CS885 Reinforcement Learning Lecture 10: June 1, 2018

Bayesian RL

Reading: Michael O'Gordon Duff's PhD Thesis (2002)

Outline

- Model-based Bayesian RL
 - Value iteration with belief model
 - Thompson sampling in Bayesian RL
 - PILCO: model-based Bayesian actor critic

Model-free vs model-based RL

- Model-free RL: unbiased direct learning, needs many interactions with environment
- Model-based: biased indirect learning via a model, if bias is not too important then less data needed

Biased model

Problem:

- Model learned from finite amount of data
- Model is necessarily imperfect
- There is a risk that planning will overfit the model inaccuracies and produce a bad policy
- Solution: represent uncertainty in model

Transition data

Possible transition models

Bayesian RL

- Explicit representation of uncertainty
- Benefits
 - Balance exploration/exploitation tradeoff
 - Mitigate model bias
 - Reduce data needs
- Drawback
 - Complex computation

Traditional RL

Reinforcement Learning

− States: $\mathbf{s} \in \mathbf{S}$

- Actions: $\mathbf{a} \in A$

– Rewards: $\mathbf{r} \in \mathbb{R}$

- Unknown model: $Pr(r, s'|s, a; \theta)$

• Goal: find policy $\pi: S \to A$ and/or value function $Q: S \times A \to \mathbb{R}$

Bayesian RL

- Idea: augment state with distribution about unknown parameters
 - Information states: $(s, b) \in S \times B$
 - Physical states: $s \in S$
 - Belief states: $\boldsymbol{b} \in \boldsymbol{B}$ where $b(\theta) = \Pr(\theta)$
 - Actions: $a \in A$
 - Rewards: $\mathbf{r} \in \mathbb{R}$
 - Known model: Pr(r, s', b'|s, b, a)
- Goal: find policy $\pi: S \times B \to A$ and/or value function $Q: S \times B \times A \to \mathbb{R}$

Model in Bayesian RL

Claim: the model in Bayesian RL is known!

$$\Pr(r, s', b'|s, b, a) = \Pr(r, s'|s, b, a) \Pr(b'|r, s', s, b, a)$$

$$\Pr(b'|r, s', s, b, a)$$

• Idea: integrate out unknown θ

$$Pr(r,s'|s,b,a) = \int_{\theta} Pr(r,s'|s,a,\theta) b(\theta) d\theta$$

Idea: b' is the posterior belief

$$\Pr(b'|r,s',s,b,a) = \begin{cases} 1 & \text{if } b'(\theta) = b^{s,a,s',r} = b(\theta|s,a,s',r) \\ 0 & \text{otherwise.} \end{cases}$$

Maze Example

$$\gamma = 1$$

Reward is -0.04 for non-terminal states

Transition model (when ignoring boundaries):

$$\Pr(i',j'|i,j,right,\theta) = \begin{cases} \theta & i' = i+1 \text{ and } j' = j \\ \frac{1-\theta}{2} & i' = i \text{ and } (j' = j+1 \text{ or } j' = j-1) \\ 0 & \text{otherwise} \end{cases}$$

$$\Pr(i',j'|i,j,up,\theta) = \begin{cases} \theta & i' = i \text{ and } j' = j+1 \\ \frac{1-\theta}{2} & (i' = i+1 \text{ or } i' = i-1) \text{ and } j' = j. \\ 0 & \text{otherwise} \end{cases}$$

$$\text{(similarly for the other actions)}$$

(similarly for the other actions)

Belief state

• Let's model our uncertainty with respect to θ by a Beta distribution

$$b(\theta) = k\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

Belief update: Bayes theorem

$$b'(\theta) = b^{s,a,s'}(\theta)$$

$$= b(\theta|s,a,s')$$

$$\propto b(\theta)Pr(s'|s,a,\theta)$$

Example belief update

Prior

$$b(\theta) = Beta(\theta; \alpha, \beta) = k\theta^{\alpha-1}(1-\theta)^{\beta-1}$$

- Posterior for $i, j, up \rightarrow i', j'$ where i' = i and j' = j + 1
- Belief update: Bayes theorem

$$b'(\theta) = b^{s,a,s'}(\theta) = b(\theta|s,a,s') = b(\theta|i,j,up,i',j')$$

$$\propto b(\theta)Pr(i',j'|i,j,up,\theta)$$

$$= k\theta^{\alpha-1}(1-\theta)^{\beta-1}\theta$$

$$= k\theta^{\alpha}(1-\theta)^{\beta-1} \propto Beta(\theta;\alpha+1,\beta)$$

Physical Model

• Consider s=(i,j), a=right, s'=(i',j') where i'=i and j'=j-1

Predictive distribution

$$Pr(s'|s,b,a) = \int_{\theta} Pr(s'|s,a,\theta) b(\theta) d\theta$$
$$= \int_{\theta} Pr(i',j'|i,j,right,\theta) Beta(\theta;\alpha,\beta) d\theta$$
$$= \int_{\theta} \frac{(1-\theta)}{2} k \theta^{\alpha-1} (1-\theta)^{\beta-1} d\theta = \frac{\beta}{2}$$

Planning

- Since the model is known, treat Bayesian RL as an MDP
- Benefits:
 - Solve RL problem by planning (e.g., value/policy iteration)
 - Optimal exploration/exploitation tradeoff
- Drawback:
 - Complex computation
- Bellman's Equation:

$$V^{*}(s,b) = \max_{a} E[r|s,b,a] + \gamma \sum_{s'} \Pr(s'|s,a,b) V^{*}(s',b^{s,a,s'}) \ \forall s$$

where
$$E[r|s,b,a] = \int_{\theta} b(\theta) \int_{r} p df(r|s,a,\theta) r dr d\theta$$

Value Iteration

Traditional MDP

$\begin{aligned} & \text{valuelteration(MDP)} \\ & \textit{V}_0^*(s) \leftarrow \max_{a} E[r|s,a] \ \forall s \\ & \text{For } t = 1 \text{ to } h \text{ do} \\ & \textit{V}_t^*(s) \leftarrow \max_{a} E[r|s,a] + \gamma \sum_{s'} \Pr(s'|s,a) \, \textit{V}_{t-1}^*(s') \ \forall s \\ & \text{Return } \textit{V}^* \end{aligned}$

Information state MDP

valueIteration(BayesianRL) $V_0^*(s,b) \leftarrow \max_a E[r|s,b,a] \quad \forall s$ For t=1 to h do $V_t^*(s,b) \leftarrow \max_a E[r|s,b,a] + \gamma \sum_{s'} \Pr(s'|s,a,b) V_{t-1}^*(s',b^{s,a,s'}) \quad \forall s$ Return V^*

Exploration/exploitation tradeoff

- Dilemma:
 - Maximize immediate rewards (exploitation)?
 - Or, maximize information gain (exploration)?
- Wrong question!
- Single objective: max expected total rewards
 - $V^{\pi}(s,b) = \sum_{t} \gamma^{t} E[r_{t}|s_{t},b_{t}]$
 - Optimal policy π^* : $V^{\pi^*}(s,b) \ge V^{\pi}(w,b)$ for all s,b
 - Optimal exploration/exploitation tradeoff (given prior knowledge)

Bayesian RL

- Two phases:
 - Offline planning (without the environment)

Find π^* and/or V^* by policy/value iteration or any other algorithm

Online execution (with the environment)

Challenges in Bayesian RL

- Offline planning is notoriously difficult
 - Use function approximators (e.g., Gaussian process or neural net) for model, V^* and π^*
 - Continuous belief space
 - Problem: a good plan should implicitly account for all possible environments, which is intractable
- Alternative: online partial planning
 - Thompson sampling
 - PILCO (Model-based Bayesian Actor Critic)

Thompson Sampling in Bayesian RL

• Idea: Sample models θ_i at each step and plan for the corresponding MDP_{θ_i} 's

ThompsonSamplingInBayesianRL(s,b) Repeat $Sample \ \theta_1, \dots, \theta_k \sim \Pr(\theta)$ $Q_{\theta_i}^* \leftarrow solve\big(MDP_{\theta_i}\big) \ \forall i$ $\hat{Q}(s,a) \leftarrow \frac{1}{k} \sum_{i=1}^k Q_{\theta_i}^*(s,a) \ \forall a$ $a^* \leftarrow \operatorname{argmax}_a \hat{Q}(s,a)$ $\operatorname{Execute} \ a^* \ \operatorname{and} \ \operatorname{receive} \ r,s'$ $b(\theta) \leftarrow b(\theta) \Pr(r,s'|s,a^*,\theta)$ $s \leftarrow s'$

Model-based Bayesian Actor Critic

- PILCO: Deisenroth, Rasmussen (2011)
 - $b(\theta)$: Gaussian Process transition model
- Deep PILCO: Gal, McCallister, Rasmussen (2016)
 - $-b(\theta)$: Bayesian neural network transition model

```
PILCO(s,b,\pi)
Repeat
Repeat
Critic: V_b^\pi \leftarrow policyEvaluation(b,\pi)
Actor: \pi \leftarrow \pi + \alpha \ \partial V_b^\pi / \partial \pi
\alpha \leftarrow \pi(s,b)
Execute \alpha and receive r,s'
b \leftarrow b^{s,a,r,s'} and s \leftarrow s'
```

Unprecedented Data Efficiency

Table 1. Pilco's data efficiency scales to high dimensions.

	cart-pole	cart-double-pole	unicycle
state space	\mathbb{R}^4	\mathbb{R}^6	\mathbb{R}^{12}
# trials	< 10 ≤ 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	20 - 30	≈ 20
experience	$\approx 20\mathrm{s}$	$pprox 60\mathrm{s} ext{-}90\mathrm{s}$	$pprox 20\mathrm{s}30\mathrm{s}$
parameter space	\mathbb{R}^{305}	\mathbb{R}^{1816}	\mathbb{R}^{28}

Cartpole problem

