CS885 Reinforcement Learning Lecture 2a: May 4, 2018

Intro to Markov decision processes [SutBar] Chap. 3, [Sze] Chap. 2, [RusNor] Sec. 17.1-17.2, 17.4, [Put] Chap. 2, 4, 5

Markov Decision Process

- Markov process augmented with...
 - Actions e.g., a_t
 - Rewards e.g., r_t

Current Assumptions

- Uncertainty: stochastic process
- Time: sequential process
- Observability: fully observable states
- No learning: complete model
- Variable type: discrete (e.g., discrete states and actions)

Rewards

- Rewards: $r_t \in \Re$
- Reward function: $R(s_t, a_t) = r_t$ mapping from state-action pairs to rewards
- Common assumption: stationary reward function
 - $-R(s_t, a_t)$ is the same $\forall t$
- Exception: terminal reward function often different
 - E.g., in a game: 0 reward at each turn and +1/-1 at the end for winning/losing
- Goal: maximize sum of rewards $\sum_t R(s_t, a_t)$

Discounted/Average Rewards

- If process infinite, isn't $\sum_t R(s_t, a_t)$ infinite?
- Solution 1: discounted rewards
 - Discount factor: $0 \le \gamma < 1$
 - Finite utility: $\sum_t \gamma^t R(s_t, a_t)$ is a geometric sum
 - $-\gamma$ induces an inflation rate of $1/\gamma 1$
 - Intuition: prefer utility sooner than later
- Solution 2: average rewards
 - More complicated computationally
 - Beyond the scope of this course

Markov Decision Process

- Definition
 - Set of states: S
 - Set of actions: A
 - Transition model: $Pr(s_t|s_{t-1},a_{t-1})$
 - Reward model: $R(s_t, a_t)$
 - Discount factor: $0 \le \gamma \le 1$
 - discounted: $\gamma < 1$ undiscounted: $\gamma = 1$
 - Horizon (i.e., # of time steps): h
 - Finite horizon: $h \in \mathbb{N}$ infinite horizon: $h = \infty$
- Goal: find optimal policy

Inventory Management

- Markov Decision Process
 - States: inventory levels
 - Actions: {doNothing, orderWidgets}
 - Transition model: stochastic demand
 - Reward model: Sales Costs Storage
 - Discount factor: 0.999
 - Horizon: ∞
- Tradeoff: increasing supplies decreases odds of missed sales, but increases storage costs

Policy

Choice of action at each time step

- Formally:
 - Mapping from states to actions
 - i.e., $\pi(s_t) = a_t$
 - Assumption: fully observable states
 - Allows a_t to be chosen only based on current state s_t

Policy Optimization

- Policy evaluation:
 - Compute expected utility

$$V^{\pi}(s_0) = \sum_{t=0}^{h} \gamma^t \sum_{s_t} \Pr(s_t | s_0, \pi) R(s_t, \pi(s_t))$$

- Optimal policy:
 - Policy with highest expected utility

$$V^{\pi^*}(s_0) \ge V^{\pi}(s_0) \ \forall \pi$$

Policy Optimization

- Several classes of algorithms:
 - Value iteration
 - Policy iteration
 - Linear Programming
 - Search techniques

- Computation may be done
 - Offline: before the process starts
 - Online: as the process evolves

Value Iteration

- Performs dynamic programming
- Optimizes decisions in reverse order

Value Iteration

Value when no time left:

$$V(s_h) = \max_{a_h} R(s_h, a_h)$$

Value with one time step left:

$$V(s_{h-1}) = \max_{a_{h-1}} R(s_{h-1}, a_{h-1}) + \gamma \sum_{s_h} \Pr(s_h | s_{h-1}, a_{h-1}) V(s_h)$$

Value with two time steps left:

$$V(s_{h-2}) = \max_{a_{h-2}} R(s_{h-2}, a_{h-2}) + \gamma \sum_{s_{h-1}} \Pr(s_{h-1}|s_{h-2}, a_{h-2}) V(s_{h-1})$$

- •
- Bellman's equation:

$$V(s_t) = \max_{a_t} R(s_t, a_t) + \gamma \sum_{s_{t+1}} \Pr(s_{t+1}|s_t, a_t) V(s_{t+1})$$

$$a_t^* = \underset{a_t}{\operatorname{argmax}} R(s_t, a_t) + \gamma \sum_{s_{t+1}} \Pr(s_{t+1}|s_t, a_t) V(s_{t+1})$$

A Markov Decision Process

t	V(PU)	$\pi(PU)$	V(PF)	$\pi(PF)$	V(RU)	$\pi(RU)$	V(RF)	$\pi(RF)$
h	0	A,S	0	A,S	10	A,S	10	A,S
h-1	0	A,S	4.5	S	14.5	S	19	S
h-2	2.03	Α	8.55	S	16.53	S	25.08	S
h-3	4.76	Α	12.20	S	18.35	S	28.72	S
h-4	7.63	Α	15.07	S	20.40	S	31.18	S
h-5	10.21	Α	17.46	S	22.61	S	33.21	S

Finite Horizon

- When h is finite,
- Non-stationary optimal policy
- Best action different at each time step
- Intuition: best action varies with the amount of time left

Infinite Horizon

- When h is infinite,
- Stationary optimal policy
- Same best action at each time step
- Intuition: same (infinite) amount of time left at each time step, hence same best action
- Problem: value iteration does an infinite number of iterations...

Infinite Horizon

- Assuming a discount factor γ , after n time steps, rewards are scaled down by γ^n
- For large enough n, rewards become insignificant since $\gamma^n \to 0$
- Solution:
 - pick large enough n
 - run value iteration for n steps
 - Execute policy found at the n^{th} iteration