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INTRODUCTION
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What is real-time bidding and how does it work?



Background: How does real-time bidding work?
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Decide within 
200 ms!



Background: How does real-time bidding work?
§ DSP: Demand-side platform.

§ Allows an advertiser to buy ad space and manage their ads. (e.g. Google Ads)

§ ADX: Ad exchange.
§ Digital marketplace that enables advertisers and publishers to buy and sell advertising space, 

often through real-time auctions.

§ User: Costumer who visits the website

§ Advertiser: Bidding agent who bid for the ad space
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Background: How does real-time bidding work?
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[2] Liu, Mengjuan, et al. "Bid Optimization using Maximum Entropy 
Reinforcement Learning." arXiv preprint arXiv:2110.05032 (2021).



PROBLEM AND FORMULATION
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What is the problem and how to build up our solution?



Problem description
§ Goal: From the agent side, the goal is to decide an optimal bidding price that can 

maximize the total clicks or revenue corresponding to the ad.

§ Problem: RTB market is highly dynamic and static bid optimization may not 
work well.

§ Solution: In this paper, consider bidding as a sequential decision and formulate 
it as a reinforcement learning to bid (RLB) problem.
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Markov Decision Process
§ Environment: the whole market and Internet users

§ Bidding Agent: advertiser
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Reinforcement Learning Setup
§ This paper proposes a model-based  solution for real-time bidding strategy.

§ Solve the value function

§ Extract the optimal policy

§ Initialization: Agent is initialized with a total budget B and total number of auctions T for each 
episode.

§ State: state s is composed of  s = 𝑡, 𝑏, 𝑥!
§ Remaining auction number 𝑡 ∈ 0,… , 𝑇

§ Unspent budget 𝑏 ∈ 0,… , 𝐵

§ Feature vector 𝑥!

§ Action: bidding price

§ Reward: predicted click-through rate (pCTR)
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Formulation of RTB
§ At each timestep, for current state s = 𝑡, 𝑏, 𝑥! , the agent receives an auction x, 

and determines its bid price a.
§ When bidding price a ≥market price 𝛿, the agent wins the auction and pays 𝛿, remaining 

budget changes to b-𝛿, the expected reward is measured by pCTR network 𝜃 𝑥 .

§ When bidding price a <market price 𝛿, the agent loses the auction, remaining budget remains 
b, the expected reward is zero.

§ Repeat until the end of episode, i.e. t = 0
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Notations
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Functionals
§ Transition probabilities and reward function:

PAGE  13



Value function and optimal policy
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§ The optimization is based on the value function, i.e the expected sum of rewards 
upon starting in state s and obeying policy 𝜋. It satisfies the Bellman equation with 
discount factor 𝛾 = 1.

§ The optimal policy is computed as:



DYNAMIC PROGRAMMING 
SOLUTION
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How to solve this model?



How to solve the optimal policy?
§ Plugging the transition function and reward function into Bellman equation:
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Win auction, a ≥ 𝛿

Lose auction, a < 𝛿



How to solve the optimal policy?
§ Consider situations where we do not observe feature vector x, and the value 

function V(t,b) is derived by marginalizing out x:
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How to solve the optimal policy?
§ To simplify the value function, consider an approximation 𝑚 𝛿, 𝑥 ≈ 𝑚(𝛿), then 

we have:

§ Plug equation (7) to value function:
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How to solve the optimal policy?
§ Extract the optimal policy from the value function:
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monotonically increases w.r.t. b, thus 
monotonically decreases w.r.t. δ

monotonically decreases w.r.t. δ



Algorithm and pseudocode
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HANDLING LARGE-SCALE 
ISSUES
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How to handle the real-world large-scale problem?



Large-Scale Problem
§ In the algorithm, we update the value function V(t,b) by two nested loops

§ Time complexity O(TB)

§ Space complexity O(TB)

§ Problem: For large-scale T and B, the algorithm can not be applied

§ Solution: 
§ Use parameterized models (Neural Networks) to fit the value function on small data scale, i.e., 

0,… , 𝑇! × 0,… , 𝐵! where 𝑇! < T and B! < B.

§ Map the unseen states to acquainted states.

§ Implicit – segmentation model (RLB-NN-Seg)

§ Explicit – state mapping model (RLB-NN-MapD or RLB-NN-MapA)
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Large-Scale Problem
§ In equation (9), we expect the prediction error of θ(x) + V (t − 1,b−δ)−V(t−1,b) in the training data 

to be low in comparison to the average pCTR 𝜃 "#$ . 
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Solution to Large-Scale Problem -- State Mapping Models
§ Introduce a new function D(t,b) and use it to replace the role of V(t,b):

§ Take fully connected neural network as a non-linear approximator for D(t,b).
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Solution to Large-Scale Problem -- State Mapping Models
§ Segmentation Model: 

§ Divide the large episode into several small episodes with length 𝑇". Within each large episode we allocate the remaining 
budget to the remaining small episodes. 

§ State Mapping Models:

§ RLB-NN-MapD: For unseen states 𝑡 > 𝑇" and 𝑏 > 𝐵", there should be some points 𝑡#, 𝑏# where 𝑡# ≤ 𝑇" and 𝑏# ≤ 𝐵"
such that 𝐷 𝑡#, 𝑏# = 𝐷(𝑡, 𝑏). This model is to combine NNs with the mapping of D(t,b).

§ RLB-NN-MapA: Similarly, a(t, b, x) decreases w.r.t. t and increases w.r.t. b, which is consistent with intuitions. This 
model is to combine NNs with the mapping of a(t, b, x) .
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Solution to Large-Scale Problem -- State Mapping Models
§ Therefore, consider a simple case that b/t represents the budget condition, we can map the unseen states to 

acquainted states via two linear mapping forms:

§ (i) map a(t, b, x) where 𝑡 > 𝑇" to 𝑎(𝑇",
$
! ×𝑇", 𝑥).

§ (ii) map D(t, b) where 𝑡 > 𝑇" to D(𝑇",
$
! ×𝑇").

§ Intuition: From the view of practical bidding, when the remaining number of auctions are large and the budget 
situation is similar, given the same bid request, the agent should give a similar bid price
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Solution to Large-Scale Problem -- State Mapping Models
§ Derivations of the simple linear mapping method: 

§ Denote Dev t, T", b = 𝐷 𝑡, 𝑏 − 𝐷(𝑇",
$
! ×𝑇") , the deviations are low enough
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EXPERIMENTAL RESULTS
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How is the model performance over datasets?



Experiment Setup
§ Evaluation metrics:

§ Number of acquired clicks

§ Win rate

§ Cost per mille impressions (CPM)

§ Effective cost per click (eCPC)

§ Budget constraints:

§ 𝐵 = 𝐶𝑃𝑀!"#$%×10&'× 𝑇 × 𝑐(, where 𝑐( acts as the budget constraints parameter

§ Run the evaluation with 𝑐( = 1/32, 1/16, 1/8, 1/4, 1/2

§ Episode length 

§ For the large-scale evaluation, we set the episode length T as 100,000

§ For the small-scale evaluation, we set the episode length T as 1,000

§ Also run a set of evaluations with episode length T = 200,400,600,800,1000 

PAGE  29



Illustration of other methods
§ SS-MDP: Considering the bid landscape but ignoring the feature vector of bid request when giving the bid 

price. Although we regard this model as the state-of-the-art, it is proposed to work on keyword-level bidding 
in sponsored search, which makes it not fine-grained enough to compare with RTB display advertising 
strategies. 

§ Mcpc: gives its bidding strategy as 𝑎 !"#" $,&,' = 𝐶𝑃𝐶 × 𝜃 𝑥 , which matches some advertisers’ requirement 
of maximum CPC (cost per click). 

§ Does not adjust its strategy when the budget condition changes

§ Lin: Linear bidding strategy w.r.t. the pCTR: 𝑎 ()* $,&,' = 𝑏+
,(')
, !"#

where 𝑏+ is the basic bid price and is tuned 

using the training data [18]. This is the most widely used model in industry. 
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Small-Scale Evaluations
§ In the comparison on total clicks, RLB performs the 

best under every budget condition.

§ Verifying the effectiveness of the derived algorithm for 
optimizing attained clicks

§ In the comparison on win rate, RLB can generate a 
higher number of clicks with comparable CPM and 
eCPC against Lin.

§ RLB effectively spends the budget according to the 
market situation, which is unaware of by Lin
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Small-Scale Evaluations
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§ Compared to Lin, RLB can attain more clicks with 
similar eCPC. 



Small-Scale Evaluations
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Large-Scale Evaluations
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Online Deployment and A/B Test
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CONCLUSIONS
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What are the conclusions?



Conclusions
Ø This paper proposed a model-based reinforcement learning model (RLB) for learning the bidding 

strategy in RTB display advertising so that the campaign budget can be dynamically allocated 
across all the available impressions on the basis of both the immediate and future rewards.

Ø The scalability problem from the large real-world auction volume and campaign budget is well 
handled by state value approximation using neural networks.

Ø Empirical study demonstrated the superior performance and high efficiency of RLB compared to 
state-of-the-art methods.
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Future Work
§ Future steps claimed by the authors:

§ Investigate model-free approaches such as Q-learning and policy gradient methods to unify 
utility estimation, bid landscape forecasting and bid optimization into a single optimization 
framework and handle the highly dynamic environment

§ Compare RLB solutions with the explicit budget pacing techniques

§ Discussion on future extensions:
§ Continuous budget and bidding price

§ Non-stationary environments

§ Non-myoptic strategy
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