Lecture 1b: Markov Decision Processes CS885 Reinforcement Learning

2025-01-07

Complementary readings: [SutBar] Chap. 3, [Sze] Chap. 2, [RusNor] Sec. 15.1, 17.1-17.2, 17.4, [Put] Chap. 2, 4, 5

Pascal Poupart
David R. Cheriton School of Computer Science

Outline

- Markov Decision Processes
- Value Iteration

Markov Decision Process

Components	Formal definition	Inventory management		
States	$s \in S$	inventory levels		
Actions	$a \in A$	{doNothing, orderWidgets}		
Rewards	$r \in \mathbb{R}$	Profit (\$)		
Transition model	$\Pr(s_t s_{t-1},a_{t-1})$	Stochastic demand		
Reward model	$\Pr(r_t s_t, a_t)$ $R(s_t, a_t) = \sum_{r_t} r_t \Pr(r_t s_t, a_t)$	$R(s_t, a_t) = \text{sales} - \text{costs} - \text{storage}$		
Discount factor	$0 \le \gamma \le 1$	$\gamma = 0.999$		
Horizon	$h \in \mathbb{N} \text{ or } h = \infty$	$h = \infty$		

Common Assumptions

- Transition model
 - Markovian: $Pr(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, ...) = Pr(s_{t+1}|s_t, a_t)$
 - Current inventory and order sufficient to predict future inventory
 - Stationary: $Pr(s_{t+1}|s_t, a_t)$ is same for all t
 - Distribution of demand same every day
- Reward model
 - Stationary: $R(s_t, a_t) = \sum_t r_t \Pr(r_t | s_t, a_t)$ is same for all t
 - Formula to compute profits is same every day
 - Exception: terminal reward is often different
 - In a game: 0 reward at each step and
 +1/-1 reward at the end for winning/losing

Discounted/Average Rewards

- Goal: maximize total rewards $\sum_{t=0}^{h} R(s_t, a_t)$ Problem: if $h = \infty$, then $\sum_{t=0}^{h} R(s_t, a_t)$ may be infinite
- Solution 1: discounted rewards
 - Discount factor: $0 \le \gamma < 1$
 - Finite utility: $\sum_t \gamma^t R(s_t, a_t)$ is a geometric sum
 - γ induces an inflation rate of $1/\gamma 1$ (prefer utility sooner than later)
- Solution 2: average rewards
 - More complicated computationally (beyond scope of this course)

Policy

Choice of action at each time step

- Formally:
 - Mapping from states to actions: $\pi(s_t) = a_t$
 - Assumption: fully observable states
 - Allows a_t to be chosen only based on current state s_t

Policy Optimization

Policy evaluation: compute expected utility

$$V^{\pi}(s_0) = \sum_{t=0}^{h} \gamma^t \sum_{s_{t+1}} \Pr(s_{t+1}|s_0, \pi) R(s_{t+1}, \pi(s_{t+1}))$$

• Optimal policy π^* : policy with highest expected utility

$$V^{\pi^*}(s_0) \ge V^{\pi}(s_0) \ \forall \pi$$

- Several classes of algorithms:
 - Value iteration
 - Policy iteration
 - Linear Programming
 - Search techniques

Value Iteration

Value when no time left:

$$V_0^*(s_h) = \max_{a_h} R(s_h, a_h)$$

Value with one time step left:

$$V_1^*(s_{h-1}) = \max_{a_{h-1}} R(s_{h-1}, a_{h-1}) + \gamma \sum_{s_h} \Pr(s_h | s_{h-1}, a_{h-1}) V_0^*(s_h)$$

Value with two time steps left:

$$V_2^*(s_{h-2}) = \max_{a_{h-2}} R(s_{h-2}, a_{h-2}) + \gamma \sum_{s_{h-1}} \Pr(s_{h-1}|s_{h-2}, a_{h-2}) V_1^*(s_{h-1})$$

- •
- Bellman's equation:

$$V_{\infty}^{*}(s_{t}) = \max_{a_{t}} R(s_{t}, a_{t}) + \gamma \sum_{s_{t+1}} \Pr(s_{t+1}|s_{t}, a_{t}) V_{\infty}^{*}(s_{t+1})$$

$$a_{t}^{*} = \operatorname{argmax} R(s_{t}, a_{t}) + \gamma \sum_{s_{t+1}} \Pr(s_{t+1}|s_{t}, a_{t}) V_{\infty}^{*}(s_{t+1})$$

$$a_{t}^{*} = \operatorname{argmax} R(s_{t}, a_{t}) + \gamma \sum_{s_{t+1}} \Pr(s_{t+1}|s_{t}, a_{t}) V_{\infty}^{*}(s_{t+1})$$

Value Iteration

valueIteration(MDP)

$$V_0^*(s) \leftarrow \max_a R(s, a) \ \forall s$$
For $n = 1$ to h do
$$V_n^*(s) \leftarrow \max_a R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V_{n-1}^*(s') \ \forall s$$
Return V^*

Optimal policy π^*

$$n = 0$$
: $\pi_0^*(s) \leftarrow \underset{a}{\operatorname{argmax}} R(s, a) \ \forall s$
 $n > 0$: $\pi_n^*(s) \leftarrow \underset{a}{\operatorname{argmax}} R(s, a) + \gamma \sum_{s'} \Pr(s'|s, a) V_{n-1}^*(s') \ \forall s$
 NB : π^* is non-stationary (i.e., time dependent)

Value Iteration (Matrix Form)

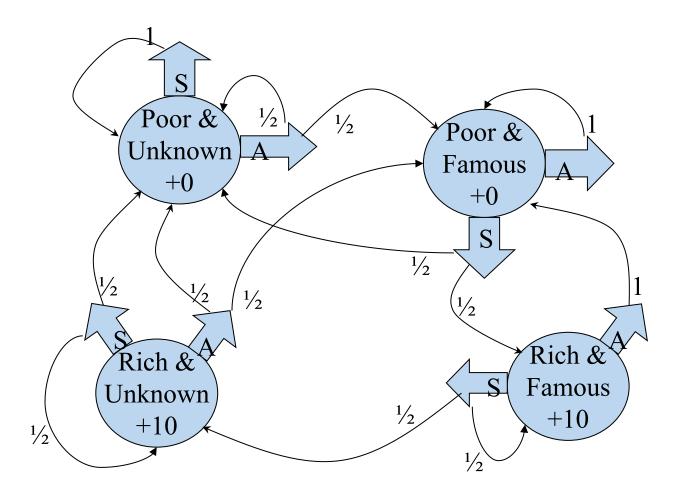
 \mathbb{R}^a : $|S| \times 1$ column vector of rewards for a

 V_n^* : $|S| \times 1$ column vector of state values

 T^a : $|S| \times |S|$ matrix of transition probabilities for a

valueIteration(MDP)
$$V_0^* \leftarrow \max_a R^a$$
For $t = 1$ to h do
$$V_n^* \leftarrow \max_a R^a + \gamma T^a V_{n-1}^*$$
Return V^*

A Markov Decision Process

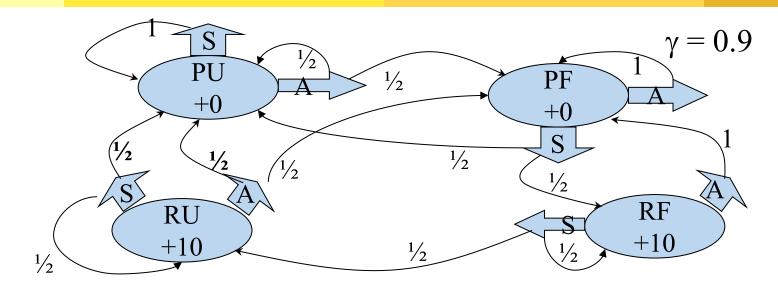


$$\gamma = 0.9$$

You own a company

In every state you must choose between

Saving money or Advertising



n	$V_n^*(PU)$	$\pi_n^*(PU)$	$V_n^*(PF)$	$\pi_n^*(PF)$	$V_n^*(RU)$	$\pi_n^*(RU)$	$V_n^*(RF)$	$\pi_n^*(RF)$
0	0	A,S	0	A,S	10	A,S	10	A,S
1	0	A,S	4.5	S	14.5	S	19	S
2	2.03	А	8.55	S	16.53	S	25.08	S
3	4.76	Α	12.20	S	18.35	S	28.72	S
4	7.63	А	15.07	S	20.40	S	31.18	S
5	10.21	А	17.46	S	22.61	S	33.21	S

Exercise: Value Iteration, No Time Left (RF State)

Exercise: Value Iteration, One Time Step Left (RF State)

Horizon Effect

- Finite h_1
 - Non-stationary optimal policy
 - Best action different at each time step
 - Intuition: best action varies with the amount of time left
- Infinite *h*:
 - Stationary optimal policy
 - Same best action at each time step
 - Intuition: same (infinite) amount of time left at each time step
 - Problem: value iteration does infinite # of iterations

Infinite Horizon

- Assuming a discount factor γ , after n time steps, rewards are scaled down by γ^n
- For large enough n, rewards become insignificant since $\gamma^n \to 0$
- Solution #1:
 - pick large enough n and run value iteration for n steps
 - Execute policy π_n found at the n^{th} iteration
- Solution #2:
 - Continue iterating until $||V_n V_{n-1}||_{\infty} \le \epsilon$ (ϵ is called tolerance)
 - Execute policy π_n found at the n^{th} iteration

