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What is Machine Learning?

• Definition:
– A computer program is said to learn from 

experience E with respect to some class of 
tasks T and performance measure P, if its 
performance at tasks in T, as measured by 
P, improves with experience E.

[T Mitchell, 1997]
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Inductive learning (aka concept learning)

• Induction:
– Given a training set of examples of the 

form (x,f(x))
• x is the input, f(x) is the output

– Return a function h that approximates f
• h is called the hypothesis
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Classification
• Training set:

• Possible hypotheses:
– h1: S=sunny  ES=yes
– h2: Wa=cool or F=same  enjoySport

Sky Humidity Wind Water Forecast EnjoySport

Sunny Normal Strong Warm Same Yes
Sunny High Strong Warm Same Yes
Sunny High Strong Warm Change No
Sunny High Strong Cool Change Yes

x f(x)
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Regression
• Find function h that fits f at instances x
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Regression
• Find function h that fits f at instances x

h1 h2
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Hypothesis Space
• Hypothesis space H

– Set of all hypotheses h that the learner 
may consider

– Learning is a search through hypothesis 
space

• Objective:
– Find hypothesis that agrees with training 

examples
– But what about unseen examples?
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Generalization
• A good hypothesis will generalize well

(i.e. predict unseen examples correctly)

• Usually…
– Any hypothesis h found to approximate the 

target function f well over a sufficiently 
large set of training examples will also 
approximate the target function well over 
any unobserved examples
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Inductive learning
• Construct/adjust h to agree with f on training set
• (h is consistent if it agrees with f on all examples)
• E.g., curve fitting:
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Inductive learning
• Construct/adjust h to agree with f on training set
• (h is consistent if it agrees with f on all examples)
• E.g., curve fitting:

• Ockham’s razor: prefer the simplest hypothesis 
consistent with data
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Performance of a learning algorithm

• A learning algorithm is good if it produces a 
hypothesis that does a good job of predicting 
classifications of unseen examples

• Verify performance with a test set
1. Collect a large set of examples
2. Divide into 2 disjoint sets: training set and test set
3. Learn hypothesis h with training set
4. Measure percentage of correctly classified examples 

by h in the test set
5. Repeat 2-4 for different randomly selected training 

sets of varying sizes
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Learning curves

Overfitting!

%
 c

or
re

ct

Size of hypothesis space

Training set

Test set



CS886 Fall 10 - Lecture 5, Sept 30, 2010 15

Overfitting
• Definition: Given a hypothesis space H, a 

hypothesis h ∈ H is said to overfit the training 
data if there exists some alternative 
hypothesis h’ ∈ H such that h has smaller error 
than h’ over the training examples but h’ has 
smaller error than h over the entire 
distribution of instances

• Overfitting has been found to decrease 
accuracy of many algorithms by 10-25%
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Statistical Learning

• View: we have uncertain knowledge of 
the world

• Idea: learning simply reduces this 
uncertainty
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Candy Example
• Favorite candy sold in two flavors:

– Lime (hugh)
– Cherry (yum)

• Same wrapper for both flavors
• Sold in bags with different ratios:

– 100% cherry
– 75% cherry + 25% lime
– 50% cherry + 50% lime
– 25% cherry + 75% lime
– 100% lime



CS886 Fall 10 - Lecture 5, Sept 30, 2010 18

Candy Example

• You bought a bag of candy but don’t 
know its flavor ratio

• After eating k candies:
– What’s the flavor ratio of the bag?
– What will be the flavor of the next candy?
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Statistical Learning
• Hypothesis H: probabilistic theory of the 

world
– h1: 100% cherry
– h2: 75% cherry + 25% lime
– h3: 50% cherry + 50% lime
– h4: 25% cherry + 75% lime
– h5: 100% lime

• Data D: evidence about the world
– d1: 1st candy is cherry
– d2: 2nd candy is lime
– d3: 3rd candy is lime
– …
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Bayesian Learning

• Prior: Pr(H)
• Likelihood: Pr(d|H)
• Evidence: d = <d1,d2,…,dn>

• Bayesian Learning amounts to computing 
the posterior using Bayes’ Theorem:

Pr(H|d) = k Pr(d|H)Pr(H)
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Bayesian Prediction
• Suppose we want to make a prediction about 

an unknown quantity X (i.e., the flavor of the 
next candy)

• Pr(X|d) = Σi Pr(X|d,hi)P(hi|d)
= Σi Pr(X|hi)P(hi|d) 

• Predictions are weighted averages of the 
predictions of the individual hypotheses

• Hypotheses serve as “intermediaries” 
between raw data and prediction
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Candy Example

• Assume prior P(H) = <0.1, 0.2, 0.4, 0.2, 0.1>
• Assume candies are i.i.d. (identically and 

independently distributed)
– P(d|h) = Πj P(dj|h)

• Suppose first 10 candies all taste lime:
– P(d|h5) = 110 = 1
– P(d|h3) = 0.510 = 0.00097
– P(d|h1) = 010 = 0
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Posterior
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Bayesian Learning
• Bayesian learning properties:

– Optimal (i.e. given prior, no other prediction is 
correct more often than the Bayesian one)

– No overfitting (prior can be used to penalize 
complex hypotheses)

• There is a price to pay:
– When hypothesis space is large Bayesian learning 

may be intractable
– i.e. sum (or integral) over hypothesis often 

intractable
• Solution: approximate Bayesian learning
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Maximum a posteriori (MAP)

• Idea: make prediction based on most 
probable hypothesis hMAP
– hMAP = argmaxhi

P(hi|d)
– P(X|d) ≈ P(X|hMAP)

• In contrast, Bayesian learning makes 
prediction based on all hypotheses 
weighted by their probability
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Candy Example (MAP)
• Prediction after 

– 1 lime: hMAP = h3, Pr(lime|hMAP) = 0.5
– 2 limes: hMAP = h4, Pr(lime|hMAP) = 0.75
– 3 limes: hMAP = h5, Pr(lime|hMAP) = 1
– 4 limes: hMAP = h5, Pr(lime|hMAP) = 1
– …

• After only 3 limes, it correctly selects 
h5
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Candy Example (MAP)

• But what if correct hypothesis is h4?
– h4: P(lime) = 0.75 and P(cherry) = 0.25

• After 3 limes
– MAP incorrectly predicts h5

– MAP yields P(lime|hMAP) = 1
– Bayesian learning yields P(lime|d) = 0.8
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MAP properties
• MAP prediction less accurate than Bayesian 

prediction since it relies only on one
hypothesis hMAP

• But MAP and Bayesian predictions converge as 
data increases

• No overfitting (prior can be used to penalize 
complex hypotheses)

• Finding hMAP may be intractable:
– hMAP = argmax P(h|d)
– Optimization may be difficult
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MAP computation

• Optimization:
– hMAP = argmaxh P(h|d)

= argmaxh P(h) P(d|h)
= argmaxh P(h) Πi P(di|h)

• Product induces non-linear optimization
• Take the log to linearize optimization

– hMAP = argmaxh log P(h) + Σi log P(di|h)
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Maximum Likelihood (ML)

• Idea: simplify MAP by assuming uniform 
prior (i.e., P(hi) = P(hj) ∀i,j)
– hMAP = argmaxh P(h) P(d|h)
– hML = argmaxh P(d|h)

• Make prediction based on hML only:
– P(X|d) ≈ P(X|hML)
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Candy Example (ML)
• Prediction after 

– 1 lime: hML = h5, Pr(lime|hML) = 1
– 2 limes: hML = h5, Pr(lime|hML) = 1
– …

• Frequentist: “objective” prediction since it 
relies only on the data (i.e., no prior)

• Bayesian: prediction based on data and uniform 
prior (since no prior ≡ uniform prior)  
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ML properties
• ML prediction less accurate than Bayesian 

and MAP predictions since it ignores prior 
info and relies only on one hypothesis hML

• But ML, MAP and Bayesian predictions 
converge as data increases

• Subject to overfitting (no prior to penalize 
complex hypothesis that could exploit 
statistically insignificant data patterns)

• Finding hML is often easier than hMAP
– hML = argmaxh Σi log P(di|h)



CS886 Fall 10 - Lecture 5, Sept 30, 2010 34

Statistical Learning
• Use Bayesian Learning, MAP or ML

• Complete data:
– When data has multiple attributes, all attributes 

are known
– Easy

• Incomplete data:
– When data has multiple attributes, some 

attributes are unknown
– Harder
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Simple ML example
• Hypothesis hθ:

– P(cherry)=θ & P(lime)=1-θ
• Data d: 

– c cherries and l limes 

• ML hypothesis:
– θ is relative frequency of observed data
– θ = c/(c+l)
– P(cherry) = c/(c+l)  and  P(lime)= l/(c+l)
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ML computation

• 1) Likelihood expression
– P(d|hθ) = θc (1-θ)l

• 2) log likelihood
– log P(d|hθ) = c log θ + l log (1-θ)

• 3) log likelihood derivative
– d(log P(d|hθ))/dθ = c/θ - l/(1-θ)

• 4) ML hypothesis
– c/θ - l/(1-θ) = 0  θ = c/(c+l)
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More complicated ML example

• Hypothesis: hθ,θ1,θ2
• Data:

– c cherries 
• gc green wrappers
• rc red wrappers

– l limes
• gl green wrappers
• rl red wrappers
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ML computation

• 1) Likelihood expression
– P(d|hθ,θ1,θ2

) = θc(1-θ)l θ1
rc(1-θ1)gc θ2

rl(1-θ2)gl

• …
• 4) ML hypothesis

– c/θ - l/(1-θ) = 0  θ = c/(c+l)
– rc/θ1 - gc/(1-θ1) = 0  θ1 = rc/(rc+gc)
– rl/θ2 - gl/(1-θ2) = 0  θ2 = rl/(rl+gl)
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Naïve Bayes model

C

AnA3A2A1 …

• Want to predict a 
class C based on 
attributes Ai

• Parameters: 
– θ = P(C=true)
– θi1 = P(Ai=true|C=true)
– θi2 = P(Ai=true|C=false)

• Assumption: Ai’s are independent given C
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Naïve Bayes model for 
Restaurant Problem

• Data:

• ML sets 
– θ to relative frequencies of wait and ~wait
– θi1, θi2 to relative frequencies of each attribute 

value given wait and ~wait
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