Lecture 2b: Policy Iteration
CS885 Reinforcement Learning

2025-01-09

Complementary readings: [SutBar] Sec. 4.3, [Put] Sec. 6.4-6.5, [SigBuf] Sec. 1.6.2.3, [RusNor] Sec. 17.3

Pascal Poupart
David R. Cheriton School of Computer Science

%’ WATERLOO

Policy Optimization

= Value iteration
= Optimize value function

= Extract induced policy

= Can we directly optimize the policy?

= Yes, by policy iteration

W UNIVERSITY OF
CS885 Winter 2025 - Lecture 2b - Pascal Poupart PAGE 2 @ WATERLOO

Policy Iteration

= Alternate between two steps

1. Policy evaluation

VT (s) = R(s,n(s)) +]/2 Pr(s'|s,m(s)) V*(s") Vs

2. Policy improvement

n(s) « argmax R(s,a) +)/Z Pr(s'|s,a) V*(s") Vs
a S,

W UNIVERSITY OF
CS885 Winter 2025 - Lecture 2b - Pascal Poupart PAGE 3 @ WATERLOO

Algorithm

policylteration(MDP)

Initialize m, to any policy

ne<0

Repeat
Eval: I}, = R™ + yT™V,
Improve: ., < argmax, R*+ yT%*V,
nen+1

Untilm,,., =m,

Return m,

w UNIVERSITY OF
CS885 Winter 2025 - Lecture 2b - Pascal Poupart PAGE 4 @ WATERLOO

Example (Policy Iteration)

CS885 Winter 2025 - Lecture 2b - Pascal Poupart

n V(PU) |m(PU) |V(PF) |m(PF) |\V(RU) |mt(RU) |V(RF) |t(RF)
0 0] A 0] A 10 A 10 A
1 31.6 A 38.6 S 44.0 S 54.2 S
2 31.6 A 38.6 S 44.0 S 54.2 S
oacE s 2 WATERLOO

Monotonic Improvement

= Lemma 1: Let V,, and V,,,; be successive value functions in
policy iteration. ThenV,., > V,.

= Proof:
= We know that H* (1)) = H™(V,)) =V,
« Let ., = argmax, R* + yT*V,
« Then H*(V,,)) = R™w+1 + yTTn+l, >V,
= Rearranging: R™n+1 > (I — yT™+1)V,

» Hence V,,.; = (I — yT™n+1)"1R™n+1 > 1,

%’ WATERLOO

.
Convergence

= Theorem 2: Policy iteration converges to =* & IV* in finitely many
iterations when S and A are finite.

= Proof:
= We know that V.., =V}, vn by Lemma 1. Consider a stronger version of
Lemma 1 where 3s such that V,,,1(s) > V,,(s) unless V}, is optimal
= Since A and S are finite, there are finitely many policies and therefore the
algorithm terminates in finitely many iterations.
= At termination, V,, = V,,.;and therefore 1}, satisfies Bellman’s equation:

Vi, = V.11 = maxR* 4+ yT%V,
a

%’ WATERLOO

Complexity

= Value lteration:
» Each iteration: 0(|S|?|A])

= Many iterations: linear convergence

= Policy Iteration:
» Each iteration: 0(|S|3 + |S|?|A])

= Few iterations: linear-quadratic convergence

%’ WATERLOO

Modified Policy Iteration

= Alternate between two steps

1. Partial Policy evaluation

Repeat k times:
VT(s) « R(S,n(s)) +y Xo Pr(s’|s,m(s)) V*(s") Vs

2. Policy improvement

n(s) « argmaxR(s,a) +)/Z Pr(s’|s,a) V(s") Vs
a S,

%’ WATERLOO

Algorithm

modifiedPolicylteration(MDP)
Initialize my and V,, to anything
n <0
Repeat
Eval: Repeat k times
V, &« R™ + yT™V,
Improve: m,,,; « argmax, R* + yT%V,
Vye1 < max, R*+yT%V,
nen+1
Until ||V, = Vpql| <€

Return m,,

%’ WATERLOO

Convergence

= Same convergence guarantees as value iteration:

£
1-y

- Value function V,: ||V, = V*||_ <

- Value function V™ of policy my,:

[V — v

< 2€
(0] 1—y

- Proof: somewhat complicated
(see Section 6.5 of Puterman’s book)

%’ WATERLOO

-
Complexity

= Value lteration:
» Each iteration: 0(|S|?|A])
= Many iterations: linear convergence

= Policy Iteration:
« Each iteration: O(|S|? + |S|?|A|)
= Few iterations: linear-quadratic convergence

= Modified Policy lteration:
» Each iteration: 0(k|S|? + |S|?|A))
= Few iterations: linear-quadratic convergence

%’ WATERLOO

