CS885 Reinforcement Learning Lecture 14c: June 15, 2018

Trust Region Methods
[Nocedal and Wright, Chapter 4]

Optimization in ML

- It is common to formulate ML problems as optimization problems.
 - Min squared error
 - Min cross entropy
 - Max log likelihood
 - Max discounted sum of rewards

Two important classes

- Line search methods
 - Find a direction of improvement
 - Select a step length

- Trust region methods
 - Select a trust region (analog to max step length)
 - Find a point of improvement in the region

Trust Region Methods

- Idea:
 - Approximate objective f with a simpler objective \tilde{f}
 - Solve $\tilde{x}^* = argmin_{x}\tilde{f}(x)$
- **Problem:** The optimum \tilde{x}^* might be in a region where \tilde{f} poorly approximates f and therefore \tilde{x}^* might be far from optimal
- Solution: restrict the search to a region where we trust \tilde{f} to approximate f well.
 - Solve $\tilde{x}^* = argmin_{x \in trustRegion} f(x)$

Example

• $ilde{f}$ often chosen to be a quadratic approximation of f

$$f(x) \approx \tilde{f}(x)$$

$$= f(c) + \nabla f(c)^T (x - c) + \frac{1}{2!} (x - c)^T H(c)(x - c)$$

where ∇f is the gradient and H is the hessian

• Trust region often chosen to be a hypersphere $||x - c||_2 \le \delta$

Generic Algorithm

trustRegionMethod

```
Initialize \delta, x_0^* and n=0
Repeat
```

$$n \leftarrow n+1$$

Solve $x_n^* = argmin_x f(x)$ subject to $||x-x_{n-1}^*||_2 \le \delta$
If $\tilde{f}(x_n^*) \approx f(x_n^*)$ then increase δ
else decrease δ

Until convergence

Trust Region Subproblem

• \tilde{f} often chosen to be a quadratic approximation of f

$$\min_{x} f(c) + \nabla f(c)^{T}(x - c) + \frac{1}{2!}(x - c)^{T}H(c)(x - c)$$
subject to $||x - c||_{2} \le \delta$

- When H is positive semi-definite
 - Convex optimization
 - Simple and globally optimal solution
- When H is not positive semi-definite
 - Non-convex optimization
 - Simple heuristics that guarantee improvement