CS885 Reinforcement Learning Lecture 8b: May 25, 2018

Bayesian and Contextual Bandits [SutBar] Sec. 2.9

Outline

- Bayesian bandits
 - Thompson sampling
- Contextual bandits

Multi-Armed Bandits

- Problem:
 - N bandits with unknown average reward R(a)
 - Which arm a should we play at each time step?
 - Exploitation/exploration tradeoff
- Common frequentist approaches:
 - $-\epsilon$ -greedy
 - Upper confidence bound (UCB)
- Alternative Bayesian approaches
 - Thompson sampling
 - Gittins indices

Bayesian Learning

Notation:

- $-r^a$: random variable for a's rewards
- $Pr(r^a; \theta)$: unknown distribution (parameterized by θ)
- $-R(a) = E[r^a]$: unknown average reward

Idea:

- Express uncertainty about θ by a prior $Pr(\theta)$
- Compute posterior $\Pr(\theta | r_1^a, r_2^a, ..., r_n^a)$ based on samples $r_1^a, r_2^a, ..., r_n^a$ observed for a so far.

Bayes theorem:

$$\Pr(\theta|r_1^a, r_2^a, \dots, r_n^a) \propto \Pr(\theta) \Pr(r_1^a, r_2^a, \dots, r_n^a|\theta)$$

Distributional Information

- Posterior over θ allows us to estimate
 - Distribution over next reward r^a

$$\Pr(r^{a}|r_{1}^{a}, r_{2}^{a}, ..., r_{n}^{a}) = \int_{\theta} \Pr(r^{a}; \theta) \Pr(\theta|r_{1}^{a}, r_{2}^{a}, ..., r_{n}^{a}) d\theta$$

- Distribution over R(a) when θ includes the mean

$$\Pr(R(a)|r_1^a, r_2^a, ..., r_n^a) = \Pr(\theta|r_1^a, r_2^a, ..., r_n^a) \text{ if } \theta = R(a)$$

- To guide exploration:
 - UCB: $Pr(R(a) \leq bound(r_1^a, r_2^a, ..., r_n^a)) \geq 1 \delta$
 - Bayesian techniques: $Pr(R(a)|r_1^a, r_2^a, ..., r_n^a)$

Coin Example

• Consider two biased coins C_1 and C_2

$$R(C_1) = Pr(C_1 = head)$$

 $R(C_2) = Pr(C_2 = head)$

Problem:

- Maximize # of heads in k flips
- Which coin should we choose for each flip?

Bernoulli Variables

- r^{C_1} , r^{C_2} are Bernoulli variables with domain $\{0,1\}$
- Bernoulli dist. are parameterized by their mean

- i.e.
$$\Pr(r^{C_1}; \theta_1) = \theta_1 = R(C_1)$$

 $\Pr(r^{C_2}; \theta_2) = \theta_2 = R(C_2)$

Beta distribution

• Let the prior $\Pr(\theta)$ be a Beta distribution $Beta(\theta; \alpha, \beta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$

- $\alpha 1$: # of heads
- $\beta 1$: # of tails

• $E[\theta] = \alpha/(\alpha + \beta)$

Belief Update

- Prior: $Pr(\theta) = Beta(\theta; \alpha, \beta) \propto \theta^{\alpha 1} (1 \theta)^{\beta 1}$
- Posterior after coin flip:

$$\Pr(\theta|head) \propto \Pr(\theta) \qquad \Pr(head|\theta)$$

$$\propto \theta^{\alpha-1}(1-\theta)^{\beta-1} \qquad \theta$$

$$= \theta^{(\alpha+1)-1}(1-\theta)^{\beta-1}$$

$$\propto Beta(\theta; \alpha+1, \beta)$$

$$\Pr(\theta|tail) \propto \qquad \Pr(\theta) \qquad \Pr(tail|\theta)$$

$$\propto \theta^{\alpha-1}(1-\theta)^{\beta-1} \qquad (1-\theta)$$

$$= \theta^{\alpha-1}(1-\theta)^{(\beta+1)-1}$$

$$\propto Beta(\theta; \alpha, \beta+1)$$

Thompson Sampling

Idea:

– Sample several potential average rewards:

$$R_1(a), ..., R_k(a) \sim \Pr(R(a)|r_1^a, ..., r_n^a)$$
 for each a

Estimate empirical average

$$\widehat{R}(a) = \frac{1}{k} \sum_{i=1}^{k} R_i(a)$$

- Execute $argmax_a \hat{R}(a)$

Coin example

-
$$\Pr(R(a)|r_1^a, ..., r_n^a) = \text{Beta}(\theta_a; \alpha_a, \beta_a)$$

where $\alpha_a - 1 = \#heads$ and $\beta_a - 1 = \#tails$

Thompson Sampling Algorithm Bernoulli Rewards

ThompsonSampling(h) $V \leftarrow 0$ For n = 1 to h $\text{Sample } R_1(a), \dots, R_k(a) \sim \Pr(R(a)) \ \forall a$ $\widehat{R}(a) \leftarrow \frac{1}{k} \sum_{i=1}^k R_i(a) \ \forall a$ $a^* \leftarrow \operatorname{argmax}_a \widehat{R}(a)$ Execute a^* and receive r

 $V \leftarrow V + r$

Update $Pr(R(a^*))$ based on r

Return V

Comparison

Thompson Sampling

Action Selection

$$a^* = \operatorname{argmax}_a \hat{R}(a)$$

Empirical mean

$$\widehat{R}(a) = \frac{1}{k} \sum_{i=1}^{k} R_i(a)$$

Samples

$$R_i(a) \sim \Pr(R_i(a)|r_1^a \dots r_n^a)$$

 $r_i^a \sim \Pr(r^a; \theta)$

Some exploration

Greedy Strategy

Action Selection

$$a^* = \operatorname{argmax}_a \tilde{R}(a)$$

Empirical mean

$$\tilde{R}(a) = \frac{1}{n} \sum_{i=1}^{n} r_i^a$$

Samples

$$r_i^a \sim \Pr(r^a; \theta)$$

No exploration

Sample Size

- In Thompson sampling, amount of data n and sample size k regulate amount of exploration
- As n and k increase, $\hat{R}(a)$ becomes less stochastic, which reduces exploration
 - As $n \uparrow$, $Pr(R(a)|r_1^a ... r_n^a)$ becomes more peaked
 - As $k \uparrow$, $\hat{R}(a)$ approaches $E[R(a)|r_1^a ... r_n^a]$
- The stochasticity of $\hat{R}(a)$ ensures that all actions are chosen with some probability

Analysis

- Thompson sampling converges to best arm
- Theory:
 - Expected cumulative regret: $O(\log n)$
 - On par with UCB and ϵ -greedy
- Practice:
 - Sample size k often set to 1

Contextual Bandits

- In many applications, the context provides additional information to select an action
 - E.g., personalized advertising, user interfaces
 - Context: user demographics (location, age, gender)
- Actions can also be characterized by features that influence their payoff
 - E.g., ads, webpages
 - Action features: topics, keywords, etc.

Contextual Bandits

- Contextual bandits: multi-armed bandits with states (corresponding to contexts) and action features
- Formally:
 - S: set of states where each state s is defined by a vector of features $\mathbf{x}^s = (x_1^s, x_2^s, ..., x_k^s)$
 - A: set of actions where each action a is associated with a vector of features $\mathbf{x}^a = (x_1^a, x_2^a, ..., x_l^a)$
 - Space of rewards (often ℝ)
- No transition function since the states at each step are independent
- Goal find policy $\pi: x^s \to a$ that maximizes expected rewards $E(r|s,a) = E(r|x^s,x^a)$

Approximate Reward Function

- Common approach:
 - learn approximate average reward function $\tilde{R}(s,a) = \tilde{R}(x)$ (where $x = (x^s, x^a)$) by regression
- Linear approximation: $\tilde{R}_{w}(x) = w^{T}x$
- Non-linear approximation: $\tilde{R}_{w}(x) = neuralNet(x; w)$

Bayesian Linear Regression

Consider a Gaussian prior:

$$pdf(\mathbf{w}) = N(\mathbf{w}|\mathbf{0}, \lambda^2 \mathbf{I}) \propto exp\left(-\frac{\mathbf{w}^T \mathbf{w}}{2\lambda^2}\right)$$

Consider also a Gaussian likelihood:

$$pdf(r|\mathbf{x}, \mathbf{w}) = N(r|\mathbf{w}^T\mathbf{x}, \sigma^2) \propto exp\left(-\frac{(r - \mathbf{w}^T\mathbf{x})^2}{2\sigma^2}\right)$$

The posterior is also Gaussian:

$$pdf(\mathbf{w}|r, \mathbf{x}) \propto pdf(\mathbf{w}) \Pr(r|\mathbf{x}, \mathbf{w})$$

$$\propto exp\left(-\frac{\mathbf{w}^T \mathbf{w}}{2\lambda^2}\right) exp\left(-\frac{(r - \mathbf{w}^T \mathbf{x})^2}{2\sigma^2}\right)$$

$$= N(\mathbf{w}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
where $\boldsymbol{\mu} = \sigma^{-2}\boldsymbol{\Sigma} \boldsymbol{x}r$ and $\boldsymbol{\Sigma} = (\sigma^{-2}\boldsymbol{x}\boldsymbol{x}^T + \lambda^{-2}\boldsymbol{I})^{-1}$

Predictive Posterior

- Consider a state-action pair $(x^s, x^a) = x$ for which we would like to predict the reward r
- Predictive posterior:

$$pdf(r|\mathbf{x}) = \int_{\mathbf{w}} N(r|\mathbf{w}^{T}\mathbf{x}, \sigma^{2}) N(\mathbf{w}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) d\mathbf{w}$$
$$= N(r|\sigma^{2}\mathbf{x}^{T}\boldsymbol{\mu}, \mathbf{x}^{T}\boldsymbol{\Sigma}\mathbf{x})$$

- UCB: $\Pr(r < \sigma^2 x^T \mu + c \sqrt{x^T \Sigma x}) > 1 \delta$ where $c = 1 + \sqrt{\ln(2/\delta)/2}$
- Thomson sampling: $\tilde{r} \sim N(r|\sigma^2 x^T \mu, x^T \Sigma x)$

Upper Confidence Bound (UCB) Linear Gaussian

```
UCB(h)
    V \leftarrow 0, pdf(\mathbf{w}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = N(\mathbf{w}|\mathbf{0}, \lambda^2 \boldsymbol{I})
    Repeat until n = h
        Receive state x^s
        For each action x^a where x = (x^s, x^a) do
           confidenceBound(a) = \sigma^2 \mathbf{x}^T \boldsymbol{\mu} + c \sqrt{\mathbf{x}^T \mathbf{\Sigma} \mathbf{x}}
        a^* \leftarrow \operatorname{argmax}_a confidenceBound(a)
        Execute a^* and receive r
        V \leftarrow V + r
        update \mu and \Sigma based on x = (x^s, x^{a^*}) and r
Return V
```

Thompson Sampling Algorithm Linear Gaussian

```
ThompsonSampling(h)
    V \leftarrow 0; pdf(\boldsymbol{w}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = N(\boldsymbol{w}|\boldsymbol{0}, \lambda^2 \boldsymbol{I})
    For n = 1 to h
        Receive state x^s
        For each action x^a where x = (x^s, x^a) do
            Sample R_1(a), ..., R_k(a) \sim N(r|\sigma^2 x^T \mu, x^T \Sigma x)
            \hat{R}(a) \leftarrow \frac{1}{k} \sum_{i=1}^{k} R_i(a)
        a^* \leftarrow \operatorname{argmax}_a \widehat{R}(a)
        Execute a^* and receive r
        V \leftarrow V + r
        update \mu and \Sigma based on x = (x^s, x^{a^*}) and r
Return V
```

Industrial Use

- Contextual bandits are now commonly used for
 - Personalized advertising
 - Personalized web content
 - MSN news: 26% improvement in click through rate after adoption of contextual bandits (https://www.microsoft.com/enus/research/blog/real-world-interactive-learningcusp-enabling-new-class-applications/)