Reinforcement Learning and Neural networks

October 20, 2005
CS 886
University of Waterloo

Outline (Part I)

- · Russell & Norvig Sect 21.1-21.3
- What is reinforcement learning
- Temporal-Difference learning
- · Q-learning

Machine Learning

- Supervised Learning
 - Teacher tells learner what to remember

- Reinforcement Learning
 - Environment provides hints to learner

- Unsupervised Learning
 - Learner discovers on its own

What is RL?

- Reinforcement learning is learning what to do so as to maximize a numerical reward signal
 - Learner is not told what actions to take, but must discover them by trying them out and seeing what the reward is

What is RL

 Reinforcement learning differs from supervised learning

Reinforcement learning

Ouch!

Animal Psychology

- · Negative reinforcements:
 - Pain and hunger
- · Positive reinforcements:
 - Pleasure and food
- · Reinforcements used to train animals

Let's do the same with computers!

RL Examples

- · Game playing (backgammon, solitaire)
- Operations research (pricing, vehicule routing)
- Elevator scheduling
- Helicopter control

 http://neuromancer.eecs.umich.edu/cgibin/twiki/view/Main/SuccessesOfRL

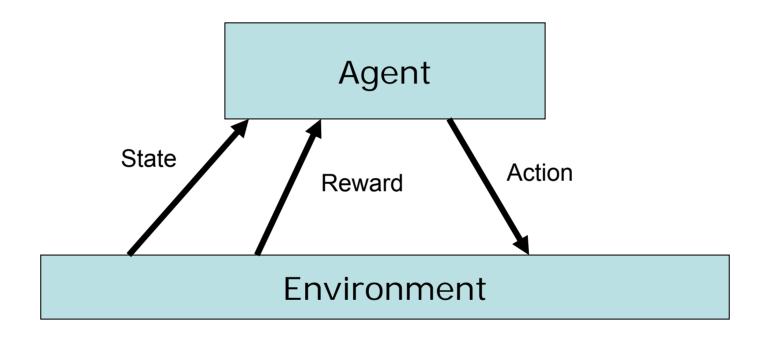
Reinforcement Learning

- · Definition:
 - Markov decision process with unknown transition and reward models
- Set of states S
- Set of actions A
 - Actions may be stochastic
- Set of reinforcement signals (rewards)
 - Rewards may be delayed

Policy optimization

- Markov Decision Process:
 - Find optimal policy given transition and reward model
 - Execute policy found
- · Reinforcement learning:
 - Learn an optimal policy while interacting with the environment

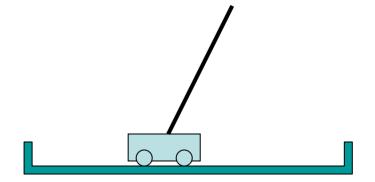
Reinforcement Learning Problem



Goal: Learn to choose actions that maximize $r_0 + \gamma r_1 + \gamma^2 r_2 + ...$, where $0 \cdot \gamma < 1_{10}$

Example: Inverted Pendulum

- State: x(t),x'(t), θ(t), θ'(t)
- · Action: Force F
- Reward: 1 for any step where pole balanced



Problem: Find $\delta:S\rightarrow A$ that maximizes rewards

RI Characterisitics

- · Reinforcements: rewards
- Temporal credit assignment: when a reward is received, which action should be credited?
- Exploration/exploitation tradeoff: as agent learns, should it exploit its current knowledge to maximize rewards or explore to refine its knowledge?
- · Lifelong learning: reinforcement learning

Types of RL

- Passive vs Active learning
 - Passive learning: the agent executes a fixed policy and tries to evaluate it
 - Active learning: the agent updates its policy as it learns

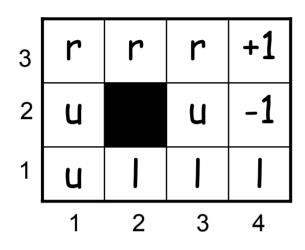
- Model based vs model free
 - Model-based: learn transition and reward model and use it to determine optimal policy
 - Model free: derive optimal policy without learning the model

Passive Learning

- Transition and reward model known:
 - Evaluate δ:
 - $V^{\delta}(s) = R(s) + \gamma \Sigma_{s'} Pr(s'|s,\delta(s)) V^{\delta}(s')$

- Transition and reward model unknown:
 - Estimate policy value as agent executes policy: $V^{\delta}(s) = E_{\delta}[\Sigma_{t} \gamma^{t} R(s_{t})]$
 - Model based vs model free

Passive learning



$$\gamma = 1$$

 $r_i = -0.04$ for non-terminal states

Do not know the transition probabilities

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)_{+1}$$

 $(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3)_{+1}$
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2)_{-1}$

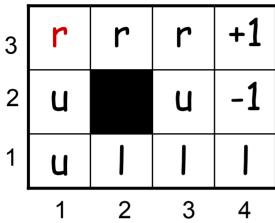
What is the value V(s) of being in state s?

Passive ADP

- Adaptive dynamic programming (ADP)
 - Model-based
 - Learn transition probabilities and rewards from observations
 - Then update the values of the states

$$\gamma = 1$$

ADP Example



 $r_i = -0.04$ for non-terminal states

$$V^{\delta}(s) = R(s) + \gamma \Sigma_{s'} Pr(s'|s,\delta(s)) V^{\delta}(s')$$

$$(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (4,3)_{+1}$$

 $(1,1) \rightarrow (1,2) \rightarrow (1,3) \rightarrow (2,3) \rightarrow (3,3) \rightarrow (3,2) \rightarrow (3,3) \rightarrow (4,3)_{+1}$
 $(1,1) \rightarrow (2,1) \rightarrow (3,1) \rightarrow (3,2) \rightarrow (4,2)_{-1}$

$$P((2,3)|(1,3),r) = 2/3$$

 $P((1,2)|(1,3),r) = 1/3$
Use this information in

We need to learn all the transition probabilities!

Passive TD

- Temporal difference (TD)
 - Model free

- · At each time step
 - Observe: s,a,s',r
 - Update $V^{\delta}(s)$ after each move

-
$$V^{\delta}(s) = V^{\delta}(s) + \alpha (R(s) + \gamma V^{\delta}(s') - V^{\delta}(s))$$

Learning rate

Temporal difference

TD Convergence

Thm: If α is appropriately decreased with number of times a state is visited then $V^{\delta}(s)$ converges to correct value

- α must satisfy:

 - $\Sigma_{+} \alpha_{+} \rightarrow \infty$ $\Sigma_{+} (\alpha_{+})^{2} \leftarrow \infty$
- Often $\alpha(s) = 1/n(s)$
 - n(s) = # of times s is visited

Active Learning

- Ultimately, we are interested in improving $\boldsymbol{\delta}$
- Transition and reward model known:
 - $V^*(s) = \max_a R(s) + \gamma \Sigma_{s'} Pr(s'|s,a) V^*(s')$

- Transition and reward model unknown:
 - Improve policy as agent executes policy
 - Model based vs model free

Q-learning (aka active temporal difference)

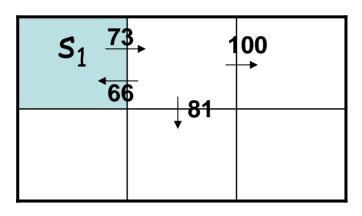
- Q-function: $Q: S \times A \rightarrow \Re$
 - Value of state-action pair
 - Policy $\delta(s) = \operatorname{argmax}_a Q(s,a)$ is the optimal policy
- · Bellman's equation:

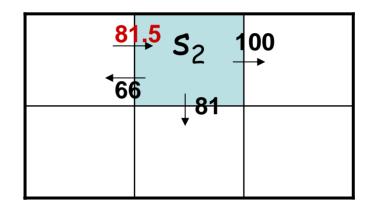
$$Q^*(s,a) = R(s) + \gamma \Sigma_{s'} Pr(s'|s,a) max_{a'} Q^*(s',a')$$

Q-learning

- For each state s and action a initialize Q(s,a) (0 or random)
- Observe current state
- Loop
 - Select action a and execute it
 - Receive immediate reward r
 - Observe new state s'
 - Update Q(a,s)
 - Q(s,a) = Q(s,a) + α (r(s)+ γ max_{a'}Q(s',a') Q(s,a))
 - s=s'

Q-learning example





```
r=0 for non-terminal states \gamma=0.9 \alpha=0.5
```

Q(s₁,right) = Q(s₁,right) +
$$\alpha$$
 (r(s₁) + γ max_a, Q(s₂,a') – Q(s₁,right))
= 73 + 0.5 (0 + 0.9 max[66,81,100] – 73)
= 73 + 0.5 (17)
= 81.5

Q-learning

- For each state s and action a initialize Q(s,a) (0 or random)
- Observe current state
- Loop
 - Select action a and execute it
 - Receive immediate reward r
 - Observe new state s'
 - Update Q(a,s)
 - $Q(s,a) = Q(s,a) + \alpha(r(s)+\gamma \max_{a'}Q(s',a') Q(s,a))$
 - s=s'

Exploration vs Exploitation

- If an agent always chooses the action with the highest value then it is exploiting
 - The learned model is not the real model
 - Leads to suboptimal results
- By taking random actions (pure exploration) an agent may learn the model
 - But what is the use of learning a complete model if parts of it are never used?
- Need a balance between exploitation and exporation

Common exploration methods

- ε-greedy:
 - With probability ε execute random action
 - Otherwise execute best action a* $a^* = argmax_a Q(s,a)$
- Boltzmann exploration

$$P(a) = \frac{e^{Q(s,a)/T}}{\Sigma_a e^{Q(s,a)/T}}$$

Exploration and Q-learning

- Q-learning converges to optimal Qvalues if
 - Every state is visited infinitely often (due to exploration)
 - The action selection becomes greedy as time approaches infinity
 - The learning rate a is decreased fast enough but not too fast

A Triumph for Reinforcement Learning: TD-Gammon

 Backgammon player: TD learning with a neural network representation of the value function:

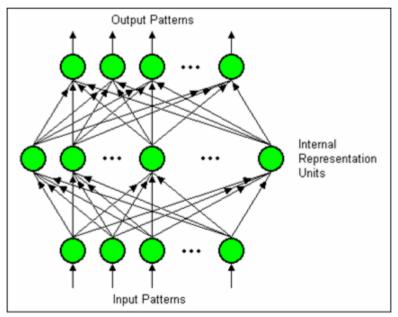


Figure 1. An illustration of the multilayer perception architecture used in TD-Gammon's neural network. This architecture is also used in the popular backpropagation learning procedure. Figure reproduced from [9].

Outline (Part II)

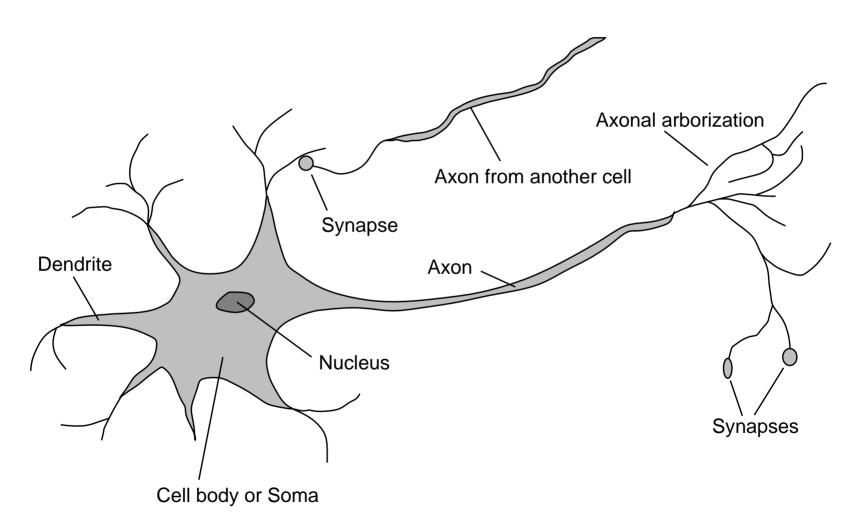
- Neural networks
 - Perceptron
 - Supervised learning algorithms for neural networks

· Reading: R&N Ch 20.5

Brain

- Seat of human intelligence
- · Where memory/knowledge resides
- · Responsible for thoughts and decisions
- · Can learn
- · Consists of nerve cells called neurons

Neuron



Comparison

Brain

- Network of neurons
- Nerve signals propagate in a neural network
- Parallel computation
- Robust (neurons die everyday without any impact)

Computer

- Bunch of gates
- Electrical signals directed by gates
- Sequential computation
- Fragile (if a gate stops working, computer crashes)

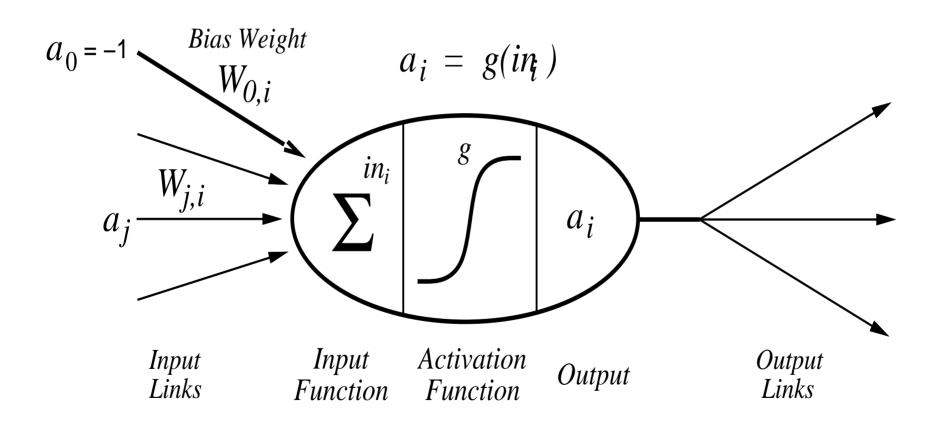
Artificial Neural Networks

- · Idea: mimic the brain to do computation
- · Artificial neural network:
 - Nodes (a.k.a units) correspond to neurons
 - Links correspond to synapses
- Computation:
 - Numerical signal transmitted between nodes corresponds to chemical signals between neurons
 - Nodes modifying numerical signal corresponds to neurons firing rate

ANN Unit

- · For each unit i:
- Weights: W_{ji}
 - Strength of the link from unit j to unit i
 - Input signals a_j weighted by W_{ji} and linearly combined: $in_i = \Sigma_j W_{ji} a_j$
- Activation function: g
 - Numerical signal produced: $a_i = g(in_i)$

ANN Unit

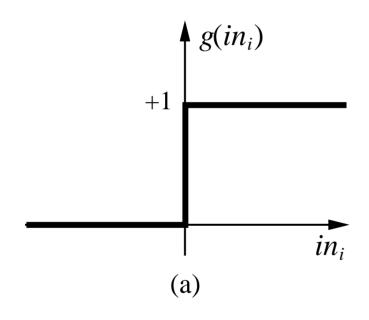


Activation Function

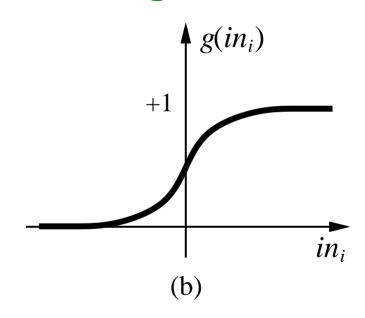
- Should be nonlinear
 - Otherwise network is just a linear function
- Often chosen to mimic firing in neurons
 - Unit should be "active" (output near 1) when fed with the "right" inputs
 - Unit should be "inactive" (output near 0) when fed with the "wrong" inputs

Common Activation Functions

Threshold



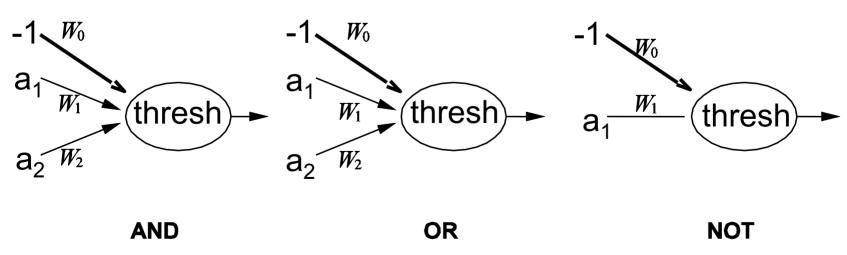
Sigmoid



$$g(x) = 1/(1+e^{-x})$$

Logic Gates

- McCulloch and Pitts (1943)
 - Design ANNs to represent Boolean fns
- What should be the weights of the following units to code AND, OR, NOT?

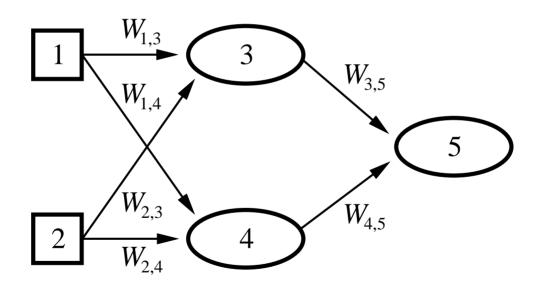


Network Structures

- Feed-forward network
 - Directed acyclic graph
 - No internal state
 - Simply computes outputs from inputs
- Recurrent network
 - Directed cyclic graph
 - Dynamical system with internal states
 - Can memorize information

Feed-forward network

 Simple network with two inputs, one hidden layer of two units, one output unit

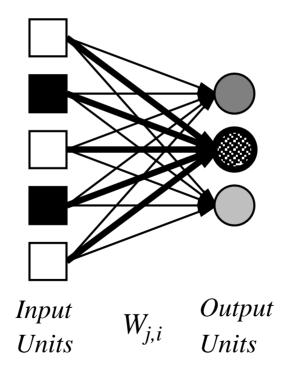


$$a_5 = g(W_{3,5}a_3 + W_{4,5}a_4)$$

= $g(W_{3,5}g(W_{1,3}a_1 + W_{2,3}a_2) + W_{4,5}g(W_{1,4}a_1 + W_{2,4}a_2))$

Perceptron

· Single layer feed-forward network



Supervised Learning

- · Given list of <input,output> pairs
- Train feed-forward ANN
 - To compute proper outputs when fed with inputs
 - Consists of adjusting weights W_{ji}
- Simple learning algorithm for threshold perceptrons

Threshold Perceptron Learning

- · Learning is done separately for each unit
 - Since units do not share weights
- Perceptron learning for unit i:
 - For each <inputs,output> pair do:
 - Case 1: correct output produced
 - $\forall_{j} W_{ji} \leftarrow W_{ji}$
 - Case 2: output produced is 0 instead of 1
 - $\forall_{j} W_{ji} \leftarrow W_{ji} + a_{j}$
 - Case 3: output produced is 1 instead of 0
 - $\forall_{j} W_{ji} \leftarrow W_{ji} a_{j}$
 - Until correct output for all training instances

Threshold Perceptron Learning

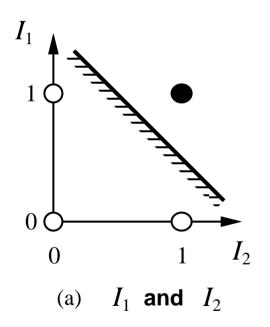
- Dot products: $a \bullet a \ge 0$ and $-a \bullet a \le 0$
- Perceptron computes
 - 1 when $a \cdot W = \sum_{i} a_{i} W_{ii} > 0$
 - 0 when $a \cdot W = \sum_{j} a_{j} W_{ji} < 0$
- If output should be 1 instead of 0 then
 - W \leftarrow W+a since $a \bullet (W+a) \ge a \bullet W$
- · If output should be 0 instead of 1 then
 - W ← W-a since $a \bullet (W-a) \le a \bullet W$

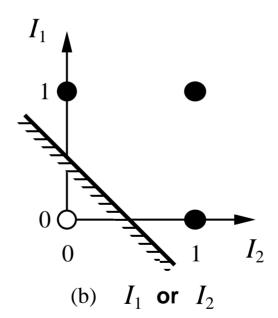
Threshold Perceptron Hypothesis Space

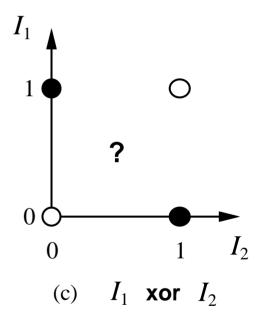
- Hypothesis space h_w:
 - All binary classifications with param. W s.t.
 - $\cdot a \bullet W > 0 \rightarrow 1$
 - $a \bullet W < 0 \rightarrow 0$
- Since a W is linear in W, perceptron is called a linear separator

Threshold Perceptron Hypothesis Space

Are all Boolean gates linearly separable?

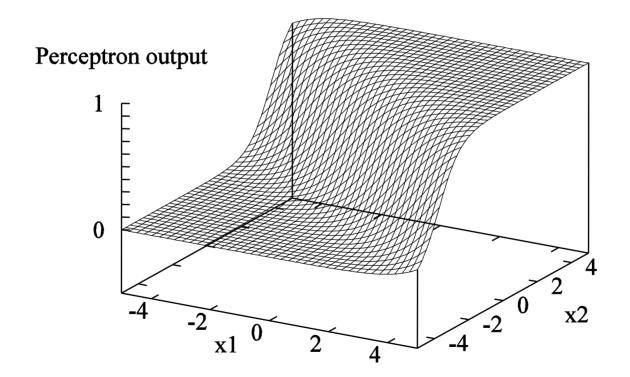






Sigmoid Perceptron

· Represent "soft" linear separators



Sigmoid Perceptron Learning

- Formulate learning as an optimization search in weight space
 - Since g differentiable, use gradient descent
- Minimize squared error:
 - E = 0.5 $Err^2 = 0.5 (y h_W(x))^2$
 - · x: input
 - y: target output
 - · hw(x): computed output

Perceptron Error Gradient

• E = 0.5 Err² = 0.5 $(y - h_W(x))^2$

•
$$\partial E/\partial W_{j} = Err \times \partial Err/\partial W_{j}$$

= $Err \times \partial (y - g(\Sigma_{j} W_{j} \times_{j}))$
= $-Err \times g'(\Sigma_{j} W_{j} \times_{j}) \times x_{j}$

• When g is sigmoid fn, then g' = g(1-g)

Perceptron Learning Algorithm

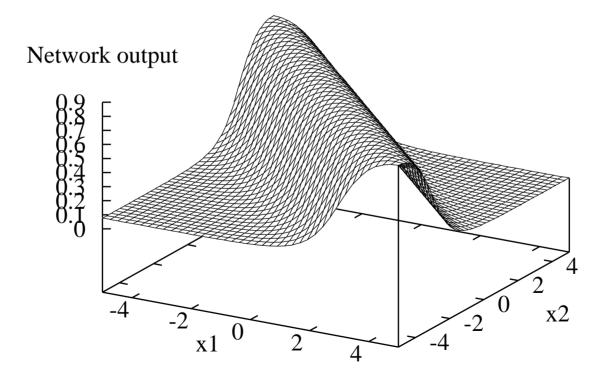
- Perceptron-Learning(examples,network)
 - Repeat
 - For each e in examples do
 - in $\leftarrow \Sigma_j W_j x_j[e]$ - Err $\leftarrow y[e] - g(in)$
 - $W_j \leftarrow W_j + \alpha \times Err \times g'(in) \times x_j[e]$
 - Until some stopping criteria satisfied
 - Return learnt network
- N.B. α is a learning rate corresponding to the step size in gradient descent

Multilayer Feed-forward Neural Networks

- Perceptron can only represent (soft) linear separators
 - Because single layer
- With multiple layers, what fns can be represented?
 - Virtually any function!

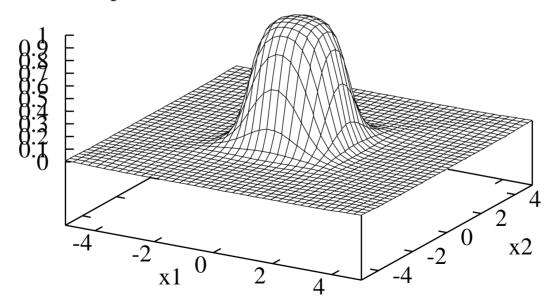
Multilayer Networks

 Adding two sigmoid units with parallel but opposite "cliffs" produces a ridge



Multilayer Networks

 Adding two intersecting ridges (and thresholding) produces a bump



Multilayer Networks

- By tiling bumps of various heights together, we can approximate any function
- Training algorithm:
 - Back-propagation
 - Essentially gradient performed by propagating errors backward into the network
 - See textbook for derivation

Neural Net Applications

- Neural nets can approximate any function, hence 1000's of applications
 - NETtalk for pronouncing English text
 - Character recognition
 - Paint-quality inspection
 - Vision-based autonomous driving
 - Etc.

Neural Net Drawbacks

- Common problems:
 - How should we interpret units?
 - How many layers and units should a network have?
 - How to avoid local optimum while training with gradient descent?