CS885 Reinforcement Learning
Lecture 2a: May 4, 2018

Intro to Markov decision processes
[SutBar] Chap. 3, [Sze] Chap. 2,
[RusNor] Sec. 17.1-17.2, 17.4,

[Put] Chap. 2,4, 5

University of Waterloo CS885 Spring 2018 Pascal Poupart

Markov Decision Process

* Markov process augmented with...
— Actions e.g., a;
— Rewards e.g., 13

Current Assumptions

* Uncertainty: stochastic process

* Time: sequential process

* Observability: fully observable states
* No learning: complete model

*\ariable type: discrete (e.g., discrete states and
actions)

University of Waterloo CS885 Spring 2018 Pascal Poupart

Rewards

Rewards: 1; € R

Reward function: R(s;, a;) = r;
mapping from state-action pairs to rewards

Common assumption: stationary reward function
— R(s¢,a;) is the same Vt

Exception: terminal reward function often different

— E.g., in a game: 0 reward at each turn and +1/-1 at the end
for winning/losing

Goal: maximize sum of rewards), R(s;, a,)

Discounted/Average Rewards

* If process infinite, isn’t), R(S¢, a;) infinite?

* Solution 1: discounted rewards
— Discount factor: 0 <y <1
— Finite utility: Y., y*R(s;, a;) is a geometric sum
— Y induces an inflationrateof 1/y — 1
— Intuition: prefer utility sooner than later

* Solution 2: average rewards
— More complicated computationally
— Beyond the scope of this course

Markov Decision Process

e Definition
— Set of states: S
— Set of actions: A
— Transition model: Pr(s;|s;_¢, as—1)
— Reward model: R(s¢, a;)

— Discount factor: 0 <y <1
* discounted: y <1 undiscounted: y = 1

— Horizon (i.e., # of time steps): h
e Finite horizon: h € N infinite horizon: h = o

* Goal: find optimal policy

Inventory Management

* Markov Decision Process
— States: inventory levels
— Actions: {doNothing, orderWidgets}
— Transition model: stochastic demand
— Reward model: Sales — Costs - Storage
— Discount factor: 0.999

— Horizon: e°

* Tradeoff: increasing supplies decreases odds of
missed sales, but increases storage costs

University of Waterloo CS885 Spring 2018 Pascal Poupart

Policy

* Choice of action at each time step

* Formally:
— Mapping from states to actions
—i.e, n(s;) = a;
— Assumption: fully observable states
* Allows a; to be chosen only based on current state s;

Policy Optimization

e Policy evaluation:

— Compute expected utility
VT (so) = ?=0 y* Zst Pr(s¢lsg,) R(s¢, m(s¢t))

* Optimal policy:
— Policy with highest expected utility
VT[* (So) = VT[(S()) vVr

Policy Optimization

e Several classes of algorithms:
— Value iteration
— Policy iteration
— Linear Programming
— Search techniques

 Computation may be done
— Offline: before the process starts
— Online: as the process evolves

Value lteration

* Performs dynamic programming
* Optimizes decisions in reverse order

Value lteration

 Value when no time left:
V(sy) = maxR(sy, ap)
ap

* Value with one time step left:
V(sp-1) = g}lﬁfR(Sh—p ap-1) + v Us, Pr(snlsn—1, an—1) V(sp)
* Value with two time steps left:

V(sp—2) = ELT}IE);R(Sh—z, Ap-2) TV Lsp_, Pr(Sn—1lSn—2, an—2) V(sSp-1)

* Bellman’s equation:
V(st) = rr}f:XR(St: ag) + VZsHl Pr(seyalse, ar) V(Sty1)

a; = argmax R(sg, ar) + v Xs,,, Pr(Se4115e, ar) V(St41)
at

University of Waterloo CS885 Spring 2018 Pascal Poupart 12

A Markov Decision Process

E v=0.9

Poor &

Poor & You ownh a
Unknown Famous | A company
+0 10

In every state
S you must
choose between
1 Saving money or

’ Advertising

Rich &
Famous
+10

Rich &
Unknown

+10

V2

‘.h.. e

1 1/2 1/2

t V(PU) \w(PU) |V(PF) |\t(PF) |V(RU) |m(RU) |V(RF) |t(RF)
h 0 A,S 0 A,S 10 A,S 10 A,S
h—1 0 A,S 4.5 S 14.5 S 19 S
h—2 2.03 A 8.55 S 16.53 S 25.08 S
h—3 4.76 A 12.20 S 18.35 S 28.72 S
h —4 7.63 A 15.07 S 20.40 S 31.18 S
h—5 | 10.21 A 17.46 S 22.61 S 33.21 S

Finite Horizon

When h is finite,
Non-stationary optimal policy
Best action different at each time step

Intuition: best action varies with the amount of time
left

Infinite Horizon

When h is infinite,
Stationary optimal policy
Same best action at each time step

Intuition: same (infinite) amount of time left at each
time step, hence same best action

Problem: value iteration does an infinite number of
iterations...

Infinite Horizon

Assuming a discount factor y, after n time steps,
rewards are scaled down by y"

For large enough n, rewards become insignificant
sincey™ - 0
Solution:

— pick large enough n
— run value iteration for n steps
— Execute policy found at the nt" iteration

