
CS885 Reinforcement Learning
Lecture 7a: May 23, 2018

Policy Gradient Methods
[SutBar] Sec. 13.1-13.3, 13.7 

[SigBuf] Sec. 5.1-5.2, [RusNor] Sec. 21.5
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Outline

• Stochastic policy gradient
– REINFORCE algorithm

• AlphaGo
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Model-free Policy-based Methods

• Q-learning
– Model-free value-based method
– No explicit policy representation

• Policy gradient
– Model-free policy-based method
– No explicit value function representation

University of Waterloo
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Stochastic Policy
• Consider stochastic policy 𝜋! 𝑎 𝑠 = Pr(𝑎|𝑠; 𝜃)

parametrized by 𝜃. 

• Finitely many discrete actions

Softmax: 𝜋! 𝑎 𝑠 = "#$ % &,(;!
∑!" "#$(% &,(";! )

where ℎ 𝑠, 𝑎; 𝜃 might be 

linear in 𝜃:  ℎ 𝑠, 𝑎; 𝜃 = ∑- 𝜃-𝑓-(𝑠, 𝑎)
or non-linear in 𝜃: ℎ 𝑠, 𝑎; 𝜃 = 𝑛𝑒𝑢𝑟𝑎𝑙𝑁𝑒𝑡(𝑠, 𝑎; 𝜃)

• Continuous actions:
Gaussian: 𝜋! 𝑎 𝑠 = 𝑁(𝑎|𝜇 𝑠; 𝜃 , Σ 𝑠; 𝜃 )
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Supervised Learning

• Consider a stochastic policy 𝜋!(𝑎|𝑠)

• Data: state-action pairs { 𝑠", 𝑎"∗ , 𝑠$, 𝑎$∗ , … }

• Maximize log likelihood of the data

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥!1
%

log 𝜋!(𝑎%∗ |𝑠%)

• Gradient update
𝜃%&" ← 𝜃% + 𝛼% 𝛻! log 𝜋!(𝑎%∗ |𝑠%)

University of Waterloo
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Reinforcement Learning

• Consider a stochastic policy𝜋!(𝑎|𝑠)

• Data: state-action-reward triples
{ 𝑠", 𝑎", 𝑟" , 𝑠$, 𝑎$, 𝑟$ , … }

• Maximize discounted sum of rewards
𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥! ∑% 𝛾% 𝐸![𝑟%|𝑠%, 𝑎%]

• Gradient update
𝜃%&" ← 𝜃% + 𝛼% 𝛾%𝐺% 𝛻! log 𝜋!(𝑎%|𝑠%)
where 𝐺. = ∑/012 𝛾/𝑟.3/
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Stochastic Gradient Policy Theorem

• Stochastic	Gradient	Policy	Theorem

𝛻𝑉! 𝑠' ∝1
(

𝜇! 𝑠 1
)

𝛻 𝜋! 𝑎 𝑠 𝑄! 𝑠, 𝑎

𝜇!(𝑠): stationary state distribution when executing policy 
parametrized by 𝜃

𝑄! 𝑠, 𝑎 : discounted sum of rewards when starting in 𝑠, 
executing 𝑎 and following the policy parametrized by 𝜃
thereafter.

University of Waterloo
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Derivation
𝛻𝑉# 𝑠$ = 𝛻 ∑%! 𝜋# 𝑎$ 𝑠$ 𝑄# 𝑠$, 𝑎$ ∀𝑠$ ∈ 𝑆
= ∑%! 𝛻𝜋# 𝑎$ 𝑠$ 𝑄# 𝑠$, 𝑎$ + 𝜋# 𝑎$ 𝑠$ 𝛻𝑄# 𝑠$, 𝑎$
= ∑%! 𝛻𝜋# 𝑎$ 𝑠$ 𝑄# 𝑠$, 𝑎$ + 𝜋# 𝑎$ 𝑠$ 𝛻∑&",(! Pr 𝑠), 𝑟$ 𝑠$, 𝑎$ 𝑟$ + 𝛾𝑉# 𝑠)
= ∑%! 𝛻𝜋# 𝑎$ 𝑠$ 𝑄# 𝑠$, 𝑎$ + 𝜋# 𝑎$ 𝑠$ ∑&" 𝛾 Pr 𝑠) 𝑠$, 𝑎$ 𝛻V#(𝑠))
= ∑%![𝛻 𝜋# 𝑎$ 𝑠$ 𝑄# 𝑠$, 𝑎$ + 𝜋# 𝑎$ 𝑠$ ∑&" 𝛾 Pr 𝑠) 𝑠$, 𝑎$

∑%"[𝛻 𝜋# 𝑎) 𝑠) 𝑄* 𝑠), 𝑎) + 𝜋# 𝑎) 𝑠) ∑&# 𝛾 Pr 𝑠+ 𝑠), 𝑎) 𝛻V#(𝑠+)]
= ∑&∈-∑./$0 𝛾.Pr(𝑠$ → 𝑠; 𝑛, 𝜃)∑%𝛻𝜋# 𝑎 𝑠 𝑄# 𝑠, 𝑎

∝ ∑& 𝜇#(𝑠)∑%𝛻𝜋# 𝑎 𝑠 𝑄#(𝑠, 𝑎)

Probability of reaching 𝑠 from 𝑠! at time step 𝑛

Since 𝜇" 𝑠 ∝ ∑#$!% 𝛾# Pr 𝑠! → 𝑠; 𝑛, 𝜃 then

University of Waterloo
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REINFORCE: Monte Carlo Policy 
Gradient

• 𝛻𝑉!(𝑠") = ∑#∈%∑&'"( 𝛾&Pr(𝑠" → 𝑠; 𝑛, 𝜃)∑)𝛻 𝜋! 𝑎 𝑠 𝑄! 𝑠, 𝑎
= 𝐸! ∑&'"( 𝛾&∑)𝑄! 𝑆&, 𝑎 𝛻 𝜋! 𝑎 𝑆&
= 𝐸! ∑&'"( 𝛾&∑)𝜋! 𝑎 𝑆& 𝑄! 𝑆&, 𝑎

* +& 𝑎 𝑆&
+& 𝑎 𝑆&

= 𝐸! ∑&'"( 𝛾&𝑄! 𝑆&, 𝐴&
* +& 𝐴& 𝑆&
+& 𝐴& 𝑆&

= 𝐸! ∑&'"( 𝛾& 𝐺&
*+& 𝐴& 𝑆&
+& 𝐴& 𝑆&

= 𝐸! ∑&'"( 𝛾& 𝐺&𝛻 log𝜋! 𝐴& 𝑆&
• Stochastic gradient at time step 𝑛

𝛻𝑉! ≈ 𝛾&𝐺&𝛻 log𝜋! 𝑎& 𝑠&

University of Waterloo
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REINFORCE Algorithm 
(stochastic policy)

REINFORCE(𝑠1, 𝜋!)
Initialize 𝜋! to anything    
Loop forever (for each episode)

Generate episode s1, a1, r1, s=, a=, 𝑟=, … , 𝑠>, 𝑎>, 𝑟> with 𝜋!
Loop for each step of the episode 𝑛 = 0, 1,… , 𝑇
𝐺. ← ∑/01>?. 𝛾/ 𝑟.3/
Update policy: 𝜃 ← 𝜃 + 𝛼 𝛾.𝐺.𝛻 log 𝜋! 𝑎. 𝑠.

Return 𝜋!

University of Waterloo



CS885 Spring 2018 Pascal Poupart 11

Example: Game of Go

• (simplified) rules:
– Two players 

(black and white)
– Players alternate to place 

a stone of their color on 
a vacant intersection.

– Connected stones without
any liberty (i.e., no adjacent 
vacant intersection) are 
captured and removed from the board

– Winner: player that controls the largest number of 
intersections at the end of the game 

University of Waterloo
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Computer Go

• Oct 2015:

Monte Carlo Tree SearchDeep RL

CS885 Spring 2018 Pascal PoupartUniversity of Waterloo
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Computer Go

• March 2016: AlphaGo defeats Lee Sedol (9-dan)

• May 2017: AlphaGo defeats Ke Jie (world 
champion)

CS885 Spring 2018 Pascal Poupart

“[AlphaGo] can’t beat me” Ke Jie (world champion)

“Last year, [AlphaGo] was still quite humanlike 
when it played.  But this year, it became like a 
god of Go” Ke Jie (world champion)

University of Waterloo
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Winning Strategy

Four steps:
1. Supervised Learning of Policy Networks
2. Policy gradient with Policy Networks 
3. Value gradient with Value Networks
4. Searching with Policy and Value Networks

University of Waterloo
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Policy Network

• Train policy network to imitate Go experts based on a 
database of 30 million board configurations from the 
KGS Go Server. 

• Policy network: 𝜋(𝑎|𝑠)
– Input: state 𝑠

(board configuration)
– Output: distribution 

over actions 𝑎
(intersection on which 
the next stone will be placed)

𝜋(𝑎|𝑠)

University of Waterloo
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Supervised Learning of the Policy 
Network

• Let 𝜃 be the weights of the policy network

• Training: 
– Data: suppose 𝑎 is optimal in 𝑠
– Objective: maximize log 𝜋!(a|s)

– Gradient: 𝛻𝜃 = C DEF G1((|&)
C!

– Weight update: 𝜃 ← 𝜃 + 𝛼∇𝜃

University of Waterloo
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Policy gradient for the Policy Network

• How can we update a policy network based on 
reinforcements instead of the optimal action? 

• Let 𝐺% = ∑F 𝛾F 𝑟%&F be the discounted sum of 
rewards in a trajectory that starts in 𝑠 at time 𝑛 by 
executing 𝑎.

• Gradient: 𝛻𝜃 = G HIJ K,()|()
G!

𝛾%𝐺%
– Intuition rescale supervised learning gradient by 𝐺.

• Policy update: 𝜃 ← 𝜃 + 𝛼∇𝜃

University of Waterloo
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Policy gradient for the Policy Network

• In computer Go, program repeatedly plays games 
against its former self.  

• For each game 𝐺% = V 1 𝑤𝑖𝑛
−1 𝑙𝑜𝑠𝑒

• For each (𝑠%, 𝑎%) at turn 𝑛 of the game, 
assume 𝛾 = 1 and compute
– Gradient: 𝛻𝜃 = C HIJ G1((|&)

C!
𝛾.𝐺.

– Policy update: 𝜃 ← 𝜃 + 𝛼∇𝜃

University of Waterloo
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Value Network

• Predict 𝑉(𝑠′) (i.e., who will 
win game) in each state 𝑠M
with a value network
– Input: state 𝑠

(board configuration)
– Output: expected discounted

sum of rewards 𝑉(𝑠K)

𝑉(𝑠')

University of Waterloo
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Gradient Value Learning with Value 
Networks

• Let 𝒘 be the weights of the value network

• Training: 

– Data: (𝑠, 𝐺) where 𝐺 = L 1 𝑤𝑖𝑛
−1 𝑙𝑜𝑠𝑒

– Objective: minimize =
M
𝑉𝒘 𝑠 − 𝐺 M

– Gradient: 𝛻𝒘 = CO𝒘 &
C𝒘

(𝑉𝒘 𝑠 − 𝐺)
– Weight update: 𝒘 ← 𝒘− 𝛼𝛻𝒘

University of Waterloo
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Searching with 
Policy and Value Networks

• AlphaGo combines policy 
and value networks into 
a Monte Carlo Tree 
Search (MCTS) algorithm

• Idea: construct 
a search tree
– Node: 𝑠
– Edge: 𝑎

• We will discuss MCTS 
in a few lectures

University of Waterloo
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Competition
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