Lecture 8hb: Partially Observable RL, DRON
CS885 Reinforcement Learning

2025-01-30

Complementary readings:
Hausknecht, M., & Stone, P. Deep recurrent Q-learning for partially observable MDPs. In 2015 AAAI fall symposium series.

Pascal Poupart
David R. Cheriton School of Computer Science
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Outline

Partially Observable Markov Decision Processes

Hidden Markov Models

Recurrent neural networks

= Long short term memory (LSTM) networks

Deep recurrent Q-networks
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Reinforcement Learning Problem

Agent

Observation%/ % ward yction

Environment

Goal: Learn to choose actions that maximize rewards
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Markov Process

= Assumptions:
» (first-order) Markovian: Pr(s;|S;_1, ..., Sg) = Pr(s¢|s;—1)
» Stationary: Pr(s;|s;_1) = Pr(s;,1|s;) Vt
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Hidden Markov Model

= Assumptions:
» (first-order) Markovian: Pr(s;|S;_1, ..., Sg) = Pr(s¢|s;—1)
» Stationary: Pr(s;|s;_1) = Pr(s;,1|s;) Vt
Pr(o¢|s;) = Pr(o;41[S¢41) Vt

;
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Speech Recognition

Compute:
Pr(word|speech)

Pr(s¢|og, 0¢—1, ..., 01)
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(Fully Observable) Markov Decision Process (MDP)
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Partially Observable Markov Decision Process (POMDP)

= MDP augmented with observations
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Partially Observable RL

= Definition
Observations: o € 0
Actions: a € A
Rewards: r € R

Observation model: Pr(os|as_q1,5;) o= unknown model

Discount factor: 0 < y < 1. (discounted: y < 1, undiscounted: y = 1)

Horizon (i.e., # of time steps): h (Finite horizon: h € N, infinite horizon: h = o)

» Goal: find optimal policy 7* such that n* = argmax, 3t v E.[1¢]
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Simple Heuristic

= Approximate s; by o; (or finite window of previous obs: 0;_y, 0t_x+1, ---, 0¢)

= Use favorite RL algo on observations instead of states

So
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Belief Monitoring
» Hidden Markov model

= Initial state distribution: Pr(s;)
= Transition probabilities: Pr(ss;q1|st)
= Observation probabilities: Pr(o;|s;)

= Belief monitoring

Pr(s¢lo1.¢ ) < Pr(oglse) Xs,_, Priselse—1) Pr(s¢—1]01.¢-1)
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Recurrent Neural Network (RNN)

= In RNNSs, outputs can be fed back to the network as inputs,
creating a recurrent structure
= HMMs can be simulated and generalized by RNNs

= RNNs can be used for belief monitoring
x;: vector of observations  h;: belief state
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.
Training

= Recurrent neural networks are trained by backpropagation on the

unrolled network
= E.g., backpropagation through time

= Weight sharing:

= Combine gradients of shared weights into a single gradient

= Challenges:
= Gradient vanishing (and explosion)

= Long range memory
= Prediction drift
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Long Short Term Memory (LSTM)

= Special gated structure to (EF
control memorization and

forgetting in RNNs
— A=/
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= Mitigate gradient vanishing

= Facilitate long term memory




Unrolled long short term memory

output
gate

forget
gate

input
gate
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Deep Recurrent (-Network

= Hausknecht and Stone (2016)

= Atari games

CTEECET

» Transition model
» LSTM network

= Observation model
= Convolutional network
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Deep Recurrent (-Network

Initialize weights w and w at random
Observe current state s
Loop
Execute policy for entire episode
Add episode (04, a4, 0,, a,, 03, as, ..., o7, ar) to experience buffer
Sample episode from buffer
Initialize h,
For t = 1 till the end of the episode do

OE A A A N ~ dQw(RNNy (01.1).4¢)
3w = |Qw(RNN(01.0),8,) = F —y max Qg (RN Ny (0. 41), e T
Update weights: w « w — «a 65;1’

Every c steps, update target: w « w
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Table 1: On standard Atari games, DRQN performance par-
allels DQN, excelling in the games of Frostbite and Double
Dunk, but struggling on Beam Rider. Bolded font indicates
statistical significance between DRQN and our DQN.>
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Results
Flickering games
DRQN =+std DQN =+std (missing observations)

Game Ours Mnih et al. 07
Asteroids 1020 (£312) 1070 (£345) | 1629 (£542) |
Beam Rider 3269 (£1167) 6923 (£1027) | 6846 (£1619) - DON
Bowling 62 (£5.9) 72 (£11) 42 (+88) o
Centipede 3534 (£1601) 3653 (+1903) | 8309 (£5237) &
Chopper Cmd 2070 (+875) 1460 (£976) | 6687 (£2916) =
Double Dunk -2 (+7.8) -10 (£3.5) -18.1 (+2.6) S
Frostbite 2875 (£535) 519 (£363) | 328.3 (£250.5) O
Ice Hockey 4.4 (£1.6) -3.5 (£3.5) -1.6 (£2.5) s
Ms. Pacman 2048 (+£653) 2363 (£735) | 2311 (£525) é
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