CS885 Reinforcement Learning
Lecture 3b: May 9, 2018

Intro to Reinforcement Learning
[SutBar] Sec. 5.1-5.3, 6.1-6.3, 6.5,
[Sze] Sec. 3.1, 4.3, [SigBuf] Sec. 2.1-2.5,
[RusNor] Sec. 21.1-21.3,

University of Waterloo CS885 Spring 2018 Pascal Poupart

Markov Decision Process

* Definition
— States: s € S
— Actions: a € A
— Rewards: 7 € R
— Transition model: Pr(s;|s¢_1, 1)
— Reward model: Pr(7;|s¢, a;)

— Discount factor: 0 <y <1
* discounted: y < 1 undiscounted: y =1

— Horizon (i.e., # of time steps): h
* Finite horizon: h € N infinite horizon: h = o

* Goal: find optimal policy 7" such that
m* = argmaxy Y=oV Ex[re]

University of Waterloo CS885 Spring 2018 Pascal Poupart

Reinforcement Learning Problem

Agent

State

Reward Action

Environment

Goal: Learn to choose actions that maximize rewards

Reinforcement Learning

* Definition
— States: s € S
— Actions:a € A
— Rewards: r € R

} unknown model
— Discount factor: 0 <y <1

* discounted: y < 1 undiscounted: y =1

— Horizon (i.e., # of time steps): h
* Finite horizon: h € N infinite horizon: h = o

* Goal: find optimal policy 7" such that
m* = argmaxy Y=oV Ex[re]

University of Waterloo CS885 Spring 2018 Pascal Poupart

Policy optimization

» Markov Decision Process:
— Find optimal policy given transition and reward model
— Execute policy found

* Reinforcement learning:

— Learn an optimal policy while interacting with the
environment

Example: Inverted Pendulum

o State:
x(t),x'(t),6(t),0'(t)
 Action: Force F

 Reward: 1 for any step
where pole balanced

Problem: Find ©: S — A that
maximizes rewards

Important Components in RL

RL agents may or may not include the following
components:

* Model: Pr(s’|s,a),Pr(r|s,a)

— Environment dynamics and rewards
* Policy: m(s)

— Agent action choices

* Value function: V(s)
— Expected total rewards of the agent policy

Categorizing RL agents

@Iue based

 Value function

Policy based
* Policy

Actor critic

~

-

Model based

* Transition and
reward model

Model free

_

~

Toy Maze Example

+1 Start state: (1,1)
(T Terminal states: (4,2), (4,3)
21 U ul-1 No discount: y =1
1y | | | | Reward is -0.04 for
1) 3 4 non-terminal states

Four actions: up (u), left (), right (r), down (d)
Do not know the transition probabilities

What is the value V(s) of being in state s?

University of Waterloo
CS885 Spring 2018 Pascal Poupart

Model free evaluation

« Given a policy m, estimate V™ (s) without any
transition or reward model

* Monte Carlo evaluation

VT(s) = En[Ze v 7]

1 k . .
N —— n(s) "(S) [Ztyt ()] (sample approximation)

 Temporal difference (TD) evaluation

V7(s) = Elrls,m(s)] + v Xg Pr(s’ls, m(s)) V7 (s)
~r+yVT(s") (one sample approximation)

Monte Carlo Evaluation

* Let G, be a one-trajectory Monte Carlo target

Gy = Xt Vt 4o
. Approximate value functlon
UE(s) ~ —= s Gy

n(s)
= (n(s) +Zn(5) ' k)

N m(n(s) t ("<S) - 1>V7f_1(s))

= V1) + 5 (Gn(s) - Vf—1($))
* Incremental update
ViE(s) « Vi1 () + an(Gy — Vi (5))

N

learning rate 1/n(s)

Temporal Difference Evaluation

Approximate value function: V™(s) = r + yV™(s")
Incremental update
V() < Vami () + an(r + yViia(s") — Vitq(s))

Theorem: If a, is appropriately decreased with
number of times a state is visited then V}*(s)
converges to correct value

Sufficient conditions for «,;:
(1) Xnan — (2) Zn(an)z < ©

Often a,,(s) = 1/n(s)
 Where n(s) = # of times s is visited

Temporal Difference (TD) evaluation

TDevaluation(m, V")

Repeat
Execute m(s)
Observe s’ and r
Update counts: n(s) « n(s) + 1
Learning rate: a « 1/n(s)
Update value: V®(s) « V™(s) + a(r + yV™(s') — V™(s))
S« s

Until convergence of V'™

Return V'™

University of Waterloo CS885 Spring 2018 Pascal Poupart 13

Comparison

 Monte Carlo evaluation:
— Unbiased estimate
— High variance
— Needs many trajectories

« Temporal difference evaluation:
— Biased estimate
— Lower variance
— Needs less trajectories

University of Waterloo CS885 Spring 2018 Pascal Poupart

14

Model Free Control

* Instead of evaluating the state value fn, V" (s),
evaluate the state-action value fn, Q" (s, a)

Q™ (s, a): value of executing a followed by ©
Q" (s,a) = E[r|s,a] +y Xy Pr(s'ls,)V (s)

» Greedy policy '

n'(s) = argmax,Q™ (s, a)

Bellman’s Equation

* Optimal state value function V*(s)

V*(s) = mC?XE[T'lS, al + yz Pr(s'|s,a)V*(s)
* Optimal state-action value function Q*(s, a)
Q*(s,a) = E|r|s,a] + yz Pr(s'|s,a) max Q*(s’,a’)

where V*(s) = max,0Q"(s,a)
n*(s) = argmax,Q*(s,a)

Monte Carlo Control

« Let G} be a one-trajectory Monte Carlo target
Ge =1 + Zema ¥
‘—!—’

d T
 Alternate between
— Policy evaluation

Q;{(S, Cl) < Qg—l(sl Cl) + an(G;Ll o Q77’LT—1(SJ a))

— Policy improvement
' (s) « argmax,Q™(s,a)

Temporal Difference Control

» Approximate Q-function:

Q*(s,a) = E|r|s,a] +)/Z Pr(s’|s,a) max Q*(s',a")

~1r+ymax, Q*(s’,a’)

* Incremental update

Qn(5,@) < Qo1 (5,0) + @y (7 +y maxy Qn_y (s, @) = Qry(s,0))

Q-Learning

Qlearning(s, Q%)
Repeat
Select and execute a
Observe s’ and r
Update counts: n(s,a) « n(s,a) + 1
Learning rate: a < 1/n(s, a)
Update Q-value:
0*(s,a) « 0*(s,a) + « (r +y max 0*(s’,a’) — Q*(s, a))

s« s'
Until convergence of Q*
Return Q*

University of Waterloo CS885 Spring 2018 Pascal Poupart 19

Q-learning example

‘_»52 100 f_é S, 100
] D

66

ol |N
) 1)

y=0.9, a=0.5 r =0 fornon-terminal states

Q(sq,right) = Q(sq,right) + « (r +y max Q(s,,a’) — Q(sl,right))

= 73 + 0.5(0 + 0.9 max {66,81,100} — 73)
= 73 4 0.5(17)
= 81.5

Q-Learning

Qlearning(s, Q%)
Repeat
Select and execute a
Observe s’ and r
Update counts: n(s,a) « n(s,a) + 1
Learning rate: a < 1/n(s, a)
Update Q-value:
0*(s,a) « 0*(s,a) + « (r +y max 0*(s’,a’) — Q*(s, a))

s« s'
Until convergence of Q*
Return Q*

University of Waterloo CS885 Spring 2018 Pascal Poupart 21

Exploration vs Exploitation

* |If an agent always chooses the action with the
highest value then it is exploiting
— The learned model is not the real model
— Leads to suboptimal results

» By taking random actions (pure exploration) an
agent may learn the model

— But what is the use of learning a complete model if
parts of it are never used?

* Need a balance between exploitation and
exploration

Common exploration methods

* g-greedy:
— With probability e execute random action

— Otherwise execute best action a*
a” = argmax, Q(s,a)

* Boltzmann exploration
Q(s,a)
T

Q(s,a)
dae T

Pr(a) =

Exploration and Q-learning

* Q-learning converges to optimal Q-values if
— Every state is visited infinitely often (due to
exploration)
— The action selection becomes greedy as time
approaches infinity
— The learning rate «a is decreased fast enough, but not

too fast (sufficient conditions for a):

(N Znan > (2) Lnlan)® <o

Summary

* We can optimize a policy by RL when the
transition and reward functions are unknown

* Model free, value based agent:
— Monte Carlo learning (unbiased, but lots of data)
— Temporal difference learning (low variance, less data)

* Active learning:
— Exploration/exploitation dilemma

