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Introduction

= This work applies Reinforcement Learning (RL) to autonomous vehicles

= RL algorithms applied to real vehicles have safety concerns

= This paper presents a new safe RL algorithm, Parallel Constrained Policy Optimization (PCPO)




Background - Problem

= Autonomous driving has two categories: rule based or learning based
= Rule based methods are limited by difficulty to account for all situations
= Learning based can imitate and learn driving habits implicitly

= This work seeks to develop an improved learning based method



Background - Problem

= Previous work has applied RL to autonomous driving
= Predominately developed on simulation platforms due to safety concerns
= Back propagation driven process may lead to unforeseen accidents

= Safety is the most basic requirement for autonomous driving



Background — Safe RL

= Safe RL: “Process of learning policies that maximizes the expectation of accumulated rewards,
while respecting security constraints in the learning and deployment process”

= General safe RL approaches: 1) modifying optimization criterion, 2) modifying exploration
process [1]

= The purpose of this work is to introduce a new safe RL algorithm, Parallel Constraint Policy
optimization applied to real autonomous vehicles

J. Garcia and F. Ferndndez, “A comprehensive survey on safe rein-
[1] forcement learning,” Journal of Machine Learning Research, vol. 16,
no. 1, pp. 1437-1480, 2015.



Parallel Constrained Policy Optimization
(PCPO) Methodology — Preliminaries

= Problem is formalized as MDP with (S, A, r, P, po, y)

= Define Value and Q functions: V™ (s) = E[R¢|s; = s], Q" (s,a) = E;[R¢|s; = s,a; = a]

= Wish to find policy that maximizes objective function: () = E; ;[Xieo ¥ 7 (s)]
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PCPO Methodology — Actor-Critic-Risk
architecture

= PCPO utilizes so-called Actor-Critic-Risk architecture
= Similar to Actor-Critic methods, use neural networks to approximate policy (actor) and value (critic)

= Third NN approximates risk function, ensures safe policy
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PCPO — Critic Network

= Min. Temporal Difference (TD) squared:
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PCPO — Risk Network

= Introduce risk signal 7 observed at every step

i oo ) = Define risk function analogous to Q function:
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= Update risk network via TD:
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PCPO — Actor Network

= Update Actor Network by gradient of J(7):
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J(m) < 6.

= This method is called Constrained Policy
Optimization (CPO)
J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” arXiv preprint arXiv:1705.10528, 2017.




PCPO — Trust Region Constraint

= Since the risk and reward functions are approximated by NN monotonic improvements can only
be guaranteed for small policy changes

" Add a policy constraint: E__ e, [Dki(7%(s), 7%4(s))] < 4,

= Total optimization problem:

OFtl = arg max J(7%)

st. J(w% <d (2)
E, 00 [Dxo(70(s), 7% (s))] < 6.



PCPO — Linear Approximation

» The optimization problem is non-linear and difficult to solve, but can be approximated around

6"
0%+ —arg méa,ng(H — 6%)
st. c+bl(0—-0)<0 4)

%(9 —0"TH(0 - 6%) <3,

= g is the gradient of J(1r%), b is the gradient of J(t"), H is the Hessian of the KL divergence and

c =J(n*)—d
= This can be solved with Lagrange multipliers, A and v, yielding the update rule:
1
ot = 0% + FH—l(g — b, (6)



PCPO — Infeasible Solutions

= |t is possible to be unable to find a feasible solution to (4)

= Occurs when the risk function is very high due to being in unsafe state, or a bad update that
produces an unsafe action due to approximation errors in (4)

= Previous work [1] with CPO dealt with bad updates with a recovery rule:

n ; 26
k+1 __ pk -1
gt o _\/—bT —H ' (7)

9k

= This does not help the case where the risk function is high because m¥ may work well in safe

states, if so the recovery rule leads to slower convergence

J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
BB o ptimization,” arXiv preprint arXiv:1705.10528, 2017.




PCPO — Parallel
Learners

To deal with this issue, this work
introduces
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PCPO- Algorithm

Algorithm 1 Parallel Constrained Policy Optimization
Initialization:
Initial with arbitrary 0, w and ¢ and state sy € S
Iteration:
for: B=:1.2, cc.s it 10
Explore samples set 7 = {s} ~ m(6%)
Update the Value Network with dw in (1)
Update Risk Network with: N
do = (R — Q%(sy, at))V¢Q¢(3t, at)
Estimate g, b, H, ¢ in (4) with 7
Store feasible 7 in buffer D
end for
if D # & then
Solve (5) for \*, v*
Update policy network using (6)
else
Recovery policy using (7)
end if




Experiment 1 — Lane Keeping

= Goal: Keep car as close to center of lane as possible while not deviating from road throughout
learning process

= State space: S = {d[m], B[rad]}, distance from center line, angle between vehicles heading
angle and direction of current trajectory

= Action space: A = {§[rad]}, referring to the front wheel angle

100
9

= Define reward function: r = — —d? — 2, risk of 100 if car leaves lane




Experiment 1 —
Lane Keeping
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Experiment 2 — Intersection decision-
making

= Goal: Three cars approach unsignalized intersection, randomly assign velocity and position
along each track, learn policy for all vehicles to pass through as fast as possible with no collisions

= State: S = {l4, v1, [, v, I3, v3}, positions of vehicles from middle of their track and velocities
= Action space: A = {a4, a,, as}, accelerations of each vehicle where a € [—3,3]

= Reward: +10 for each passing vehicle, -1 every time step, +10 for terminal success, risk +50 for
collision
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Conclusions

= This work presents a new Safe RL algorithm, PCPO, for automated driving tasks

= PCPO uses actor-critic-risk architecture with newly introduced risk function
= |ntroduced parallel learning

= Through experiments have shown:
= PCPO guarantees safety constraints during learning for general autonomous driving tasks

® |[mproved learning speed

= Prevents learners being stuck at a sub-optimal policy




