CS885 Reinforcement Learning
Lecture 3b: May 9, 2018

Intro to Reinforcement Learning
[SutBar] Sec. 5.1-5.3, 6.1-6.3, 6.5,
[Sze] Sec. 3.1, 4.3, [SigBuf] Sec. 2.1-2.5,
[RusNor] Sec. 21.1-21.3,
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Markov Decision Process

* Definition
— States: s € S
— Actions: a € A
— Rewards: 7 € R
— Transition model: Pr(s;|s¢_1, 1)
— Reward model: Pr(7;|s¢, a;)

— Discount factor: 0 <y <1
* discounted: y < 1 undiscounted: y =1

— Horizon (i.e., # of time steps): h
* Finite horizon: h € N infinite horizon: h = o

* Goal: find optimal policy 7" such that
m* = argmaxy Y=oV Ex[re]
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Reinforcement Learning Problem

Agent

State

Reward Action

Environment

Goal: Learn to choose actions that maximize rewards



Reinforcement Learning

* Definition
— States: s € S
— Actions:a € A
— Rewards: r € R

} unknown model
— Discount factor: 0 <y <1

* discounted: y < 1 undiscounted: y =1

— Horizon (i.e., # of time steps): h
* Finite horizon: h € N infinite horizon: h = o

* Goal: find optimal policy 7" such that
m* = argmaxy Y=oV Ex[re]
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Policy optimization

» Markov Decision Process:
— Find optimal policy given transition and reward model
— Execute policy found

* Reinforcement learning:

— Learn an optimal policy while interacting with the
environment



Example: Inverted Pendulum

o State:
x(t),x'(t),6(t),0'(t)
 Action: Force F

 Reward: 1 for any step
where pole balanced

Problem: Find ©: S — A that
maximizes rewards



Important Components in RL

RL agents may or may not include the following
components:

* Model: Pr(s’|s,a),Pr(r|s,a)

— Environment dynamics and rewards
* Policy: m(s)

— Agent action choices

* Value function: V(s)
— Expected total rewards of the agent policy



Categorizing RL agents

@Iue based

 Value function

Policy based
* Policy

Actor critic

~

-

Model based

* Transition and
reward model

Model free

\_

~




Toy Maze Example

+1 Start state: (1,1)
(T Terminal states: (4,2), (4,3)
21 U ul-1 No discount: y =1
1y | | | | Reward is -0.04 for
1 ) 3 4 non-terminal states

Four actions: up (u), left (), right (r), down (d)
Do not know the transition probabilities

What is the value V(s) of being in state s?
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Model free evaluation

« Given a policy m, estimate V™ (s) without any
transition or reward model

* Monte Carlo evaluation

VT(s) = En[Ze v 7]

1 k . .
N —— n(s) "(S) [Ztyt ( )] (sample approximation)

 Temporal difference (TD) evaluation

V7(s) = Elrls,m(s)] + v Xg Pr(s’ls, m(s)) V7 (s)
~r+yVT(s") (one sample approximation)



Monte Carlo Evaluation

* Let G, be a one-trajectory Monte Carlo target

Gy = Xt Vt 4o
. Approximate value functlon
UE(s) ~ —= s Gy

n(s)
= ( n(s) +Zn(5) ' k)

N m( n(s) t ("<S) - 1>V7f_1(s))

= V1) + 5 (Gn(s) - Vf—1($))
* Incremental update
ViE(s) « Vi1 () + an(Gy — Vi (5))

N

learning rate 1/n(s)



Temporal Difference Evaluation

Approximate value function: V™(s) = r + yV™(s")
Incremental update
V() < Vami () + an(r + yViia(s") — Vitq(s))

Theorem: If a, is appropriately decreased with
number of times a state is visited then V}*(s)
converges to correct value

Sufficient conditions for «,;:
(1) Xnan — (2) Zn(an)z < ©

Often a,,(s) = 1/n(s)
 Where n(s) = # of times s is visited



Temporal Difference (TD) evaluation

TDevaluation(m, V")

Repeat
Execute m(s)
Observe s’ and r
Update counts: n(s) « n(s) + 1
Learning rate: a « 1/n(s)
Update value: V®(s) « V™(s) + a(r + yV™(s') — V™(s))
S« s

Until convergence of V'™

Return V'™
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Comparison

 Monte Carlo evaluation:
— Unbiased estimate
— High variance
— Needs many trajectories

« Temporal difference evaluation:
— Biased estimate
— Lower variance
— Needs less trajectories
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Model Free Control

* Instead of evaluating the state value fn, V" (s),
evaluate the state-action value fn, Q" (s, a)

Q™ (s, a): value of executing a followed by ©
Q" (s,a) = E[r|s,a] +y Xy Pr(s'ls, )V (s)

» Greedy policy '

n'(s) = argmax,Q™ (s, a)



Bellman’s Equation

* Optimal state value function V*(s)

V*(s) = mC?XE[T'lS, al + yz Pr(s'|s,a)V*(s)
* Optimal state-action value function Q*(s, a)
Q*(s,a) = E|r|s,a] + yz Pr(s'|s,a) max Q*(s’,a’)

where V*(s) = max,0Q"(s,a)
n*(s) = argmax,Q*(s,a)



Monte Carlo Control

« Let G} be a one-trajectory Monte Carlo target
Ge =1 + Zema ¥
‘—!—’

d T
 Alternate between
— Policy evaluation

Q;{(S, Cl) < Qg—l(sl Cl) + an(G;Ll o Q77’LT—1(SJ a))

— Policy improvement
' (s) « argmax,Q™(s,a)




Temporal Difference Control

» Approximate Q-function:

Q*(s,a) = E|r|s,a] + )/Z Pr(s’|s,a) max Q*(s',a")

~1r+ymax, Q*(s’,a’)

* Incremental update

Qn(5,@) < Qo1 (5,0) + @y (7 +y maxy Qn_y (s, @) = Qry(s,0))



Q-Learning

Qlearning(s, Q%)
Repeat
Select and execute a
Observe s’ and r
Update counts: n(s,a) « n(s,a) + 1
Learning rate: a < 1/n(s, a)
Update Q-value:
0*(s,a) « 0*(s,a) + « (r +y max 0*(s’,a’) — Q*(s, a))

s« s'
Until convergence of Q*
Return Q*
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Q-learning example

‘_»52 100 f_é S, 100
] D

66

ol |N
) 1)

y=0.9, a=0.5 r =0 fornon-terminal states

Q(sq,right) = Q(sq,right) + « (r +y max Q(s,,a’) — Q(sl,right))

= 73 + 0.5(0 + 0.9 max {66,81,100} — 73)
= 73 4 0.5(17)
= 81.5



Q-Learning

Qlearning(s, Q%)
Repeat
Select and execute a
Observe s’ and r
Update counts: n(s,a) « n(s,a) + 1
Learning rate: a < 1/n(s, a)
Update Q-value:
0*(s,a) « 0*(s,a) + « (r +y max 0*(s’,a’) — Q*(s, a))

s« s'
Until convergence of Q*
Return Q*
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Exploration vs Exploitation

* |If an agent always chooses the action with the
highest value then it is exploiting
— The learned model is not the real model
— Leads to suboptimal results

» By taking random actions (pure exploration) an
agent may learn the model

— But what is the use of learning a complete model if
parts of it are never used?

* Need a balance between exploitation and
exploration



Common exploration methods

* g-greedy:
— With probability e execute random action

— Otherwise execute best action a*
a” = argmax, Q(s,a)

* Boltzmann exploration
Q(s,a)
T

Q(s,a)
dae T

Pr(a) =




Exploration and Q-learning

* Q-learning converges to optimal Q-values if
— Every state is visited infinitely often (due to
exploration)
— The action selection becomes greedy as time
approaches infinity
— The learning rate «a is decreased fast enough, but not

too fast (sufficient conditions for a):

(N Znan > (2) Lnlan)® <o



Summary

* We can optimize a policy by RL when the
transition and reward functions are unknown

* Model free, value based agent:
— Monte Carlo learning (unbiased, but lots of data)
— Temporal difference learning (low variance, less data)

* Active learning:
— Exploration/exploitation dilemma



