Lecture 5b: Maximum Entropy RL
CS885 Reinforcement Learning

2025-01-21

Complementary readings:
Haarnoja, Tang, Abbeel, Levine (2017) Reinforcement Learning with Deep Energy-Based Policies, ICML.
Haarnoja, Zhou, Abbeel, Levine (2018) Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning

with a Stochastic Actor, ICML.

Pascal Poupart
David R. Cheriton School of Computer Science

%’ WATERLOO

Maximum Entropy RL

= Why do several implementations of important RL baselines (e.g., A2C, PPO) add
an entropy regularizer?

= Why is maximizing entropy desirable in RL?

= What is the Soft Actor Critic algorithm?

W UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 2 @ WATE RLOO

Reinforcement Learning

Deterministic Policies Stochastic Policies

= There always exists an optimal Search space is continuous for
deterministic policy stochastic policies (helps with
gradient descent)

= Search space is smaller for
deterministic than stochastic
policies

More robust (less likely to overfit)

= Naturally incorporate exploration
= Practitioners prefer

C . .. = Facilitate transfer learning
deterministic policies

= Mitigate local optima

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 3 @ WATE RLOO

Encouraging Stochasticity

Standard MDP Soft MDP
= States: S = States: S
= Actions: A = Actions: A

Reward: R(s,a) + AH(n(- IS))

Reward: R(s, a)

Transition: Pr(s’|s, a) Transition: Pr(s’|s, a)

Discount: y Discount: y

W UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 4 @ WATE RLOO

Entropy

= Measure of uncertainty

= Information theory: expected # 08
of bits needed to communicate H(p) %5
the result of a sample 04

H(p) = — 2, p(x) logp(x)

0
0 01 02 03 04 05 06 07 08 09 1

p(x)

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 5 @ WATE RLOO

Optimal Policy

« Standard MDP: m* = argmax Y- ¥"Es_q z[R(Sn, ay)]

T

= Soft MDP: mg,r, = argmax XN _o V" Es_q x|R(Sn, ay) + AH (7(- |s,))]
T

Maximum entropy policy
Entropy regularized policy

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 6 @ WATE RLOO

0-function

= Standard MDP

Q™ (sg,ag) = R(sg,ap) + z y" Sn.an|So,a0, T [R(sp, an)]

n=1

= Soft MDP

Q;Toft(SOr ag) = R(sp,ap) + z ynEsn,an|SO,a0,n [R(Sn» an) + AH(T[(' |Sn))]
n=1

NB: No entropy with first reward term
since action is not chosen according to «

W UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 7 @ WATE RLOO

Greedy Policy
= Standard MDP (deterministic policy)

Mgreedy(S) = argmax Q(s, a)
a

= Soft MDP (stochastic policy)
Toreeay(: Is) = argmax) m(al$)Q(s,@) + AH(n(- |5))

T
a

__exp@(s)/N) |
= Sepea/m — Softmax(Q(s,)/2)

when 4 — 0 then softmax becomes regular max

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 8 @ WATE RLOO

Derivation

= Concave objective (can find global maximum)
J(m,Q) = Xam(als)Q(s,a) + AH(n(: |s))

= Yqm(als)[Q(s,a) — Alogm(als)]

a] _
an(als)

= Partial derivative: Q(s,a) — Allogm(als) + 1]

= Setting the derivative to 0 and isolating m(a|s) yields

m(als) = exp(Q(s,a)/A —1) « exp(Q(s,a)/4)

(Q(s,)/A)
+ Hence mgreeay (- |s) = 5— et = softmax(Q(s,)/A)

W UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 9 @ WATE RLOO

Greedy Value Function

= What is the value function induced by the greedy policy?
» Standard MDP: V(s) = maxQ(s,a)
a

= Sott MDP: Vsoft(S) = AH (T[greedy(' |S)) + 2 7Tgreedy(als)Qsoft(S: a)

Qsort(5,a)
= Alog ., exp(f;) = maxy Qsore (s, a)
a

when 4 — 0 then max; becomes regular max

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 10 @ WATE RLOO

Derivation

Vsoft(s) = AH (T[greedy(' |S)) + Zaﬂgreedy(als)Qsoft(S» a)

exp(Qsosc(5,a)/2)
%, exp(Qsop.(s,a")/2)

SINCe T gpeeqy(als) =

Uso s,a’
AH (T[greedJ/(° s)) + Y0 Tgreeay(als)A [08 7 greeay(als) +log Y, eXp(ft;))]

Qs re(s,a’
=AH (ngreedy(‘ 5)) + A XaTgreedy(als) 108 greeay(als) + Alogl, exp (ftll())

Qsori(sa’
= AH (T[greedy(' |5)) — AH (T[greedy(' |S)) + Alog Za’ exp(ft/»f))

gy ()

= max, Uso5:(S, Q)
a

W UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 11 @ WATE RLOO

Soft 0-Value lteration

SoftQValuelteration(MDP, A)
Initialize my to any policy
[<0
Repeat

Qso7e(s, @) « R(s,a) +y Xy Pr(s’|s, a) max; Qéore(s’,a’)

l—1+1
Until “Qsoﬁ(s a) — Qsoft(s, a)”oo <e€
Extract policy: mgreeqy (- |S) = Softmax(Qéoft(s,-)//l)

Soft Bellman equation: Q¢+ (s,a) = R(s,a) +y Xy Pr(s’|s, a) max, Qgy st (s, a’)
a/

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 12 @ WATE RLOO

Soft 0-learning

= (Q-learning based on Soft Q-Value Iteration
= Replace expectations by samples

= Represent Q-function by a function approximator
(e.g., neural network)

= Do gradient updates based on temporal differences

W UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 13 @ WATE RLOO

Soft Q-learning (Soft Variant of DQN)

Initialize weights w and w at random in [—1,1]
Observe current state s
Loop
Select action a and execute it
Receive immediate reward r, observe new state s’
Add (s, a,s’, r) to experience buffer
Sample mini-batch of experiences from buffer
For each experienee (s,a,s’ 7“") in mini-batch

a’

OETrT
ow

soft A A)

Update Welghts. Wew—a

Update state: s « s’
Every c steps, update target: w <« w

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 14 @ WATE RLOO

Soft Actor Critic

= In practice, actor critic techniques tend to perform better than
Q-learning.

= Can we derive a soft actor-critic algorithm?

= Yes, idea:
= Critic: soft Q-function

= Actor: (greedy) softmax policy

W UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 15 @ WATE RLOO

-
Soft Policy lteration

Initialize m, to any policy, i « 0
Repeat
Policy evaluation:
Repeat until convergence Vs, a

Soft(s a) < R(s,a) +y Yo Pr(s’|s,a) [Z ymi(a’ls’)Qsoft(s’, a') + AH(ni(- IS’))]
Policy improvement:

(Soft(s a)//'l)
X eXp(Soft(s a’)/l)

mis1(als) « softmax Qi (s,a)/1) =
l<—1+1
Unt11| T (s,a) — Qs a)H <e

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 16 @ WATE RLOO

Policy Improvement

4)
Theorem 1: Let QS ort (S, @) be the Q-function of m;

Let m; 1 (als) = softmax (Qsoft(s, a)//l)

_ Then QS(;}%(S, a) = Soft(s a)Vs,a

Proof: first show that

J

D mi@l)Qfs (s, @) + AH(m(1)) < D misa (@)@ (5, @) + AH (i - 5)

a a

then use this inequality to show that

S;}%(s a) > Qsoﬁ(s a) Vs, a

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 17 @ WATE RLOO

Inequality Derivation

Yami(als)QE £, (5, @) + AH (i (- |5)))
el [%500~ g (al)] s =)
= Yami(als)[Alog iy (als) — Alog Ly exp(Qair, (s, a')/A) = Alogmi(als)]
= 2 Zami(als)[log ™) + log ., exp(Qi . (s, @) /A)]

= —AKL(mi4a|1m) + A ai(als) log 8 exp(Qu £, (s, a') /)

< A Zam(als) log Er exp (@53, (5,0)/1)

= Ta7i41(als) A10g %o exp(Qli (s, ') /A) sincemius(als) = ¢ "5
= Yamisi(als) [Qsoﬁ<s, a) — Alog i1 (s, @)

= Ya i1 (als) Qe (s, @) + AH (41 (: 1))

W UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 18 @ WATE RLOO

Proof Derivation

Soft(s a) = R(s,a) + yE [E o, [Qsoﬁ(s’, a’)] + AH(ni(- |S'))]
since E /.. [Qsoft(s ,a’)] + AH(m;(-1s)) < Egrpp,. [Soft(s a'] + AH (741 (|S))

< R(s,a) +YEy [E oty [Qsoﬁ(s’, a’)] + AH(nHl(' |S’))]

< - repeatedly apply
<. Qeor(sa) S R(s',a’) + yEgn [Ea"~nl+ [Q;Toift(s " a”)] + AH (11 IS”))]
< SO‘E (s,a)

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 19 @ WATE RLOO

Convergence to Optimal Q;, ., and 7t (,

4 N\
= Theorem 2: When € = 0,

soft policy iteration converges to optimal Qg, s, and 7, ¢
\. J

= Proof:
= We know that Q™i+1(s,a) = Q™i(s,a) Vs, a according to Theorem 1
= Since the Q-functions are upper bounded by (max R(s,a) + H(unif orm)) /(1 —7y)
S,a

then soft policy iteration converges
= At convergence, Q™i-1 = Q™ and therefore the Q-function satisfies Bellman’s equation:

Qri(s,a) = QI (s,@) = R(s,0) +yz Pr(s'ls,) s, QIg7i(s', @)

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 20 @ WATE RLOO

Soft Actor-Critic

= RL version of soft policy iteration
= Use neural networks to represent policy and value functions

= At each policy improvement step, project new policy in the space of
parameterized neural nets

W UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 21 @ WATE RLOO

Soft Actor-Critic (SAC)

Initialize weights w, w, 6 at random in [—1,1]
Observe current state s
Loop
Sample action a~mg (- |s) and execute it
Receive immediate reward r, observe new state s’
Add (s, a, s', r) to experience buffer
Sample mini-batch of experiences from buffer
For each experience (3, d, 8', #) in mini-batch
Sample a'~mq (- |5

Gradient: 2Z£°" leoft (5,8) — F —y[QE(8",a") + AH (g (- |A'))]]

00, (5,)
ow

Update welghts. Wew—a a;":',r
aKL(n9|50ftmax(Q%oft/A))

Update policy: 6 « 6 — a =3

Update state: s « s’
Every c steps, update target: w « w

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 22 @ WATE RLOO

Empirical Results

4000
3000
Comparison £,
on several
robotics tasks 0
0 b2 oA N8 08 10
(a) Hopper-v1
6000
émoo Wfﬁw
% IMM V
§ 2000
0

00 05 10 .15 20 25 30
million steps

(d) Ant-vl

CS885 Winter 2025 - Lecture 5b - Pascal Poupart

6000

5000

[w [
[} o o
o o o
(=} (=] o

average return

1000 M

0
0.0 0.2 0.4 0.6 0.8 1.0
million steps
(b) Walker2d-vl
8000
£ 6000 MWMW
2 |
(0] Ay
. i
&0 4000
o
®
2000
.
0 2 8 10
million steps
(e) Humanoid-vl
PAGE 23

From Haarnoja, Zhou et al. (2018)

15000
£
210000 e khd
[
&
£ 0o /\WVVM\M\/\\[

N/ sma il ibsman B

00 05 1.0 15 20 25 3.0
million steps

(c) HalfCheetah-v1

SAC
6000 — pppg
— PPO
=
3 SQL
© 4000 pemmmmps (concufrent)
&0
£
v
>
2000 , ,,,4,,',%-%”
o kL
0 ==
0 2 1 6 8 10

million steps

(f) Humanoid (rllab)

UNIVERSITY OF

%’ WATERLOO

Robustness to Environment Changes

SAC on Minotaur - Testing

Using Soft Actor Critic
(SAC), Minotaur
learns to walk quickly
and to generalize to
environments with
challenges that it was
not trained to deal
with!

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 5b - Pascal Poupart PAGE 24 @ WATE RLOO

