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Markov Processes
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Outline

* Environment dynamics
* Stochastic processes

— Markovian assumption
— Stationary assumption



Recall: RL Problem

Agent

Sta//Rewa rd \ction

Environment

Goal: Learn to choose actions that maximize rewards



Unrolling the Problem

* Unrolling the control loop leads to a sequence of
states, actions and rewards:

S0, Ao, 10, S1,A1,71,S2,A9, 1, ...

* This sequence forms a stochastic process (due to
some uncertainty in the dynamics of the process)



Common Properties

* Processes are rarely arbitrary

* They often exhibit some structure
— Laws of the process do not change
— Short history sufficient to predict future

 Example: weather prediction

— Same model can be used everyday to predict
weather

— Weather measurements of past few days sufficient
to predict weather.
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Stochastic Process

* Consider the sequence of states only

* Definition
— Set of States: S
— Stochastic dynamics: Pr(s,|s, 1, ..., So)




Stochastic Process

* Problem:

— Infinitely large conditional distributions

* Solutions:
— Stationary process: dynamics do not change over
time
— Markov assumption: current state depends only on
a finite history of past states
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K-order Markov Process

* Assumption: last k states sufficient
* First-order Markov Process

_ Pr(stlst_l, cer) SO) = Pr(stlst-l)

e Second-order Markov Process

— Pr(stlst_]_) eee) SO) - Pr(stlst'l’ St-Z)




Markov Process

* By default, a Markov Process refers to a
— First-order process
Pr(s¢|st—1,St—2, -, S0) = Pr(s¢|s;—1) Vt
— Stationary process
Pr(s¢|si—1) = Pr(s,s|s;r_{) Vt'

* Advantage: can specify the entire process with a
single concise conditional distribution

Pr(s’|s)



Examples

e Robotic control

— States: (x,y,z,0)
coordinates of joints

— Dynamics: constant motion

* |Inventory management
— States: inventory level

— Dynamics: constant (stochastic)
demand
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Non-Markovian and/or
non-stationary processes

* What if the process is not Markovian and/or not
stationary?

* Solution: add new state components until dynamics
are Markovian and stationary

— Robotics: the dynamics of (x, y, z, ) are not stationary
when velocity varies...

— Solution: add velocity to state description e.g.
(x,y,2,0,%,7y,2,0)

— If acceleration varies... then add acceleration to state

— Where do we stop?



Markovian Stationary Process

* Problem: adding components to the state
description to force a process to be Markovian and
stationary may significantly increase computational
complexity

e Solution: try to find the smallest state description
that is self-sufficient (i.e., Markovian and stationary)



Inference in Markov processes

e Common task:

— Prediction: Pr(S¢.4x|s¢)

* Computation:

K
— Pr(siqilse) = Zst+1...st+k_1 [liz1 Prisesilsesi-1)

* Discrete states (matrix operations):
— Let T be a |S|X|S| matrix representing Pr(s;;1|S¢)
— Then Pr(s; g |s;) = T
— Complexity: 0(k|S|?)



Decision Making

Predictions by themselves are useless

They are only useful when they will influence future
decisions

Hence the ultimate task is decision making

How can we influence the process to visit desirable
states?

e Model: Markov Decision Process



