CS885 Reinforcement Learning Lecture 2a: May 4, 2018

Intro to Markov decision processes [SutBar] Chap. 3, [Sze] Chap. 2, [RusNor] Sec. 17.1-17.2, 17.4,
[Put] Chap. 2, 4, 5

Markov Decision Process

- Markov process augmented with...
- Actions e.g., a_{t}
- Rewards e.g., r_{t}

Current Assumptions

- Uncertainty: stochastic process
- Time: sequential process
- Observability: fully observable states
- No learning: complete model
- Variable type: discrete (e.g., discrete states and actions)

Rewards

- Rewards: $r_{t} \in \Re$
- Reward function: $R\left(s_{t}, a_{t}\right)=r_{t}$ mapping from state-action pairs to rewards
- Common assumption: stationary reward function
$-R\left(s_{t}, a_{t}\right)$ is the same $\forall t$
- Exception: terminal reward function often different
- E.g., in a game: 0 reward at each turn and $+1 /-1$ at the end for winning/losing
- Goal: maximize sum of rewards $\sum_{t} R\left(s_{t}, a_{t}\right)$

Discounted/Average Rewards

- If process infinite, isn't $\sum_{t} R\left(s_{t}, a_{t}\right)$ infinite?
- Solution 1: discounted rewards
- Discount factor: $0 \leq \gamma<1$
- Finite utility: $\sum_{t} \gamma^{t} R\left(s_{t}, a_{t}\right)$ is a geometric sum
$-\gamma$ induces an inflation rate of $1 / \gamma-1$
- Intuition: prefer utility sooner than later
- Solution 2: average rewards
- More complicated computationally
- Beyond the scope of this course

Markov Decision Process

- Definition
- Set of states: S
- Set of actions: A
- Transition model: $\operatorname{Pr}\left(s_{t} \mid s_{t-1}, a_{t-1}\right)$
- Reward model: $R\left(s_{t}, a_{t}\right)$
- Discount factor: $0 \leq \gamma \leq 1$
- discounted: $\gamma<1 \quad$ undiscounted: $\gamma=1$
- Horizon (i.e., \# of time steps): h
- Finite horizon: $h \in \mathbb{N}$ infinite horizon: $h=\infty$
- Goal: find optimal policy

Inventory Management

- Markov Decision Process
- States: inventory levels
- Actions: \{doNothing, orderWidgets\}
- Transition model: stochastic demand
- Reward model: Sales - Costs - Storage
- Discount factor: 0.999
- Horizon: ∞
- Tradeoff: increasing supplies decreases odds of missed sales, but increases storage costs

Policy

- Choice of action at each time step
- Formally:
- Mapping from states to actions
- i.e., $\pi\left(s_{t}\right)=a_{t}$
- Assumption: fully observable states
- Allows a_{t} to be chosen only based on current state s_{t}

Policy Optimization

- Policy evaluation:
- Compute expected utility

$$
V^{\pi}\left(s_{0}\right)=\sum_{t=0}^{h} \gamma^{t} \sum_{s_{t}} \operatorname{Pr}\left(s_{t} \mid s_{0}, \pi\right) R\left(s_{t}, \pi\left(s_{t}\right)\right)
$$

- Optimal policy:
- Policy with highest expected utility

$$
V^{\pi^{*}}\left(s_{0}\right) \geq V^{\pi}\left(s_{0}\right) \forall \pi
$$

Policy Optimization

- Several classes of algorithms:
- Value iteration
- Policy iteration
- Linear Programming
- Search techniques
- Computation may be done
- Offline: before the process starts
- Online: as the process evolves

Value Iteration

- Performs dynamic programming
- Optimizes decisions in reverse order

Value Iteration

- Value when no time left:

$$
V\left(s_{h}\right)=\max _{a_{h}} R\left(s_{h}, a_{h}\right)
$$

- Value with one time step left:

$$
V\left(s_{h-1}\right)=\max _{a_{h-1}} R\left(s_{h-1}, a_{h-1}\right)+\gamma \sum_{s_{h}} \operatorname{Pr}\left(s_{h} \mid s_{h-1}, a_{h-1}\right) V\left(s_{h}\right)
$$

- Value with two time steps left:

$$
V\left(s_{h-2}\right)=\max _{a_{h-2}} R\left(s_{h-2}, a_{h-2}\right)+\gamma \sum_{s_{h-1}} \operatorname{Pr}\left(s_{h-1} \mid s_{h-2}, a_{h-2}\right) V\left(s_{h-1}\right)
$$

- Bellman's equation:

$$
\begin{aligned}
& V\left(s_{t}\right)=\max _{a_{t}} R\left(s_{t}, a_{t}\right)+\gamma \sum_{s_{t+1}} \operatorname{Pr}\left(s_{t+1} \mid s_{t}, a_{t}\right) V\left(s_{t+1}\right) \\
& a_{t}^{*}=\underset{a_{t}}{\operatorname{argmax}} R\left(s_{t}, a_{t}\right)+\gamma \sum_{s_{t+1}} \operatorname{Pr}\left(s_{t+1} \mid s_{t}, a_{t}\right) V\left(s_{t+1}\right)
\end{aligned}
$$

A Markov Decision Process

\boldsymbol{t}	$\boldsymbol{V}(\boldsymbol{P U})$	$\boldsymbol{\pi}(\boldsymbol{P} \boldsymbol{U})$	$\boldsymbol{V}(\boldsymbol{P F})$	$\boldsymbol{\pi}(\boldsymbol{P F})$	$\boldsymbol{V}(\boldsymbol{R U})$	$\boldsymbol{\pi}(\boldsymbol{R} \boldsymbol{U})$	$\boldsymbol{V}(\boldsymbol{R F})$	$\boldsymbol{\pi}(\boldsymbol{R F})$
h	0	$\mathrm{~A}, \mathrm{~S}$	0	$\mathrm{~A}, \mathrm{~S}$	10	$\mathrm{~A}, \mathrm{~S}$	10	$\mathrm{~A}, \mathrm{~S}$
$h-1$	0	$\mathrm{~A}, \mathrm{~S}$	4.5	S	14.5	S	19	S
$h-2$	2.03	A	8.55	S	16.53	S	25.08	S
$h-3$	4.76	A	12.20	S	18.35	S	28.72	S
$h-4$	7.63	A	15.07	S	20.40	S	31.18	S
$h-5$	10.21	A	17.46	S	22.61	S	33.21	S

Finite Horizon

- When h is finite,
- Non-stationary optimal policy
- Best action different at each time step
- Intuition: best action varies with the amount of time left

Infinite Horizon

- When h is infinite,
- Stationary optimal policy
- Same best action at each time step
- Intuition: same (infinite) amount of time left at each time step, hence same best action
- Problem: value iteration does an infinite number of iterations...

Infinite Horizon

- Assuming a discount factor γ, after n time steps, rewards are scaled down by γ^{n}
- For large enough n, rewards become insignificant since $\gamma^{n} \rightarrow 0$
- Solution:
- pick large enough n
- run value iteration for n steps
- Execute policy found at the $n^{\text {th }}$ iteration

