
CS885 Reinforcement Learning
Lecture 10: June 1, 2018

Bayesian RL

Reading: Michael O’Gordon Duff’s PhD Thesis (2002)
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Outline

• Model-based Bayesian RL
– Value iteration with belief model
– Thompson sampling in Bayesian RL
– PILCO: model-based Bayesian actor critic

University of Waterloo
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Model-free vs model-based RL
• Model-free RL: unbiased direct learning, needs many 

interactions with environment
• Model-based: biased indirect learning via a model, 

if bias is not too important then less data needed

University of Waterloo

Agent: update 
policy/value function

Environment
action

state
reward
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Biased model
• Problem:

– Model learned from finite amount of data
– Model is necessarily imperfect
– There is a risk that planning will overfit the model 

inaccuracies and produce a bad policy

• Solution: represent uncertainty in model

University of Waterloo

Transition data Possible transition models Model uncertainty
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Bayesian RL

• Explicit representation of uncertainty
• Benefits

– Balance exploration/exploitation tradeoff
– Mitigate model bias
– Reduce data needs

• Drawback
– Complex computation

University of Waterloo
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Traditional RL

• Reinforcement Learning
– States: 𝐬 ∈ 𝑺
– Actions: 𝐚 ∈ 𝑨
– Rewards: 𝐫 ∈ ℝ
– Unknown model: 𝐏𝐫(𝒓, 𝒔!|𝒔, 𝒂; 𝜽)

• Goal: find policy 𝜋: 𝑆 → 𝐴
and/or value function 𝑄: 𝑆 × 𝐴 → ℝ

University of Waterloo
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Bayesian RL

• Idea: augment state with distribution about 
unknown parameters
– Information states: 𝒔, 𝒃 ∈ 𝑺 × 𝑩

• Physical states: 𝒔 ∈ 𝑺
• Belief states: 𝒃 ∈ 𝑩where 𝑏 𝜃 = Pr(𝜃)

– Actions: 𝐚 ∈ 𝑨
– Rewards: 𝐫 ∈ ℝ
– Known model: 𝐏𝐫(𝒓, 𝒔!, 𝒃!|𝒔, 𝒃, 𝒂)

• Goal: find policy 𝜋: 𝑆 × 𝐵 → 𝐴
and/or value function 𝑄: 𝑆 × 𝐵 × 𝐴 → ℝ

University of Waterloo
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Model in Bayesian RL

• Claim: the model in Bayesian RL is known!
Pr 𝑟, 𝑠!, 𝑏! 𝑠, 𝑏, 𝑎 = Pr 𝑟, 𝑠! 𝑠, 𝑏, 𝑎 Pr(𝑏!|𝑟, 𝑠!, 𝑠, 𝑏, 𝑎)

• Idea:	integrate	out	unknown	𝜃
Pr 𝑟, 𝑠! 𝑠, 𝑏, 𝑎 = 9

"
Pr 𝑟, 𝑠! 𝑠, 𝑎, 𝜃 𝑏 𝜃 𝑑𝜃

• Idea: 𝑏’ is the posterior belief

Pr 𝑏! 𝑟, 𝑠!, 𝑠, 𝑏, 𝑎 = <1 if 𝑏! 𝜃 = 𝑏#,%,#!,& = 𝑏(𝜃|𝑠, 𝑎, 𝑠!, 𝑟)
0 otherwise.

University of Waterloo

Physical model belief model
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Maze Example
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Transition model (when ignoring boundaries): 

Pr 𝑖!, 𝑗!|𝑖, 𝑗, 𝑟𝑖𝑔ℎ𝑡, 𝜃 =
𝜃 𝑖! = 𝑖 + 1 and 𝑗! = 𝑗
"#$
%

𝑖! = 𝑖 and (𝑗! = 𝑗 + 1 𝑜𝑟 𝑗! = 𝑗 − 1)
0 otherwise .

Pr 𝑖!, 𝑗!|𝑖, 𝑗, 𝑢𝑝, 𝜃 =
𝜃 𝑖! = 𝑖 and 𝑗! = 𝑗 + 1

"#$
%

𝑖! = 𝑖 + 1 𝑜𝑟 𝑖! = 𝑖 − 1 and 𝑗! = 𝑗.
0 otherwise .

(similarly for the other actions)

g = 1

Reward is -0.04 for 
non-terminal states

University of Waterloo
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Belief state

• Let’s model our uncertainty with respect to 𝜃 by a 
Beta distribution

𝑏 𝜃 = 𝑘𝜃!"# 1 − 𝜃 $"#

• Belief update: Bayes theorem

𝑏% 𝜃 = 𝑏&,(,&! 𝜃
= 𝑏 𝜃 𝑠, 𝑎, 𝑠%

∝ 𝑏 𝜃 𝑃𝑟(𝑠%|𝑠, 𝑎, 𝜃)

University of Waterloo
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Example belief update

• Prior
𝑏 𝜃 = 𝐵𝑒𝑡𝑎 𝜃; 𝛼, 𝛽 = 𝑘𝜃FGH 1 − 𝜃 IGH

• Posterior for 𝑖, 𝑗, 𝑢𝑝 → 𝑖!, 𝑗! where 𝑖! = 𝑖 and 𝑗! = 𝑗 + 1
• Belief update: Bayes theorem

𝑏! 𝜃 = 𝑏#,%,#! 𝜃 = 𝑏 𝜃 𝑠, 𝑎, 𝑠! = 𝑏 𝜃 𝑖, 𝑗, 𝑢𝑝, 𝑖!, 𝑗′
∝ 𝑏 𝜃 𝑃𝑟 𝑖!, 𝑗! 𝑖, 𝑗, 𝑢𝑝, 𝜃
= 𝑘𝜃FGH 1 − 𝜃 IGH𝜃
= 𝑘𝜃F 1 − 𝜃 IGH ∝ 𝐵𝑒𝑡𝑎(𝜃; 𝛼 + 1, 𝛽)

University of Waterloo
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Physical Model

• Consider 𝑠 = (𝑖, 𝑗), 𝑎 = 𝑟𝑖𝑔ℎ𝑡, 𝑠′ = (𝑖%, 𝑗′)
where 𝑖% = 𝑖 and 𝑗% = 𝑗 − 1

• Predictive distribution
Pr 𝑠% 𝑠, 𝑏, 𝑎 = ∫) Pr 𝑠

% 𝑠, 𝑎, 𝜃 𝑏 𝜃 𝑑𝜃
= ∫" Pr 𝑖

!, 𝑗! 𝑖, 𝑗, 𝑟𝑖𝑔ℎ𝑡, 𝜃 𝐵𝑒𝑡𝑎 𝜃; 𝛼, 𝛽 𝑑𝜃

= ∫"
#$"
%

𝑘𝜃&$# 1 − 𝜃 '$#𝑑𝜃 = '
%

University of Waterloo
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Planning

• Since the model is known, treat Bayesian RL as an MDP
• Benefits: 

– Solve RL problem by planning (e.g., value/policy iteration)
– Optimal exploration/exploitation tradeoff

• Drawback:
– Complex computation

• Bellman’s Equation:

𝑉∗(𝑠, 𝑏) = max
#
𝐸[𝑟|𝑠, 𝑏, 𝑎] + 𝛾;

$&
Pr 𝑠% 𝑠, 𝑎, 𝑏 𝑉∗(𝑠%, 𝑏$,#,$%) ∀𝑠

where 𝐸 𝑟 𝑠, 𝑏, 𝑎 = ∫' 𝑏 𝜃 ∫( 𝑝𝑑𝑓 𝑟 𝑠, 𝑎, 𝜃 𝑟 𝑑𝑟 𝑑𝜃

University of Waterloo
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Value Iteration
• Traditional MDP

• Information state MDP

University of Waterloo

valueIteration(MDP)
𝑉"∗ 𝑠 ← max

$
𝐸[𝑟|𝑠, 𝑎] ∀𝑠

For 𝑡 = 1 to ℎ do
𝑉%∗ 𝑠 ← max

$
𝐸[𝑟|𝑠, 𝑎] + 𝛾∑&! Pr 𝑠' 𝑠, 𝑎 𝑉%()∗ (𝑠') ∀𝑠

Return 𝑉∗

valueIteration(BayesianRL)
𝑉"∗ 𝑠, 𝑏 ← max

$
𝐸[𝑟|𝑠, 𝑏, 𝑎] ∀𝑠

For 𝑡 = 1 to ℎ do
𝑉%∗ 𝑠, 𝑏 ← max

$
𝐸[𝑟|𝑠, 𝑏, 𝑎] + 𝛾∑&! Pr 𝑠' 𝑠, 𝑎, 𝑏 𝑉%()∗ (𝑠', 𝑏&,$,&') ∀𝑠

Return 𝑉∗
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Exploration/exploitation tradeoff

• Dilemma:
– Maximize immediate rewards (exploitation)?
– Or, maximize information gain (exploration)?

• Wrong question!

• Single objective: max expected total rewards
– 𝑉+ 𝑠, 𝑏 = ∑% 𝛾%𝐸[𝑟%|𝑠%, 𝑏%]
– Optimal policy 𝜋∗: 𝑉+∗ 𝑠, 𝑏 ≥ 𝑉+ 𝑤, 𝑏 for all s,b

• Optimal exploration/exploitation tradeoff
(given prior knowledge)

University of Waterloo
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Bayesian RL

• Two phases:
– Offline planning (without the environment)

– Online execution (with the environment)

University of Waterloo

Find 𝜋∗ and/or 𝑉∗
by policy/value iteration or any other algorithm

Initialize 𝑠", 𝑏", 𝑛 ← 0
Repeat

Execute policy 𝑎, ← 𝜋 𝑠,, 𝑏,
receive 𝑠,-) and 𝑟, from the environment
Belief update: 𝑏,-) 𝜃 = 𝑏,

&#,$#,.#,&#$% 𝜃 = 𝑏, 𝜃 𝑠,, 𝑎,, 𝑟,', 𝑠,-)'

𝑛 ← 𝑛 + 1
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Challenges in Bayesian RL

• Offline planning is notoriously difficult
– Use function approximators (e.g., Gaussian process or 

neural net) for model, 𝑉∗ and 𝜋∗

– Continuous belief space 
– Problem: a good plan should implicitly account for all 

possible environments, which is intractable

• Alternative: online partial planning
– Thompson sampling
– PILCO (Model-based Bayesian Actor Critic)

University of Waterloo
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Thompson Sampling in Bayesian RL

• Idea: Sample models 𝜃J at each step and plan for the 
corresponding 𝑀𝐷𝑃))’s

University of Waterloo

ThompsonSamplingInBayesianRL(s,b)
Repeat

Sample 𝜃H, … , 𝜃K ~ Pr(𝜃)
𝑄"/
∗ ← 𝑠𝑜𝑙𝑣𝑒 𝑀𝐷𝑃"/ ∀𝑖
e𝑄 𝑠, 𝑎 ← H

K
∑LMHK 𝑄"/

∗ 𝑠, 𝑎 ∀𝑎
𝑎∗ ← argmaxN e𝑄 𝑠, 𝑎
Execute 𝑎∗ and receive 𝑟, 𝑠′
𝑏(𝜃) ← 𝑏 𝜃 Pr(𝑟, 𝑠!|𝑠, 𝑎∗, 𝜃)
𝑠 ← 𝑠′
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Model-based Bayesian Actor Critic

• PILCO: Deisenroth, Rasmussen (2011)
– 𝑏(𝜃): Gaussian Process transition model

• Deep PILCO: Gal, McCallister, Rasmussen (2016) 
– 𝑏(𝜃): Bayesian neural network transition model

University of Waterloo

PILCO(𝑠, 𝑏, 𝜋)
Repeat

Repeat
Critic: 𝑉OP ← 𝑝𝑜𝑙𝑖𝑐𝑦𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛(𝑏, 𝜋)
Actor: 𝜋 ← 𝜋 + 𝛼 𝜕𝑉OP/𝜕𝜋

𝑎 ← 𝜋(𝑠, 𝑏)
Execute 𝑎 and receive 𝑟, 𝑠′
𝑏 ← 𝑏#,%,&,#! and   𝑠 ← 𝑠′
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Unprecedented Data Efficiency

University of Waterloo

Cartpole problem


