Lecture 9

Oct 11, 2005 CS 886

Outline

- Decision making
 - Utility Theory
 - Decision Networks

- Chapter 16 in R&N
 - Note: Some of the material we are covering today is not in the text

Decision Making under Uncertainty

- I give robot a planning problem: I want coffee
 - but coffee maker is broken: robot reports
 "No plan!"
- If I want more robust behavior if I want robot to know what to do if my primary goal can't be satisfied - I should provide it with some indication of my preferences over alternatives
 - e.g., coffee better than tea, tea better than water, water better than nothing, etc.

Decision Making under Uncertainty

- But it's more complex:
 - it could wait 45 minutes for coffee maker to be fixed
 - what's better: tea now? coffee in 45 minutes?

Preferences

- A preference ordering > is a ranking of all possible states of affairs (worlds) S
 - these could be outcomes of actions, truth assts, states in a search problem, etc.
 - s ≥ t: means that state s is at least as good as t
 - s > t: means that state s is strictly preferred to t
 - s~t: means that the agent is *indifferent* between states s and t

Preferences

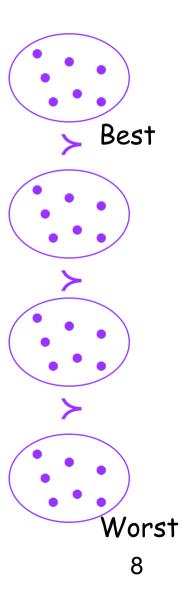
- If an agent's actions are deterministic then we know what states will occur
- If an agent's actions are not deterministic then we represent this by lotteries
 - Probability distribution over outcomes
 - Lottery L=[$p_1,s_1;p_2,s_2;...;p_n,s_n$]
 - s_1 occurs with prob p_1 , s_2 occurs with prob p_2 ,...

Preference Axioms

- Orderability: Given 2 states A and B
 - $(A > B) \vee (B > A) \vee (A \sim B)$
- Transitivity: Given 3 states, A, B, and C
 - $(A > B) \land (B > C) \Rightarrow (A > C)$
- · Continuity:
 - $A > B > C \Rightarrow \exists p [p,A;1-p,C] \sim B$
- Substitutability:
 - $-A \sim B \rightarrow [p,A;1-p,C] \sim [p,B;1-p,C]$
- Monotonicity:
 - $A > B \Rightarrow (p \ge q \Leftrightarrow [p,A;1-p,B] \ge [q,A;1-q,B]$
- Decomposibility:
 - $[p,A;1-p,[q,B;1-q,C]] \sim [p,A;(1-p)q,B;(1-p)(1-q),C]$

Why Impose These Conditions?

- Structure of preference ordering imposes certain "rationality requirements" (it is a weak ordering)
- E.g., why transitivity?
 - Suppose you (strictly) prefer coffee to tea, tea to OJ, OJ to coffee
 - If you prefer X to Y, you'll trade me Y plus \$1 for X
 - I can construct a "money pump" and extract arbitrary amounts of money from you



Decision Making under Uncertainty

- Suppose actions don't have deterministic outcomes
 - e.g., when robot pours coffee, it spills 20% of time, making a mess
 - preferences: c, ~mess > ~c,~mess > ~c, mess
- What should robot do?
 - decision *getcoffee* leads to a good outcome and a bad outcome with some probability
 - decision donothing leads to a medium outcome for sure
- Should robot be optimistic? pessimistic?
- Really odds of success should influence decision
 - but how?

Utilities

- Rather than just ranking outcomes, we must quantify our degree of preference
 - e.g., how much more important is c than ~mess
- A utility function U:S $\rightarrow \mathbb{R}$ associates a real-valued utility with each outcome.
 - U(s) measures your degree of preference for s
- Note: U induces a preference ordering \geq_U over S defined as: $s \geq_U t$ iff $U(s) \geq U(t)$
 - obviously ≽_U will be reflexive, transitive,
 connected

Expected Utility

- Under conditions of uncertainty, each decision d induces a distribution Pr_d over possible outcomes
 - Pr_d(s) is probability of outcome s under decision

$$EU(d) = \sum_{s \in S} \Pr_d(s)U(s)$$

 The expected utility of decision d is defined

Expected Utility

When robot pours coffee, it spills 20% of time, making a mess

If
$$U(c,\sim ms) = 10$$
, $U(\sim c,\sim ms) = 5$, $U(\sim c,ms) = 0$,
then $EU(getcoffee) = (0.8)(10)+(0.2)(0)=8$
and $EU(donothing) = 5$

If
$$U(c,\sim ms) = 10$$
, $U(\sim c,\sim ms) = 9$, $U(\sim c,ms) = 0$,
then $EU(getcoffee) = (0.8)(10)+(0.2)(0)=8$
and $EU(donothing) = 9$

The MEU Principle

- The principle of maximum expected utility (MEU) states that the optimal decision under conditions of uncertainty is that with the greatest expected utility.
- In our example
 - if my utility function is the first one, my robot should get coffee
 - if your utility function is the second one, your robot should do nothing

Decision Problems: Uncertainty

- A decision problem under uncertainty is:
 - a set of decisions D
 - a set of *outcomes* or states S
 - an *outcome function* $Pr: D \rightarrow \Delta(S)$
 - $\Delta(S)$ is the set of distributions over S (e.g., Pr_d)
 - a utility function U over S
- A solution to a decision problem under uncertainty is any d*∈ D such that EU(d*) > EU(d) for all d∈D
- Again, for single-shot problems, this is trivial

Expected Utility: Notes

- Why MEU? Where do utilities come from?
 - underlying foundations of utility theory tightly couple utility with action/choice
 - a utility function can be determined by asking someone about their preferences for actions in specific scenarios (or "lotteries" over outcomes)
- · Utility functions needn't be unique
 - if I multiply U by a positive constant, all decisions have same relative utility
 - if I add a constant to U, same thing
 - U is unique up to positive affine transformation

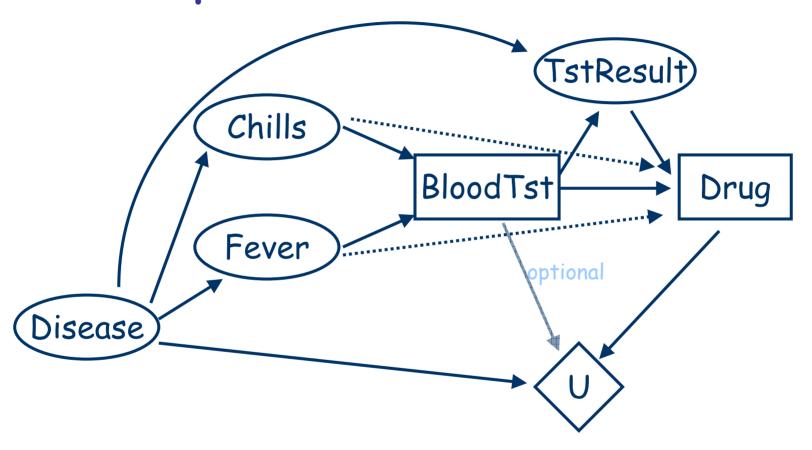
So What are the Complications?

- Outcome space is large
 - like all of our problems, states spaces can be huge
 - don't want to spell out distributions like Prd explicitly
 - Soln: Bayes nets (or related: influence diagrams)
- Decision space is large
 - usually our decisions are not one-shot actions
 - rather they involve sequential choices (like plans)
 - if we treat each plan as a distinct decision, decision space is too large to handle directly
 - Soln: use dynamic programming methods to *construct* optimal plans (actually generalizations of plans, called policies... like in game trees)

Decision Networks

- Decision networks (also known as influence diagrams) provide a way of representing sequential decision problems
 - basic idea: represent the variables in the problem as you would in a BN
 - add decision variables variables that you "control"
 - add utility variables how good different states are

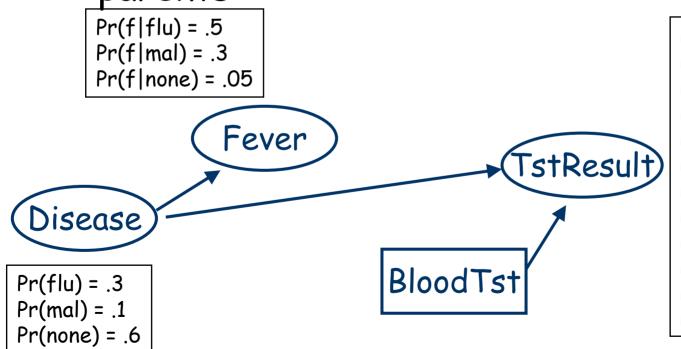
Sample Decision Network



Decision Networks: Chance Nodes

· Chance nodes

- random variables, denoted by circles
- as in a BN, probabilistic dependence on parents



Pr(pos|flu,bt) = .2 Pr(neg|flu,bt) = .8 Pr(null|flu,bt) = 0 Pr(pos|mal,bt) = .9 Pr(neg|mal,bt) = .1 Pr(null|mal,bt) = 0 Pr(pos|no,bt) = .1 Pr(neg|no,bt) = .9 Pr(null|no,bt) = 0 Pr(pos|D,~bt) = 0 Pr(neg|D,~bt) = 0 Pr(null|D,~bt) = 1

Decision Networks: Decision Nodes

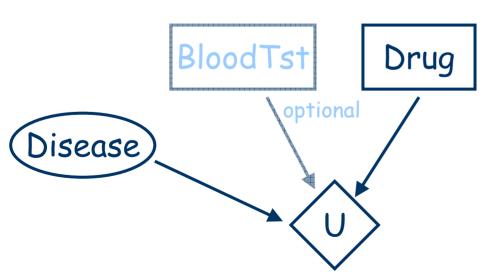
Decision nodes

- variables decision maker sets, denoted by squares
- parents reflect *information available* at time decision is to be made
- In example decision node: the actual values of Ch and Fev will be observed before the decision to take test must be made
 - agent can make different decisions for each instantiation of parents (i.e., policies)

Decision Networks: Value Node

· Value node

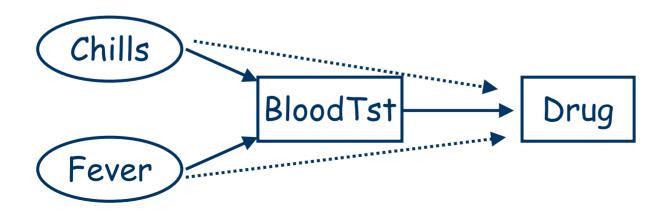
- specifies utility of a state, denoted by a diamond
- utility depends only on state of parents of value node
- generally: only one value node in a decision network
- Utility depends only on disease and drug



U(fludrug, flu) = 20 U(fludrug, mal) = -300 U(fludrug, none) = -5 U(maldrug, flu) = -30 U(maldrug, mal) = 10 U(maldrug, none) = -20 U(no drug, flu) = -10 U(no drug, mal) = -285 U(no drug, none) = 30

Decision Networks: Assumptions

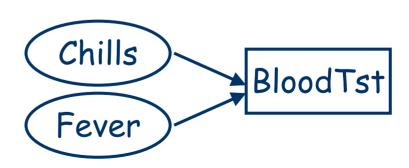
- Decision nodes are totally ordered
 - decision variables D₁, D₂, ..., D_n
 - decisions are made in sequence
 - e.g., BloodTst (yes,no) decided before Drug (fd,md,no)
- No-forgetting property
 - any information available when decision D_i is made is available when decision D_j is made (for i < j)
 - thus all parents of Di are parents of Dj



Dashed arcs ensure the no-forgetting property

Policies

- Let $Par(D_i)$ be the parents of decision node D_i
 - $Dom(Par(D_i))$ is the set of assignments to parents
- A policy δ is a set of mappings δ_i , one for each decision node D_i
 - $-\delta_i:Dom(Par(D_i))\rightarrow Dom(D_i)$
 - δ_i associates a decision with each parent asst for D_i
- For example, a policy for BT might be:
 - $-\delta_{BT}(c,f) = bt$
 - $-\delta_{BT}(c,\sim f) = \sim bt$
 - $-\delta_{BT}(\sim c,f) = bt$
 - $-\delta_{BT}(\sim c, \sim f) = \sim bt$



Value of a Policy

- Value of a policy δ is the expected utility given that decision nodes are executed according to δ
- Given asst \mathbf{x} to the set \mathbf{X} of all chance variables, let $\delta(\mathbf{x})$ denote the asst to decision variables dictated by δ
 - e.g., asst to D_1 determined by it's parents' asst in x
 - e.g., asst to D_2 determined by it's parents' asst in ${\bf x}$ along with whatever was assigned to D_1
 - etc.
- Value of δ :

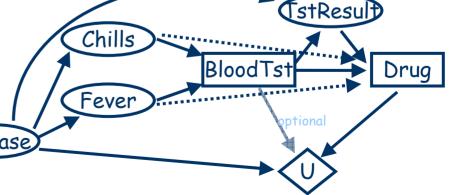
$$EU(\delta) = \Sigma_X P(X, \delta(X)) U(X, \delta(X))$$

Optimal Policies

- An optimal policy is a policy δ^* such that $EU(\delta^*) \ge EU(\delta)$ for all policies δ
- We can use the dynamic programming principle yet again to avoid enumerating all policies
- We can also use the structure of the decision network to use variable elimination to aid in the computation

Computing the Best Policy

- We can work backwards as follows
- First compute optimal policy for Drug (last dec'n)
 - for each asst to parents (C,F,BT,TR) and for each decision value (D = md,fd,none), compute the expected value of choosing that value of D
 - set policy choice for each value of parents to be the value of D that has max value
 - eg: $\delta_D(c,f,bt,pos) = md_{\text{Disease}}$



Computing the Best Policy

- Next compute policy for BT given policy $\delta_D(C,F,BT,TR)$ just determined for Drug
 - since $\delta_D(C,F,BT,TR)$ is fixed, we can treat Drug as a normal random variable with deterministic probabilities
 - i.e., for any instantiation of parents, value of Drug is fixed by policy $\delta_{\mathcal{D}}$
 - this means we can solve for optimal policy for BT just as before
 - only uninstantiated vars are random vars (once we fix *its* parents)

Computing the Best Policy

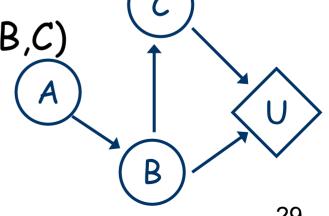
- · How do we compute these expected values?
 - suppose we have asst <c,f,bt,pos> to parents of Drug
 - we want to compute EU of deciding to set Drug = md
 - we can run variable elimination!
- Treat C,F,BT,TR,Dr as evidence
 - this reduces factors (e.g., U restricted to bt, md: depends on Dis)
 - eliminate remaining variables (e.g., only Disease left)
 - left with factor: $EU(md|c,f,bt,pos) = \Sigma_{Dis} P(Dis|c,f,bt,pos,md) U(Dis,bt,md)$
- We now know EU of doing Dr=md when c,f,bt,pos true
- Can do same for fd,no to decide which is best

Computing Expected Utilities

- · The previous example illustrates a general phenomenon
 - computing expected utilities with BNs is quite easy
 - utility nodes are just factors that can be dealt with using variable elimination

EU =
$$\Sigma_{A,B,C}$$
 P(A,B,C) U(B,C)
= $\Sigma_{A,B,C}$ P(C|B) P(B|A) P(A) U(B,C)

· Just eliminate variables in the usual way



Optimizing Policies: Key Points

- If a decision node D has no decisions that follow it, we can find its policy by instantiating each of its parents and computing the expected utility of each decision for each parent instantiation
 - no-forgetting means that all other decisions are instantiated (they must be parents)
 - its easy to compute the expected utility using VE
 - the number of computations is quite large: we run expected utility calculations (VE) for each parent instantiation together with each possible decision D might allow
 - policy: choose max decision for each parent instant'n

Optimizing Policies: Key Points

- When a decision D node is optimized, it can be treated as a random variable
 - for each instantiation of its parents we now know what value the decision should take
 - just treat policy as a new CPT: for a given parent instantiation x, D gets $\delta(x)$ with probability 1(all other decisions get probability zero)
- If we optimize from last decision to first, at each point we can optimize a specific decision by (a bunch of) simple VE calculations
 - it's successor decisions (optimized) are just normal nodes in the BNs (with CPTs)

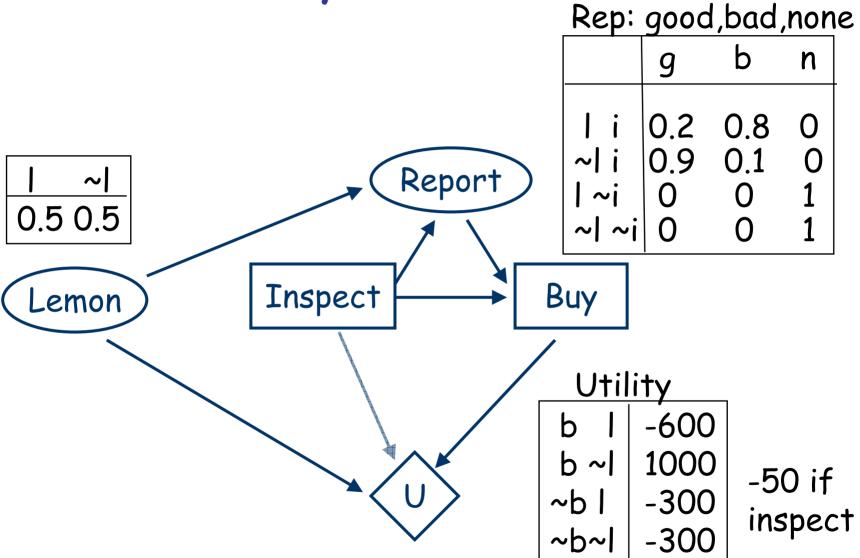
Decision Network Notes

- Decision networks commonly used by decision analysts to help structure decision problems
- Much work put into computationally effective techniques to solve these
 - common trick: replace the decision nodes with random variables at outset and solve a plain Bayes net (a subtle but useful transformation)
- Complexity much greater than BN inference
 - we need to solve a number of BN inference problems
 - one BN problem for each setting of decision node parents and decision node value

A Decision Net Example

- Setting: you want to buy a used car, but there's a good chance it is a "lemon" (i.e., prone to breakdown). Before deciding to buy it, you can take it to a mechanic for inspection. She will give you a report on the car, labelling it either good" or "bad". A good report is positively correlated with the car being sound, while a bad report is positively correlated with the car being a lemon.
- The report costs \$50 however. So you could risk it, and buy the car without the report.
- Owning a sound car is better than having no car, which is better than owning a lemon.

Car Buyer's Network



Evaluate Last Decision: Buy (1)

- EU(B|I,R) = Σ_L P(L|I,R,B) U(L,I,B)
- I = i, R = g:
 - EU(buy) = P(||i,g,buy) U(|,i,buy) + P(~||i,g,buy) U(~|,i,buy)

```
= .18*-650 + .82*950 = 662
```

- EU(~buy) = P(||i,g,~buy) U(|,i,~buy) + P(~||i,g,~buy) U(~|,i,~buy) = -300 - 50 = -350 (-300 indep. of lemon)
- So optimal $\delta_{Buy}(i,g) = buy$

Evaluate Last Decision: Buy (2)

- I = i, R = b:

 EU(buy) = P(I|i,b,buy) U(I,i,buy) + P(~I|i,b,buy) U(~I,i,buy)
 = .89*-650 + .11*950 = -474
 EU(~buy) = P(I|i,b,~buy) U(I,i,~buy) + P(~I|i, b,~buy) U(~I,i,~buy)
 = -300 50 = -350 (-300 indep. of lemon)
 - So optimal $\delta_{Buy}(i,b) = \sim buy$

Evaluate Last Decision: Buy (3)

- I = ~i, R = n
 EU(buy) = P(||~i,n,buy) U(|,~i,buy) + P(~||~i,n,buy)
 U(~|,~i,buy)
 - = .5*-600 + .5*1000 = 200
 - EU(~buy) = P(||~i,n,~buy) U(|,~i,~buy) + P(~||~i,n,~buy) U(~|,~i,~buy) = -300 (-300 indep. of lemon)
 - So optimal δ_{Buy} (~i,n) = buy
 - So optimal policy for Buy is:
 - $-\delta_{Buy}(i,g) = buy$; $\delta_{Buy}(i,b) = \sim buy$; $\delta_{Buy}(\sim i,n) = buy$
- Note: we don't bother computing policy for (i,~n), (~i, g), or (~i, b), since these occur with probability 0

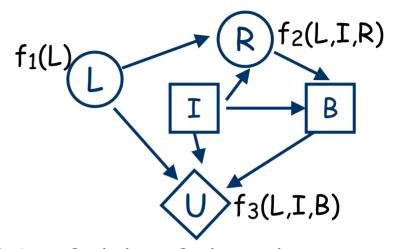
Using Variable Elimination

```
Factors: f_1(L) f_2(L,I,R)
f_3(L,I,B)
```

Query: EU(B)?

Evidence: I = i, R = g

Elim. Order: L



Restriction: replace $f_2(L,I,R)$ by $f_4(L) = f_2(L,i,g)$ replace $f_3(L,I,B)$ by $f_5(L,B) = f_2(L,i,B)$

Step 1: Add $f_6(B) = \Sigma_L f_1(L) f_4(L) f_5(L,B)$ Remove: $f_1(L)$, $f_4(L)$, $f_5(L,B)$

Last factor: $f_6(B)$ is the unscaled expected utility of buy and ~buy. Select action with highest (unscaled) expected utility.

Repeat for EU(B|i,b), $EU(B|\sim i,n)$

Evaluate First Decision: Inspect

- EU(I) = $\Sigma_{L,R}$ P(L,R|i) U(L,i, δ_{Buy} (I,R))
 - where P(R,L|i) = P(R|L,i)P(L|i)
 - EU(i) = (.1)(-650)+(.4)(-350)+(.45)(950)+(.05)(-350) = 187.5
 - $= EU(\sim i) = P(n,||\sim i) U(|,\sim i,buy) + P(n,\sim ||\sim i) U(\sim |,\sim i,buy)$ = .5*-600 + .5*1000 = 200
 - So optimal $\delta_{Inspect}$ () = ~inspect

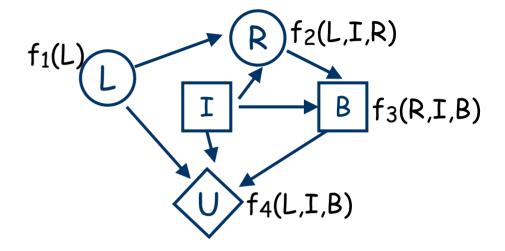
	P(R,L i)	$\delta_{\mathcal{B}_{UY}}$	$U(L, i, \delta_{Buy})$
g,l	0.1	buy	-600 - 50 = -650
b,l	0.4	~buy	-300 - 50 = -350
g,~l	0.45	buy	1000 - 50 = 950
b,~l	0.05	~buy	-300 - 50 = -350

Using Variable Elimination

Factors: $f_1(L)$ $f_2(L,I,R)$ $f_3(R,I,B)$ $f_4(L,I,B)$

Query: EU(I)? Evidence: none

Elim. Order: L, R, B



N.B. $f3(R,I,B) = \delta_B(R,I)$

Step 1: Add $f_5(R,I,B) = \sum_{L} f_1(L) f_2(L,I,R) f_4(L,I,B)$ Remove: $f_1(L) f_2(L,I,R) f_4(L,I,B)$

Step 2: Add $f_6(I,B) = \Sigma_R f_3(R,I,B) f_5(R,I,B)$ Remove: $f_3(R,I,B) f_5(R,I,B)$

Step 3: Add $f_7(I) = \Sigma_B f_6(I,B)$ Remove: $f_6(I,B)$

Last factor: $f_7(I)$ is the expected utility of inspect and ~inspect. Select action with highest expected utility.

Value of Information

- So optimal policy is: don't inspect, buy the car
 - EU = 200
 - Notice that the EU of inspecting the car, then buying it iff you get a good report, is 237.5 less the cost of the inspection (50). So inspection not worth the improvement in EU.
 - But suppose inspection cost \$25: then it would be worth it (EU = 237.5 25 = 212.5 > EU(~i))
 - The expected value of information associated with inspection is 37.5 (it improves expected utility by this amount ignoring cost of inspection). How? Gives opportunity to change decision (~buy if bad).
 - You should be willing to pay up to \$37.5 for the report