Lecture 5b: Maximum Entropy RL CS885 Reinforcement Learning

2025-01-21

Complementary readings:

Haarnoja, Tang, Abbeel, Levine (2017) Reinforcement Learning with Deep Energy-Based Policies, ICML. Haarnoja, Zhou, Abbeel, Levine (2018) Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor, ICML.

Pascal Poupart David R. Cheriton School of Computer Science

Maximum Entropy RL

• Why do several implementations of important RL baselines (e.g., A2C, PPO) add an entropy regularizer?

• Why is maximizing entropy desirable in RL?

• What is the Soft Actor Critic algorithm?

Reinforcement Learning

Deterministic Policies

- There always exists an optimal deterministic policy
- Search space is smaller for deterministic than stochastic policies
- Practitioners prefer deterministic policies

Stochastic Policies

- Search space is continuous for stochastic policies (helps with gradient descent)
- More robust (less likely to overfit)
- Naturally incorporate exploration
- Facilitate transfer learning
- Mitigate local optima

Encouraging Stochasticity

Standard MDP

- States: *S*
- Actions: *A*
- Reward: R(s, a)
- Transition: Pr(s'|s, a)
- Discount: γ

Soft MDP

- States: *S*
- Actions: A
- Reward: $R(s, a) + \lambda H(\pi(\cdot | s))$
- Transition: Pr(s'|s, a)
- Discount: γ

- Measure of uncertainty
 - Information theory: expected # of bits needed to communicate the result of a sample

 $H(p) = -\sum_{x} p(x) \log p(x)$

Optimal Policy

• Standard MDP: $\pi^* = \operatorname*{argmax}_{\pi} \sum_{n=0}^{N} \gamma^n E_{s_n, a_n \mid \pi} [R(s_n, a_n)]$

• Soft MDP: $\pi_{soft}^* = \underset{\pi}{\operatorname{argmax}} \sum_{n=0}^{N} \gamma^n E_{s_n, a_n \mid \pi} \left[R(s_n, a_n) + \lambda H(\pi(\cdot \mid s_n)) \right]$ Maximum entropy policy
Entropy regularized policy

Q-function

Standard MDP

$$Q^{\pi}(s_0, a_0) = R(s_0, a_0) + \sum_{n=1}^{\infty} \gamma^n E_{s_n, a_n \mid s_0, a_0, \pi} [R(s_n, a_n)]$$

Soft MDP

$$Q_{soft}^{\pi}(s_0, a_0) = R(s_0, a_0) + \sum_{n=1}^{\infty} \gamma^n E_{s_n, a_n | s_0, a_0, \pi} \left[R(s_n, a_n) + \lambda H(\pi(\cdot | s_n)) \right]$$

NB: No entropy with first reward term since action is not chosen according to π

Greedy Policy

Standard MDP (deterministic policy)

$$\pi_{greedy}(s) = \operatorname*{argmax}_{a} Q(s, a)$$

Soft MDP (stochastic policy)

$$\pi_{greedy}(\cdot | s) = \underset{\pi}{\operatorname{argmax}} \sum_{a} \pi(a|s)Q(s,a) + \lambda H(\pi(\cdot | s))$$
$$= \frac{\exp(Q(s,\cdot)/\lambda)}{\sum_{a} \exp(Q(s,a)/\lambda)} = softmax(Q(s,\cdot)/\lambda)$$

when $\lambda \rightarrow 0$ then *softmax* becomes regular max

Derivation

Concave objective (can find global maximum)

$$J(\pi, Q) = \sum_{a} \pi(a|s)Q(s, a) + \lambda H(\pi(\cdot|s))$$
$$= \sum_{a} \pi(a|s)[Q(s, a) - \lambda \log \pi(a|s)]$$

• Partial derivative:
$$\frac{\partial J}{\partial \pi(a|s)} = Q(s,a) - \lambda[\log \pi(a|s) + 1]$$

• Setting the derivative to 0 and isolating $\pi(a|s)$ yields

$$\pi(a|s) = \exp(Q(s,a)/\lambda - 1) \propto \exp(Q(s,a)/\lambda)$$

• Hence
$$\pi_{greedy}(\cdot | s) = \frac{\exp(Q(s, \cdot)/\lambda)}{\sum_{a} \exp(Q(s, a)/\lambda)} = softmax(Q(s, \cdot)/\lambda)$$

Greedy Value Function

- What is the value function induced by the greedy policy?
- Standard MDP: $V(s) = \max_{a} Q(s, a)$
- Soft MDP: $V_{soft}(s) = \lambda H \left(\pi_{greedy}(\cdot | s) \right) + \sum_{a} \pi_{greedy}(a | s) Q_{soft}(s, a)$ $= \lambda \log \sum_{a} \exp \left(\frac{Q_{soft}(s, a)}{\lambda} \right) = \widetilde{\max}_{a} Q_{soft}(s, a)$

when $\lambda \to 0$ then $\widetilde{max}_{\lambda}$ becomes regular max

Derivation

$$\begin{split} V_{soft}(s) &= \lambda H\left(\pi_{greedy}(\cdot | s)\right) + \sum_{a} \pi_{greedy}(a | s) Q_{soft}(s, a) \\ &\quad \text{since } \pi_{greedy}(a | s) = \frac{\exp(Q_{soft}(s, a)/\lambda)}{\sum_{a'} \exp(Q_{soft}(s, a')/\lambda)} \\ &= \lambda H\left(\pi_{greedy}(\cdot | s)\right) + \sum_{a} \pi_{greedy}(a | s)\lambda \left[\log \pi_{greedy}(a | s) + \log \sum_{a'} \exp\left(\frac{Q_{soft}(s, a')}{\lambda}\right)\right] \\ &= \lambda H\left(\pi_{greedy}(\cdot | s)\right) + \lambda \sum_{a} \pi_{greedy}(a | s) \log \pi_{greedy}(a | s) + \lambda \log \sum_{a'} \exp\left(\frac{Q_{soft}(s, a')}{\lambda}\right) \\ &= \lambda H\left(\pi_{greedy}(\cdot | s)\right) - \lambda H\left(\pi_{greedy}(\cdot | s)\right) + \lambda \log \sum_{a'} \exp\left(\frac{Q_{soft}(s, a')}{\lambda}\right) \\ &= \lambda \log \sum_{a'} \exp\left(\frac{Q_{soft}(s, a')}{\lambda}\right) \\ &= \max_{a} \lambda Q_{soft}(s, a) \end{split}$$

Soft Q-Value Iteration

SoftQValueIteration(MDP, λ) Initialize π_0 to any policy $i \leftarrow 0$ Repeat $Q_{soft}^{i+1}(s,a) \leftarrow R(s,a) + \gamma \sum_{s'} \Pr(s'|s,a) \max_{\lambda} Q_{soft}^{i}(s',a')$ $i \leftarrow i + 1$ Until $\left\| Q_{soft}^{i}(s,a) - Q_{soft}^{i-1}(s,a) \right\|_{\infty} \le \epsilon$ Extract policy: $\pi_{greedy}(\cdot | s) = softmax(Q_{soft}^{i}(s, \cdot)/\lambda)$

Soft Bellman equation: $Q_{soft}^*(s, a) = R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) \max_{a'} Q_{soft}^*(s', a')$

Soft Q-learning

Q-learning based on Soft Q-Value Iteration

Replace expectations by samples

 Represent Q-function by a function approximator (e.g., neural network)

Do gradient updates based on temporal differences

Soft Q-learning (Soft Variant of DQN)

```
Initialize weights w and \overline{w} at random in [-1,1]
Observe current state s
Loop
     Select action a and execute it
     Receive immediate reward r, observe new state s'
     Add (s, a, s', r) to experience buffer
     Sample mini-batch of experiences from buffer
     For each experience (\hat{s}, \hat{a}, \hat{s}', \hat{r}) in mini-batch
           Gradient: \frac{\partial Err}{\partial w} = \left[ Q_w^{soft}(\hat{s}, \hat{a}) - \hat{r} - \gamma \max_{\hat{a}'} Q_w^{soft}(\hat{s}', \hat{a}') \right] \frac{\partial Q_w^{soft}(\hat{s}, \hat{a})}{\partial w}
           Update weights: \boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha \frac{\partial Err}{\partial \dots}
     Update state: s \leftarrow s'
     Every c steps, update target: \overline{w} \leftarrow w
```


Soft Actor Critic

- In practice, actor critic techniques tend to perform better than Q-learning.
- Can we derive a soft actor-critic algorithm?

- Yes, idea:
 - Critic: soft Q-function
 - Actor: (greedy) softmax policy

Soft Policy Iteration

Initialize π_0 to any policy, $i \leftarrow 0$ Repeat Policy evaluation: Repeat until convergence ∀s,a $Q_{soft}^{\pi_i}(s,a) \leftarrow R(s,a) + \gamma \sum_{s'} \Pr(s'|s,a) \left| \sum_{a'} \pi_i(a'|s') Q_{soft}^{\pi_i}(s',a') + \lambda H(\pi_i(\cdot|s')) \right|$ Policy improvement: $\pi_{i+1}(a|s) \leftarrow softmax\left(Q_{soft}^{\pi_i}(s,a)/\lambda\right) = \frac{\exp\left(Q_{soft}^{\pi_i}(s,a)/\lambda\right)}{\sum_{i}\exp\left(Q_{soft}^{\pi_i}(s,a')/\lambda\right)} \quad \forall s, a$ $i \leftarrow i + 1$ Until $\left\| Q_{soft}^{\pi_i}(s,a) - Q_{soft}^{\pi_{i-1}}(s,a) \right\| \leq \epsilon$

Policy Improvement

Theorem 1: Let $Q_{soft}^{\pi_i}(s, a)$ be the Q-function of π_i Let $\pi_{i+1}(a|s) = softmax \left(Q_{soft}^{\pi_i}(s, a)/\lambda\right)$ Then $Q_{soft}^{\pi_{i+1}}(s, a) \ge Q_{soft}^{\pi_i}(s, a) \forall s, a$

Proof: first show that

$$\sum_{a} \pi_{i}(a|s)Q_{soft}^{\pi_{i}}(s,a) + \lambda H(\pi_{i}(\cdot|s)) \leq \sum_{a} \pi_{i+1}(a|s)Q_{soft}^{\pi_{i}}(s,a) + \lambda H(\pi_{i+1}(\cdot|s))$$

then use this inequality to show that
$$Q_{soft}^{\pi_{i+1}}(s,a) \geq Q_{soft}^{\pi_{i}}(s,a) \forall s,a$$

Inequality Derivation

$$\begin{split} & \sum_{a} \pi_{i}(a|s) Q_{soft}^{\pi_{i}}(s,a) + \lambda H\left(\pi_{i}(\cdot|s)\right) \\ &= \sum_{a} \pi_{i}(a|s) \left[Q_{soft}^{\pi_{i}}(s,a) - \lambda \log \pi_{i}(a|s) \right] \quad \text{since } \pi_{i+1}(a|s) = \frac{\exp(Q_{soft}^{\pi_{i}}(s,a)/\lambda)}{\sum_{a'} \exp(Q_{soft}^{\pi_{i}}(s,a')/\lambda)} \\ &= \sum_{a} \pi_{i}(a|s) \left[\lambda \log \pi_{i+1}(a|s) - \lambda \log \sum_{a'} \exp(Q_{soft}^{\pi_{i}}(s,a')/\lambda) - \lambda \log \pi_{i}(a|s) \right] \\ &= \lambda \sum_{a} \pi_{i}(a|s) \left[\log \frac{\pi_{i+1}(a|s)}{\pi_{i}(a|s)} + \log \sum_{a'} \exp(Q_{soft}^{\pi_{i}}(s,a')/\lambda) \right] \\ &= -\lambda K L(\pi_{i+1}||\pi_{i}) + \lambda \sum_{a} \pi_{i}(a|s) \log \sum_{a'} \exp(Q_{soft}^{\pi_{i}}(s,a')/\lambda) \\ &\leq \lambda \sum_{a} \pi_{i}(a|s) \log \sum_{a'} \exp(Q_{soft}^{\pi_{i}}(s,a')/\lambda) \\ &= \sum_{a} \pi_{i+1}(a|s) \lambda \log \sum_{a'} \exp(Q_{soft}^{\pi_{i}}(s,a')/\lambda) \quad \text{since } \pi_{i+1}(a|s) = \frac{\exp(Q^{\pi_{i}}(s,a)/\lambda)}{\sum_{a'} \exp(Q^{\pi_{i}}(s,a')/\lambda)} \\ &= \sum_{a} \pi_{i+1}(a|s) \left[Q_{soft}^{\pi_{i}}(s,a) - \lambda \log \pi_{i+1}(s,a) \right] \\ &= \sum_{a} \pi_{i+1}(a|s) Q_{soft}^{\pi_{i}}(s,a) + \lambda H\left(\pi_{i+1}(\cdot|s)\right) \end{split}$$

Proof Derivation

$$Q_{soft}^{\pi_i}(s,a) = R(s,a) + \gamma E_{s'} \left[E_{a' \sim \pi_i} \left[Q_{soft}^{\pi_i}(s',a') \right] + \lambda H \left(\pi_i(\cdot |s') \right) \right]$$

since
$$E_{a' \sim \pi_i} \left[Q_{soft}^{\pi_i}(s', a') \right] + \lambda H \left(\pi_i(\cdot | s') \right) \le E_{a' \sim \pi_{i+1}} \left[Q_{soft}^{\pi_i}(s', a') \right] + \lambda H \left(\pi_{i+1}(\cdot | s') \right)$$

 $\le R(s, a) + \gamma E_{s'} \left[E_{a' \sim \pi_{i+1}} \left[Q_{soft}^{\pi_i}(s', a') \right] + \lambda H \left(\pi_{i+1}(\cdot | s') \right) \right]$

$$\leq \cdots \qquad \text{repeatedly apply} \\ \leq \cdots \qquad Q_{\text{soft}}^{\pi_{i}}(s',a') \leq R(s',a') + \gamma E_{s''} \left[E_{a'' \sim \pi_{i+1}} \left[Q_{soft}^{\pi_{i}}(s'',a'') \right] + \lambda H \left(\pi_{i+1}(\cdot |s'') \right) \right] \\ \leq Q_{soft}^{\pi_{i+1}}(s,a)$$

Convergence to Optimal Q^*_{soft} and π^*_{soft}

• Theorem 2: When $\epsilon = 0$,

soft policy iteration converges to optimal Q_{soft}^* and π_{soft}^* .

- Proof:
 - We know that $Q^{\pi_{i+1}}(s, a) \ge Q^{\pi_i}(s, a) \forall s, a$ according to Theorem 1
 - Since the Q-functions are upper bounded by $\left(\max_{s,a} R(s,a) + H(uniform)\right)/(1-\gamma)$

then soft policy iteration converges

• At convergence, $Q^{\pi_{i-1}} = Q^{\pi_i}$ and therefore the Q-function satisfies Bellman's equation:

$$Q_{soft}^{\pi_{i-1}}(s,a) = Q_{soft}^{\pi_i}(s,a) = R(s,a) + \gamma \sum_{s'} \Pr(s'|s,a) \max_{a'} Q_{soft}^{\pi_{i-1}}(s',a')$$

Soft Actor-Critic

- RL version of soft policy iteration
- Use neural networks to represent policy and value functions
- At each policy improvement step, project new policy in the space of parameterized neural nets

Soft Actor-Critic (SAC)

```
Initialize weights w, \overline{w}, \theta at random in [-1,1]
Observe current state s
Loop
        Sample action a \sim \pi_{\theta}(\cdot | s) and execute it
        Receive immediate reward r, observe new state s'
        Add (s, a, s', r) to experience buffer
        Sample mini-batch of experiences from buffer
        For each experience (\hat{s}, \hat{a}, \hat{s}', \hat{r}) in mini-batch
                 Sample \hat{a}' \sim \pi_{\theta}(\cdot | \hat{s}')
                 Gradient: \frac{\partial Err}{\partial w} = \left[ Q_w^{soft}(\hat{s}, \hat{a}) - \hat{r} - \gamma \left[ Q_{\bar{w}}^{soft}(\hat{s}', \hat{a}') + \lambda H(\pi_{\theta}(\cdot |\hat{s}')) \right] \right] \frac{\partial Q_w^{soft}(\hat{s}, \hat{a})}{\partial w}
                 Update weights: \boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha \frac{\partial Err}{\partial \boldsymbol{w}}
                Update policy: \theta \leftarrow \theta - \alpha \frac{\partial \kappa l(\pi_{\theta} | softmax(Q_{\overline{w}}^{soft} / \lambda))}{Q_{\overline{w}}}
        Update state: s \leftarrow s'
        Every c steps, update target: \overline{w} \leftarrow w
```


Empirical Results

Comparison on several robotics tasks

Robustness to Environment Changes

Using Soft Actor Critic (SAC), Minotaur learns to walk quickly and to generalize to environments with challenges that it was not trained to deal with!

SAC on Minotaur - Testing

