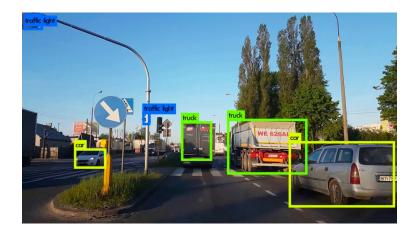
# Lecture 1a: Introduction CS885 Reinforcement Learning

2025-01-07

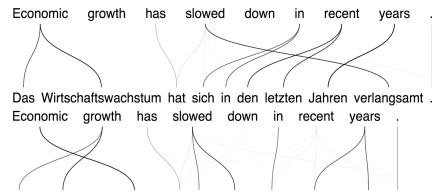
Complementary readings: [SutBar] Chapter 1, [Sze] Chapter 1

Pascal Poupart David R. Cheriton School of Computer Science






- Introduction to Reinforcement Learning
- Course logistics




## **Machine Learning**

- Traditional computer science
  - Program computer for every task
- New paradigm
  - Provide examples to machine
  - Machine learns to accomplish tasks based on examples







La croissance économique s' est ralentie ces dernières années .



### **Machine Learning**

- Success mostly due to supervised learning
  - Bottleneck: need lots of labeled data
  - Limitation: mimic data
- Alternatives
  - Unsupervised, semi-supervised, self-supervised learning
  - Transfer learning, domain adaptation, meta-learning
  - Reinforcement Learning

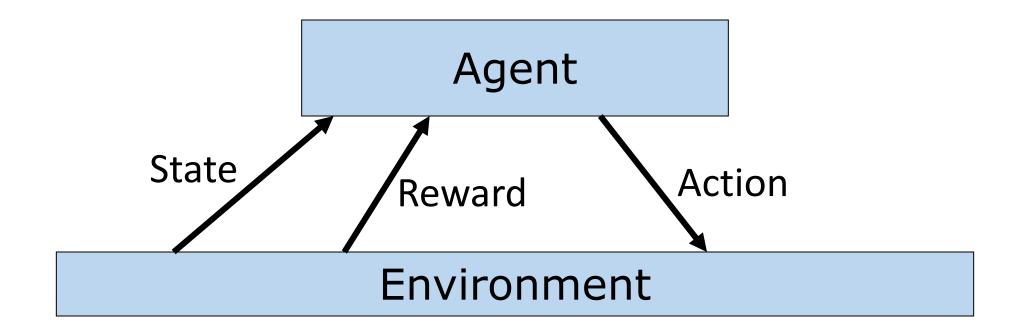


### What is Reinforcement Learning?

- Reinforcement learning is also known as
  - Optimal control
  - Approximate dynamic programming
  - Neuro-dynamic programming
- Wikipedia: reinforcement learning is an area of machine learning inspired by behavioural psychology, concerned with how software agents ought to take actions in an environment so as to maximize some notion of cumulative reward.



## **Animal Psychology**


- Negative reinforcements
  - Pain and hunger
- Positive reinforcements
  - Pleasure and food
- Reinforcements used to train animals







### **Reinforcement Problem**



### **Goal:** Learn to choose actions that maximize rewards



### **Sample Industrial Use Cases**

More Complex

#### **Contextual Bandits**

#### Marketing

ad placement, recommender systems Loyalty programs personalized offers Price management airline seat pricing cargo shipment pricing food pricing Optimal design interface personalization

#### **Bayesian Optimization**

Hyperparameter optimization

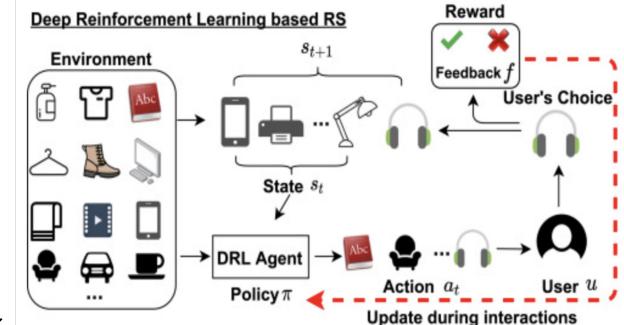
Troubleshooting Customer assistance

**Diagnostics** Fault detection

**Design of experiments** Drug design Material design **Sequential decision Making** 

Automated trading Stocks, energy

**Optimization** Path planning Routing Energy consumption


**Control** Robotics Autonomous driving



CS885 Winter 2025 - Lecture 1a - Pascal Poupart

### Marketing (Recommender System)

- Agent: recommender system
- Environment: user
- State: context, past recommendations and feedback
- Action: recommended item
- Reward: value of user feedback





### **Operations Research (vehicle routing)**

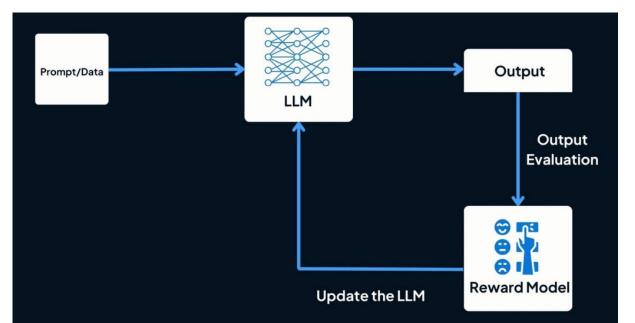
- Agent: vehicle routing system
- Environment: stochastic demand
- State: vehicle location, capacity and depot requests
- Action: vehicle route
- Reward: travel costs





## Game Playing (Computer Go)

- Agent: player
- Environment: opponent
- State: board configuration
- Action: next stone location
- Reward: +1 win / -1 loose




- 2016: AlphaGo defeats Lee Sedol (4-1)
  - Game 2 move 37: AlphaGo plays unexpected move (odds 1/10,000)



### Large Language Model (RL from Human Feedback)

- Agent: system
- Environment: user
- **State:** history of past utterances
- Action: system utterance
- Reward: task completion, human feedback



Credit: https://www.twine.net/blog/what-is-reinforcement-learning-from-human-feedback-rlhf-and-how-does-it-work/



## **Computational Finance (Trading)**

- Agent: trading software
- Environment: other traders
- **State:** price history
- Action: buy/sell/hold
- **Reward:** amount of profit



Example: how to purchase a large # of shares in a short period of time without affecting the price



### **Reinforcement Learning**

- Comprehensive, but challenging form of machine learning
  - Stochastic environment
  - Incomplete model
  - Interdependent sequence of decisions
  - No supervision
  - Partial and delayed feedback

### • Long term goal: continual machine learning

