Lecture 6a: Multi-Armed Bandits CS885 Reinforcement Learning

2025-01-23

Complementary readings: [SutBar] Sec. 2.1-2.7, [Sze] Sec. 4.2.1-4.2.2

Pascal Poupart David R. Cheriton School of Computer Science

Outline

- Exploration/exploitation tradeoff
- § Regret
- § Multi-armed bandits
	- ϵ -greedy strategies
	- § Upper confidence bounds

Exploration/Exploitation Tradeoff

• Fundamental problem of RL due to the active nature of the learning process

• Consider one-state RL problems known as bandits

Stochastic Bandits

- § Formal definition:
	- Single state: $S = \{s\}$
	- A: set of actions (also known as arms)
	- Space of rewards (often re-scaled to be $[0,1]$)
- No transition function to be learned since there is a single state
- § We simply need to learn the **stochastic** reward function

Origin and Applications

§ "bandit" comes from gambling where slot machines can be thought as one-armed bandits.

Applications

- **Marketing** (ad placement, recommender systems)
- **Loyalty programs** (personalized offers)
- **Pricing** (airline seat pricing, cargo shipment pricing, food pricing)
- **Optimal design** (web design, interface personalization)
- **Networks** (routing)

Online Ad Placement

Online Ad Optimization

- Problem: which ad should be presented?
- Answer: present ad with highest payoff

 $payoff = clickThroughRate \times payment$

- Click through rate: probability that user clicks on ad
- § Payment: \$\$ paid by advertiser
	- Amount determined by an auction

Simplified Problem

- § Assume payment is 1 unit for all ads
- Need to estimate click through rate
- § Formulate as a bandit problem:
	- § Arms: the set of possible ads
	- Rewards: 0 (no click) or 1 (click)
- In what order should ads be presented to maximize revenue?
	- § How should we balance exploitation and exploration?

Uncertainty Quantification

Distribution of rewards: $Pr(r|a)$

• Expected reward: $R(a) = E(r|a)$

• Empirical average reward: $\tilde{R}(a) = \frac{1}{n} \sum_{t=1}^{n} r_t$

Simple Heuristics

- § Greedy strategy: select the arm with the highest average so far
	- May get stuck due to lack of exploration

- ϵ **-greedy:** select an arm at random with probability ϵ and otherwise do a greedy selection
	- Convergence rate depends on choice of ϵ

Regret

- Let $R(a)$ be the unknown average reward of a
- Let $r^* = \max$ \overline{a} $R(a)$ and $a^* = argmax_a R(a)$
- Denote by $loss(a)$ the expected regret of a

$$
loss(a) = r^* - R(a)
$$

■ Denote by \textit{Loss}_n the expected cumulative regret for n time steps

$$
Loss_n = \sum_{t=1}^{n} loss(a_t)
$$

Theoretical Guarantees

- When ϵ is constant, then
	- For large enough $t: Pr(a_t \neq a^*) \approx \epsilon$
	- Expected cumulative regret: $Loss_n \approx \sum_{t=1}^{n} \epsilon = O(n)$
		- § Linear regret
- When $\epsilon_t \propto 1/t$
	- For large enough *t*: Pr($a_t \neq a^*$) ≈ $\epsilon_t = O\left(\frac{1}{t}\right)$
	- Expected cumulative regret: $Loss_n \approx \sum_{t=1}^{n}$ $\begin{matrix} n & 1 \end{matrix}$ t $= O(\log n)$
		- § Logarithmic regret

Empirical Mean

- Problem: how far is the empirical mean $\tilde{R}(a)$ from the true mean $R(a)$?
- If we knew that $|R(a) \tilde{R}(a)| \leq bound$
	- Then we would know that $R(a) < \tilde{R}(a) + bound$
	- And we could select the arm with best $\tilde{R}(a) + bound$
- Overtime, additional data will allow us to refine $\tilde{R}(a)$ and compute a tighter *bound*.

Positivism in the Face of Uncertainty

- Suppose that we have an oracle that returns an upper bound $UB_n(a)$ on $R(a)$ for each arm based on *n* trials of arm *a*.
- Suppose the upper bound returned by this oracle converges to $R(a)$ in the limit:
	- § i.e., lim $n\rightarrow\infty$ $UB_n(a) = R(a)$
- Optimistic algorithm
	- At each step, select $argmax_a \; UB_n(a)$

Convergence

- Theorem: An optimistic strategy that always selects argmax_a $UB_n(a)$ will converge to a^*
- Proof by contradiction:
	- Suppose that we converge to suboptimal arm α after infinitely many trials.
	- Then $R(a) = UB_{\infty}(a) \ge UB_{\infty}(a') = R(a') \forall a'$
	- But $R(a) \ge R(a') \forall a'$ contradicts our assumption that a is suboptimal.

Probabilistic Upper Bound

- Problem: We can't compute an upper bound with certainty since we are sampling
- However we can obtain measures f that are upper bounds most of the time
	- i.e., $Pr(R(a) \le f(a)) \ge 1 \delta$
	- Example: Hoeffding's inequality

$$
\Pr\left(R(a) \le \tilde{R}(a) + \sqrt{\frac{\log(\frac{1}{\delta})}{2n_a}}\right) \ge 1 - \delta
$$

where n_a is the number of trials for arm a

Upper Confidence Bound (UCB)

- Set $\delta_n = 1/n^4$ in Hoeffding's bound
- Choose a with highest Hoeffding bound

 $UCB(h)$ $V \leftarrow 0$, $n \leftarrow 0$, $n_a \leftarrow 0$ $\forall a$ Repeat until $n = h$ Execute argmax_a $\tilde{R}(a) + \sqrt{\frac{2 \log n}{n}}$ n_a Receive r $V \leftarrow V + r$ $\tilde{R}(a) \leftarrow \frac{n_a \tilde{R}(a) + r}{n_a + 1}$ n_a+1 $n \leftarrow n + 1, \quad n_a \leftarrow n_a + 1$ Return V

UCB Convergence

- § **Theorem:** Although Hoeffding's bound is probabilistic, UCB converges.
- **Idea:** As *n* increases, the term $\frac{2 \log n}{n}$ n_a increases, ensuring that all arms are tried infinitely often
- Expected cumulative regret: $Loss_n = O(log n)$
	- § Logarithmic regret

Extension of A/B Testing

- § **A/B Testing:** randomized experiment with 2 variants
	- § Select best variant after completion of experiment

Example: email marketing

- "Offer ends this Saturday! Use code A" (response rate: 5%)
- "Offer ends soon! Use code B" (response rate: 3%)
- § **Multi-armed bandits:** form of continual A/B testing

Multi-Armed Bandit

Credit: Shubhankar Gupta (vwo.com) **UWV A/B Testing Bandit Selection** 100% 100% 80% 80% % of traffic % of traffic 60% 60% 40% 40% 20% 20% $0%$ $0%$ Time $\overline{8}$ $\overline{0}$ $\overline{2}$ $\overline{4}$ $\overline{0}$ $\overline{2}$ $\overline{4}$ 6 8 Exploration $\xrightarrow{\longrightarrow}$ Exploitation $\xrightarrow{}$ **Exploration & Exploitation** \longrightarrow Variation⁸ **Variation A** Variation **C High CTR Medium CTR Low CTR**

UNIVERSITY OF ATERI/ OO

Summary

- § Stochastic bandits
	- Exploration/exploitation tradeoff
- ϵ -greedy and UCB
	- Theory: logarithmic expected cumulative regret
- § In practice:
	- UCB often performs better than ϵ -greedy
	- Many variants of UCB improve performance

