_j) ∀i,j)
 - $-h_{MAP} = argmax_h P(h) P(d|h)$
 - $-h_{ML} = argmax_h P(d|h)$
- Make prediction based on h_{ML} only: - $P(X|d) \approx P(X|h_{ML})$

Candy Example (ML)

- Prediction after
 - 1 lime: $h_{ML} = h_5$, Pr(lime| h_{ML}) = 1
 - 2 limes: $h_{ML} = h_5$, $Pr(lime|h_{ML}) = 1$

- Frequentist: "objective" prediction since it relies only on the data (i.e., no prior)
- Bayesian: prediction based on data and uniform prior (since no prior \equiv uniform prior)

ML properties

- ML prediction less accurate than Bayesian and MAP predictions since it ignores prior info and relies only on one hypothesis h_{ML}
- But ML, MAP and Bayesian predictions converge as data increases
- Subject to overfitting (no prior to penalize complex hypothesis that could exploit statistically insignificant data patterns)
- Finding h_{ML} is often easier than h_{MAP}
 - h_{ML} = argmax_h $\Sigma_i \log P(d_i|h)$

Statistical Learning

- Use Bayesian Learning, MAP or ML
- Complete data:
 - When data has multiple attributes, all attributes are known
 - Easy
- Incomplete data:
 - When data has multiple attributes, some attributes are unknown
 - Harder

Simple ML example

- Hypothesis h_{θ} :
 - P(cherry)= θ & P(lime)=1- θ
- Data d:
 - c cherries and l limes

- ML hypothesis:
 - θ is relative frequency of observed data
 - $\theta = c/(c+l)$
 - P(cherry) = c/(c+1) and P(lime) = l/(c+1)

ML computation

- 1) Likelihood expression
 - $P(d|h_{\theta}) = \theta^{c} (1-\theta)^{l}$
- 2) log likelihood
 - $\log P(\mathbf{d}|\mathbf{h}_{\theta}) = c \log \theta + l \log (1-\theta)$
- 3) log likelihood derivative
 - d(log P(d|h_{θ}))/d θ = c/ θ l/(1- θ)
- 4) ML hypothesis
 - c/ θ l/(1- θ) = 0 → θ = c/(c+l)

More complicated ML example

- Hypothesis: $h_{\theta,\theta_1,\theta_2}$
- Data:
 - c cherries
 - g_c green wrappers
 - r_c red wrappers
 - | limes
 - g₁ green wrappers
 - \cdot r₁ red wrappers

ML computation

- 1) Likelihood expression - $P(\mathbf{d}|\mathbf{h}_{\theta,\theta_1,\theta_2}) = \theta^c (1-\theta)^{|} \theta_1^{r_c} (1-\theta_1)^{g_c} \theta_2^{r_l} (1-\theta_2)^{g_l}$
- 4) ML hypothesis - $c/\theta - I/(1-\theta) = 0 \rightarrow \theta = c/(c+I)$ - $r_c/\theta_1 - g_c/(1-\theta_1) = 0 \rightarrow \theta_1 = r_c/(r_c+g_c)$ - $r_I/\theta_2 - g_I/(1-\theta_2) = 0 \rightarrow \theta_2 = r_I/(r_I+g_I)$

Naïve Bayes model

- Want to predict a class C based on attributes A_i
- Parameters:
 - θ = P(C=true)

- $\theta_{i1} = P(A_i = true | C = true)$
- $\theta_{i2} = P(A_i = true | C = false)$
- Assumption: A's are independent given C

Naïve Bayes model for Restaurant Problem

)ata:	Example	e Attributes								Target		
		Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
	X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
	X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
	X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
	X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
	X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
	X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
	X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
	X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
	X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
	X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
	X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
	X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

ML sets

- θ to relative frequencies of *wait* and *~wait*
- θ_{i1}, θ_{i2} to relative frequencies of each attribute value given *wait* and *~wait*