Lecture 5a: Trust Regions, Proximal Policies
CS885 Reinforcement Learning

2025-01-21

Complementary readings:
Schulman, Levine, Moritz, Jordan, Abbeel (2015) Trust Region Policy Optimization, ICML.
Schulman, Wolski, Dhariwal, Radford, Klimov (2017) Proximal Policy Optimization, arXiv.
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Gradient Policy Optimization

REINFORCE algorithm

Advantage Actor Critic (A2C)

Deterministic Policy Gradient (DPG)

Trust Region Policy Optimization (TRPO)

Proximal Policy Optimization (PPO)
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Recall Policy Gradient

Gradient update: 8 < 0 + a y"A(s,, a,,)Vlogmg(a,|s,)
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Trust Region Method

= We often optimize a surrogate
objective (approximation of V)

= Surrogate objective may be trustable
(close to V) only in a small region

» Limit search to small

trust region
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Trust Region for Policies

Let 8 be the parameters for policy my(a|s)

= We can define a region around 8: {6'| D(0,0") < §}
or around rty: {0'| D(mg, myr) < 8}
where D is a distance measure

= VV often varies more smoothly with w4 than 6
small change in mg [ _usually > small change in V

small change in 8 [more often> large change in V

= Hence, define policy trust regions

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 5a - Pascal Poupart PAGE 5 @ WATERLOO



Kullback-Leibler Divergence

KL-Divergence is a common distance
measure for distributions:

Dk (p,q) = 2xp(x) logzgg

Intuition: expectation of the logarithm difference between p and g

KL-Divergence for policies at a state s:
(als)
Dy, (g (- 1), w5 (- 1)) = Ea e (als) log 2

mg(als)
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Trust Region Policy Optimization

= Consider an initial state distribution p(s,)

» Update step: 0 « argmax E; ,,[V0(sy) — V™0 (s0)]
2]

subject to max DKL(nQ(- |s), 5 (- |S)) <9
S

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 5a - Pascal Poupart PAGE 7 @ WATERLOO



Reformulation
= Since the objective is not directly computable, let’s approximate it:
ng(als)
Es . [V™8(sq) — Ve ~ Eson aem |————=Ag(s,
argmax L, p[ (So) (S0)] arg?ax S~Ug, A~Trg [7‘[9(&|S) o (s a)]

where g (s) is the stationary state distribution for «

= Let’s also relax the bound on the max KL-divergence
to a bound on the expected KL-divergence

max Dir(mo (- Is), mg (- |s)) < 6

is relaxed to Es.,, [DKL (ng(- |s), g (- |S))] <6
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Derivation

g(als)
g (AlS)

Ag(s, )] = arg@max 2is o (s) Lame(als) [Zzﬁg:gfle(s, a)]

argmax ES~M9 a~Tg [
0

argmax 25 Ho(s) Zamg(als) Ag(s, a)

since ug =~ g

Q

argmax ). tz(s) Xgmg(als)Ag(s, a)
6
since pg(s) x Yoy Pg(sp = s)

argmax Y Y500 Y "Py (sn = 5) o 15(als)Ag(s, @)
6

argglax ESo,Sl,..."’P’é , ao,al,..."’ﬂ’é [Z?{DZO ynAQ (STU an)]
6
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Derivation (continued)

= argpax ESo,Sl,..."’Pé ) ao,al,..."’ﬂ’é [27?:,):0 ynAH (Sn’ an)]
6

since Ag(s,a) = Eg_p(s5,0)[T(s) +yV™0(s") — V70(s)]

= argfnax ESO,Sl,...~P~é ) Ag,A1,..~Tg :Z%O:O )/n(T(Sn) + VVﬂG (Sn+1) —yme (Sn))]

= al‘g{naX ESO,Sl,...~P§ ) Qg,Aq,..~ Tl :21010:0 )/nT(Sn) — Ve (SO)]

= argmax ESO,Sl,...~P~é , Ag,Ay,..~ Tl :Vﬂé (SO) — 7o (SO)]

argmax Es .p[V"8(sq) — V™ (s¢)]
6
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.
Trust Region Policy Optimization (TRPO)

Initialize gy to anything
Loop forever (for each episode)
Sample sy and setn « 0
Repeat N times
Sample a,, ~ mg(als,)
Execute a,,, observe s, 1,1,
6 < 1y +ymax Qy(Sn+1, Ant1) — Qw(sn, an)

an+1
A(sp,an) €1ty glaX Quw(Sn+1, Ant1) — LaTe(alsy)Qy (s, a)
n+1
Update Q: w « w + ay, 6 %, Qu(Sn, an) linear approximation
nentl / dratic
 (@n|Sn) dua

y : :
Update m: 6 « argmax-- )X Ag(sp, an) approximation
6

0 g (an|Sn)

subject to + XN=3 Dy, (1o (- sn), mg(- 15n)) < 6
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Constrained Optimization

= TRPO is conceptually and computationally challenging in large part
because of the constraint in the optimization.

max DKL(ng(- |s), 5 (: |S)) <90

= What is the effect of the constraint?
= Recall KL-Divergence:

Dy (o (- 1), w5 (- 15)) = Tqmo(als) log )

5(als)

mg(AlS)
5(alS)

We are effectively constraining the ratio
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Simpler Objective

TL"Q'(C”S)
me(alS)

Let’s design a simpler objective that directly constrains

( mg(als) )

Ay (s, a),
aremax E min < m(als) ’
ke . <7T§(Cl|5)
clip
\

g (als)’

1—¢1 +E>AQ(S,CL)
y,

(1—6 ifx<1l—e€
where clip(x,1 —€,14+€) =< x ifl—e<x<1+e€
\1+e ifx>1+e¢€
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Proximal Policy Optimization (PP0)

Initialize my to anything
Loop forever (for each episode)
Sample s, and setn « 0

PPO version Repeat N times
based on Sample a, ~ mg(als,)
TRPO Execute a,,, observe s, 1,

Semty 213)1( Qw(Sn+1, Ans1) — Qu(Sn, ay)
n

A(sp, an) < 1 +y glfi)f Qw(Snt1, Ans1) — XaTo(alsp)Qw(sn, a)

Update Q: w <« w + a, § V,Q,, (s, ay)

nen+1 .. : :
optimize by stochastic gradient descent

Update 7: /
( m5(0n|Sn) A

A ) )
Tlg (an |Sn) (Sn an)

5(An|Sn) 1—¢ 1+ E)A(Sn' an)}

Tig (an|5n) ,
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Proximal Policy Optimization (PP0)

Initialize Ty and Vj, to anything
. Loop forever (for each episode)
PPO version Generate episode sg, ag, 7o, Sy, A1, 11, - » SN—1, AN—1, Tn—1 With g
basedon Loop for each step of the episoden = 0,1, ..., N — 1
Reinforce with G. — YN-1-n_t..
Baseline n t=0 V Tn+t
a4 Dase 0 < Gn _ VW(STL)
Update value function: w <« w + a, 6V, V,,,(s;,)
A(STU an) < 6
Update m: / optimize by stochastic gradient descent
( tx(An|S )
1 R A s, @),
6 « argmax— Y-} min < wen >
I clip (ng(an|sn) 1—¢1+ E)A(S a,)
\ ﬂ@(anlsn)’ ) n*n }
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Application: Large Language Models (LLMs)
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Self-Supervised Learning in LLMs

Qutput
Probabilities
Encoder and Decoder Transformer
5z Nom) |
Masked tokens Target text Feed
Forward
[ mythical ] [ names ] [ It is pure white . <eos> ] - ~
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GPT Models

/ InstructGPT \ [ \ [ \ [ \

(GPT-3) ChatGPT GPT-4 GPT Omni
January 27, 2022 (GPT-3.5) March 14, 2023 GPT-40
] November 30, 2022 May 13, 2024
Reinforcement Multi-modal
Learning from Multi-turn .
text and End-to-end
human feedback conversations (images) Multi-modal
o tal. ( ) (text, audio and
uyang et al. (2022 No techreport _ : images
Training language GII{)eTpgrf?S(;I;lgc)a : ges)
mc.)dels to .fOHOW https://openai.com/i
Instructions ndex/hello-gpt-40/

\with human feedback / \ / \ j \ j
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Step 1

Collect demonstration data,
and train a supervised policy.

A promptis

sampled from our

prompt dataset.

A labeler

demonstrates the

desired output
behavior.

This data is used

to fine-tune GPT-3

with supervised
learning.

Explain the moon
landing to a 6 year old

)

2

Some people went
to the moon...

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

0 o

Explain gravity... Explain war.

o o

Moon is natural People went to
satellite of. the moon.

Learning from Human Feedback

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model

calculates a
reward for
the output.

Thereward is
used to update
the policy
using PPO.

™

Write a story
about frogs

Once upon a time...
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Response Ranking

ﬂ Explain reinforcement learning in three sentences.

12> Reinforcement learning is a type of machine learning where an agent learns to make
decisions by receiving feedback in the form of rewards or punishments. The agent's goal
is to maximize its cumulative reward over time by exploring different actions and learning
which actions lead to the highest rewards. Reinforcement learning has been successfully
applied to a variety of tasks, including game playing, robotics, and recommendation

systems.

<2/2 Reinforcement learning is a type of machine learning that focuses on training an agent to
make decisions based on trial and error. The agent receives feedback in the form of
rewards or penalties for each decision it makes. By learning from this feedback, the agent

can improve its decision-making abilities over time.

Was this response better or worse? {3 Better (P Worse = Same X
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Reward Model

Stiennon, Ouyang, Wu, Ziegler, Lowe Voss, Radford, Amodei, Christiano
(2020) Learning to summarize from human feedback, Neurl/PS.

S: user prompt

a: system response

Reward function: rg(s,a) = real number

Consider several possible responses a; > a, > -+ # aj ranked by annotator

Training reward function to be consistent with the ranking:

[ Loss(8) = — (_llc) E(s,ai,aj)EDataset logo (TB (s,a;) —7g (S’ aj)) ]

2
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Reinforcement Learning

Ouyang, Wu, Jiang, Wainwright, et al. (2022) Training language
models to follow instructions with human feedback, NeurlPS.

= Pretrain language model (GPT-3)
» Fine-Tune GPT-3 by RL to obtain InstructGPT
= Policy (language model): 4 (s) = a

= Optimize 14 (s) by policy gradient (PPO)

[ max Esepataset [Ea~n¢(a|s) [re(s,a)] — B KL(1p (- |8)|mpes(: IS))] ]
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InstructGPT Results

Ouyang, Wu, Jiang, Wainwright, et al. (2022) Training language models to follow
instructions with human feedback, NeurlPS.
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