# Lecture 6b: Bayesian & Contextual Bandits CS885 Reinforcement Learning

2025-01-23

Complementary readings: [SutBar] Sec. 2.9

Pascal Poupart
David R. Cheriton School of Computer Science



### **Outline**

- Bayesian bandits
  - Thompson sampling
- Contextual bandits



#### **Multi-Armed Bandits**

- Problem:
  - *N* bandits with unknown average reward R(a)
  - Which arm *a* should we play at each time step?
  - Exploitation/exploration tradeoff
- Common frequentist approaches:
  - $\epsilon$ -greedy
  - Upper confidence bound (UCB)
- Alternative Bayesian approaches
  - Thompson sampling
  - Gittins indices



# **Bayesian Learning**

#### Notation:

- $r^a$ : random variable for a's rewards
- $Pr(r^a; \theta)$ : unknown distribution (parameterized by  $\theta$ )
- $R(a) = E[r^a]$ : unknown average reward

#### • Idea:

- Express uncertainty about  $\theta$  by a prior  $Pr(\theta)$
- Compute posterior  $\Pr(\theta | r_1^a, r_2^a, ..., r_n^a)$  based on samples  $r_1^a, r_2^a, ..., r_n^a$  observed for a so far.

#### Bayes theorem:

$$\Pr(\theta|r_1^a, r_2^a, ..., r_n^a) \propto \Pr(\theta) \Pr(r_1^a, r_2^a, ..., r_n^a|\theta)$$



## **Distributional Information**

- Posterior over  $\theta$  allows us to estimate
  - Distribution over next reward  $r^a$

$$\Pr(r^{a}|r_{1}^{a}, r_{2}^{a}, ..., r_{n}^{a}) = \int_{\theta} \Pr(r^{a}; \theta) \Pr(\theta|r_{1}^{a}, r_{2}^{a}, ..., r_{n}^{a}) d\theta$$

• Distribution over R(a) when  $\theta$  includes the mean

$$\Pr(R(a)|r_1^a, r_2^a, ..., r_n^a) = \Pr(\theta|r_1^a, r_2^a, ..., r_n^a) \text{ if } \theta = R(a)$$

- To guide exploration:
  - UCB:  $Pr(R(a) \le bound(r_1^a, r_2^a, ..., r_n^a)) \ge 1 \delta$
  - Bayesian techniques:  $Pr(R(a)|r_1^a, r_2^a, ..., r_n^a)$



# **Coin Example**

• Consider two biased coins  $C_1$  and  $C_2$ 

$$R(C_1) = Pr(C_1 = head)$$

$$R(C_2) = Pr(C_2 = head)$$

- Problem:
  - Maximize # of heads in k flips
  - Which coin should we choose for each flip?



### **Bernoulli Variables**

•  $r^{C_1}$ ,  $r^{C_2}$  are Bernoulli variables with domain  $\{0,1\}$ 

Bernoulli distributions are parameterized by their mean

• i.e., 
$$\Pr(r^{C_1}; \theta_1) = \theta_1 = R(C_1)$$
  

$$\Pr(r^{C_2}; \theta_2) = \theta_2 = R(C_2)$$

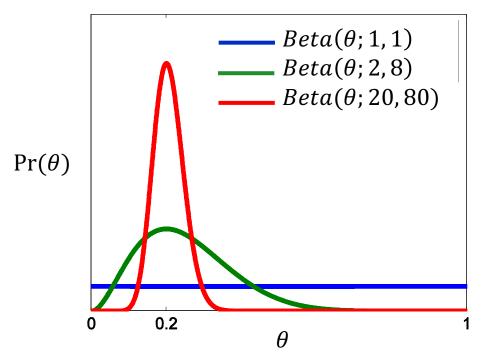
## **Beta Distribution**

• Let the prior  $Pr(\theta)$  be a Beta distribution

$$Beta(\theta; \alpha, \beta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

- $\alpha 1$ : # of heads
- $\beta$  1: # of tails

•  $E[\theta] = \alpha/(\alpha + \beta)$ 





# **Belief Update**

- Prior:  $Pr(\theta) = Beta(\theta; \alpha, \beta) \propto \theta^{\alpha 1} (1 \theta)^{\beta 1}$
- Posterior after coin flip:

$$\Pr(\theta|head) \propto \Pr(\theta) \qquad \Pr(head|\theta)$$

$$\propto \theta^{\alpha-1}(1-\theta)^{\beta-1} \qquad \theta$$

$$= \theta^{(\alpha+1)-1}(1-\theta)^{\beta-1} \propto Beta(\theta; \alpha+1, \beta)$$

$$\Pr(\theta|tail) \propto \qquad \Pr(\theta) \qquad \Pr(tail|\theta)$$

$$\propto \theta^{\alpha-1}(1-\theta)^{\beta-1} \qquad (1-\theta)$$

$$= \theta^{\alpha-1}(1-\theta)^{(\beta+1)-1} \propto Beta(\theta; \alpha, \beta+1)$$



# **Thompson Sampling**

#### • Idea:

Sample several potential average rewards:

$$R_1(a), ..., R_k(a) \sim \Pr(R(a)|r_1^a, ..., r_n^a)$$
 for each a

- Estimate empirical average  $\hat{R}(a) = \frac{1}{k} \sum_{i=1}^{k} R_i(a)$
- Execute  $argmax_a \hat{R}(a)$
- Coin example
  - $\Pr(R(a)|r_1^a, ..., r_n^a) = \text{Beta}(\theta_a; \alpha_a, \beta_a)$ where  $\alpha_a - 1 = \#heads$  and  $\beta_a - 1 = \#tails$



# **Thompson Sampling Algorithm Bernoulli Rewards**

```
ThompsonSampling(h)
   For n = 1 to h
      Sample R_1(a), ..., R_k(a) \sim \Pr(R(a)) \ \forall a
     \hat{R}(a) \leftarrow \frac{1}{k} \sum_{i=1}^{k} R_i(a) \quad \forall a
      a^* \leftarrow \operatorname{argmax}_a \hat{R}(a)
      Execute a^* and receive r
      V \leftarrow V + r
      Update Pr(R(a^*)) based on r
Return V
```

# Comparison

#### **Thompson Sampling**

Action Selection

$$a^* = \operatorname{argmax}_a \hat{R}(a)$$

Empirical mean

$$\widehat{R}(a) = \frac{1}{k} \sum_{i=1}^{k} R_i(a)$$

Samples

$$R_i(a) \sim \Pr(R_i(a)|r_1^a \dots r_n^a)$$
  
 $r_i^a \sim \Pr(r^a; \theta)$ 

Some exploration

#### **Greedy Strategy**

Action Selection

$$a^* = \operatorname{argmax}_a \tilde{R}(a)$$

Empirical mean

$$\tilde{R}(a) = \frac{1}{n} \sum_{i=1}^{n} r_i^a$$

Samples

$$r_i^a \sim \Pr(r^a; \theta)$$

No exploration



# **Sample Size**

- In Thompson sampling, amount of data *n* and sample size *k* regulate amount of exploration
- As n and k increase,  $\hat{R}(a)$  becomes less stochastic, which reduces exploration
  - As  $n \uparrow$ ,  $\Pr(R(a)|r_1^a ... r_n^a)$  becomes more peaked
  - As  $k \uparrow$ ,  $\hat{R}(a)$  approaches  $E[R(a)|r_1^a ... r_n^a]$
- The stochasticity of  $\hat{R}(a)$  ensures that all actions are chosen with some probability



# **Analysis**

Thompson sampling converges to best arm

- Theory:
  - Expected cumulative regret:  $O(\log n)$
  - On par with UCB and  $\epsilon$ -greedy
- Practice:
  - Sample size k often set to 1



#### **Contextual Bandits**

- In many applications, the context provides additional information to select an action
  - E.g., personalized advertising, user interfaces
  - Context: user demographics (location, age, gender)

- Actions can be characterized by features that influence their payoff
  - E.g., ads, webpages
  - Action features: topics, keywords, etc.



#### **Contextual Bandits**

- Contextual bandits: multi-armed bandits with states (corresponding to contexts) and action features
- Formally:
  - *S*: set of states where each state *s* is defined by a vector of features  $\mathbf{x}^s = (x_1^s, x_2^s, ..., x_k^s)$
  - *A*: set of actions where each action a is associated with a vector of features  $\mathbf{x}^a = (x_1^a, x_2^a, ..., x_l^a)$
  - Space of rewards (often ℝ)
- No transition function since the states at each step are independent
- Goal find policy  $\pi$ :  $\mathbf{x}^s \to a$  that maximizes expected rewards  $E(r|s,a) = E(r|\mathbf{x}^s,\mathbf{x}^a)$



# **Approximate Reward Function**

- Common approach:
  - learn approximate average reward function  $\tilde{R}(s,a) = \tilde{R}(x)$  (where  $x = (x^s, x^a)$ ) by regression

• Linear approximation:  $\tilde{R}_{w}(x) = w^{T}x$ 

• Non-linear approximation:  $\tilde{R}_{w}(x) = neuralNet(x; w)$ 



# **Bayesian Linear Regression**

- Consider a Gaussian prior:  $pdf(w) = N(w|\mathbf{0}, \lambda^2 I) \propto exp\left(-\frac{w^T w}{2\lambda^2}\right)$
- Consider also a Gaussian likelihood:

$$pdf(r|\mathbf{x},\mathbf{w}) = N(r|\mathbf{w}^T\mathbf{x},\sigma^2) \propto exp\left(-\frac{(r-\mathbf{w}^T\mathbf{x})^2}{2\sigma^2}\right)$$

• The posterior is also Gaussian:

$$pdf(\boldsymbol{w}|r,\boldsymbol{x}) \propto pdf(\boldsymbol{w}) \Pr(r|\boldsymbol{x},\boldsymbol{w})$$

$$\propto exp\left(-\frac{\boldsymbol{w}^T\boldsymbol{w}}{2\lambda^2}\right) exp\left(-\frac{(r-\boldsymbol{w}^T\boldsymbol{x})^2}{2\sigma^2}\right)$$

$$= N(\boldsymbol{w}|\boldsymbol{\mu},\boldsymbol{\Sigma})$$
where  $\boldsymbol{\mu} = \sigma^{-2}\boldsymbol{\Sigma}\boldsymbol{x}r$  and  $\boldsymbol{\Sigma} = (\sigma^{-2}\boldsymbol{x}\boldsymbol{x}^T + \lambda^{-2}\boldsymbol{I})^{-1}$ 



### **Predictive Posterior**

- Consider a state-action pair  $(x^s, x^a) = x$  for which we would like to predict the reward r
- Predictive posterior:

$$pdf(r|\mathbf{x}) = \int_{\mathbf{w}} N(r|\mathbf{w}^{T}\mathbf{x}, \sigma^{2}) N(\mathbf{w}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{w}$$
$$= N(r|\sigma^{2}\mathbf{x}^{T}\boldsymbol{\mu}, \mathbf{x}^{T}\boldsymbol{\Sigma}\mathbf{x})$$

- UCB:  $\Pr(r < \sigma^2 x^T \mu + c \sqrt{x^T \Sigma x}) > 1 \delta$ where  $c = 1 + \sqrt{\ln(2/\delta)/2}$
- Thompson sampling:  $\tilde{r} \sim N(r|\sigma^2 x^T \mu, x^T \Sigma x)$



# **Upper Confidence Bound (UCB) Linear Gaussian**

```
UCB(h)
   V \leftarrow 0, pdf(\boldsymbol{w}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = N(\boldsymbol{w}|\boldsymbol{0}, \lambda^2 \boldsymbol{I})
   Repeat until n = h
       Receive state x^s
       For each action x^a where x = (x^s, x^a) do
           confidenceBound(a) = \sigma^2 \mathbf{x}^T \boldsymbol{\mu} + c \sqrt{\mathbf{x}^T \boldsymbol{\Sigma} \mathbf{x}}
       a^* \leftarrow \operatorname{argmax}_a confidenceBound(a)
       Execute a^* and receive r
       V \leftarrow V + r
       update \mu and \Sigma based on x = (x^s, x^{a^*}) and r
Return V
```

## **Thompson Sampling Linear Gaussian**

```
ThompsonSampling(h)
    V \leftarrow 0; pdf(\boldsymbol{w}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = N(\boldsymbol{w}|\boldsymbol{0},\lambda^2\boldsymbol{I})
    For n = 1 to h
        Receive state x^s
        For each action x^a where x = (x^s, x^a) do
            Sample R_1(a), ..., R_k(a) \sim N(r|\sigma^2 \mathbf{x}^T \boldsymbol{\mu}, \mathbf{x}^T \boldsymbol{\Sigma} \mathbf{x})
            \hat{R}(a) \leftarrow \frac{1}{k} \sum_{i=1}^{k} R_i(a)
        a^* \leftarrow \operatorname{argmax}_a \hat{R}(a)
        Execute a^* and receive r
        V \leftarrow V + r
        Update \mu and \Sigma based on x = (x^s, x^{a^*}) and r
Return V
```

#### **Industrial Use**

- Contextual bandits are now commonly used for
  - Personalized advertising
  - Personalized web content
    - MSN news: 26% improvement in click through rate after adoption of contextual bandits (<a href="https://www.microsoft.com/en-us/research/blog/real-world-interactive-learning-cusp-enabling-new-class-applications/">https://www.microsoft.com/en-us/research/blog/real-world-interactive-learning-cusp-enabling-new-class-applications/</a>)

