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INTRODUCTION

What is real-time bidding and how does it work?
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Background: How does real-time bidding work?
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Background: How does real-time bidding work?

DSP: Demand-side platform.

= Allows an advertiser to buy ad space and manage their ads. (e.g. Google Ads)

ADX: Ad exchange.

= Digital marketplace that enables advertisers and publishers to buy and sell advertising space,
often through real-time auctions.

User: Costumer who visits the website

Advertiser: Bidding agent who bid for the ad space
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Background: How does real-time bidding work?

7. tracking click/conversion
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[2] Liu, Mengjuan, et al. "Bid Optimization using Maximum Entropy
Reinforcement Learning." arXiv preprint arXiv:2110.05032 (2021).
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PROBLEM AND FORMULATION

What is the problem and how to build up our solution?
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Problem description

= Goal: From the agent side, the goal is to decide an optimal bidding price that can
maximize the total clicks or revenue corresponding to the ad.

= Problem: RTB market is highly dynamic and static bid optimization may not
work well.

= Solution: In this paper, consider bidding as a sequential decision and formulate
it as a reinforcement learning to bid (RLB) problem.
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Markov Decision Process

= Environment: the whole market and Internet users

= Bidding Agent: advertiser

[s] bid request x

Bidding Agent [~ ] state
[s] remaining volume ¢ > Environment [a] action
[r] reward

[s] remaining budget b | [] auction win, cost &

[r] user click r
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Reinforcement Learning Setup

This paper proposes a model-based solution for real-time bidding strategy.
= Solve the value function
= Extract the optimal policy

= Initialization: Agent is initialized with a total budget B and total number of auctions T for each
episode.

= State: state s is composed of s = (¢, b, x;)
= Remaining auction numbert € {0, ..., T}
= Unspent budget b € {0, ..., B}

= Feature vector x;
= Action: bidding price
= Reward: predicted click-through rate (pCTR)
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Formulation of RTB

= At each timestep, for current state s = (¢, b, x;), the agent receives an auction X,
and determines its bid price a.

= When bidding price a > market price §, the agent wins the auction and pays §, remaining
budget changes to b-§, the expected reward is measured by pCTR network 6 (x).

= When bidding price a < market price §, the agent loses the auction, remaining budget remains
b, the expected reward is zero.

= Repeat until the end of episode, i.e.t =0
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Notations
Notation | Description
ax The feature vector that represents a bid request.
X The whole feature vector space.

Dz () The probability density function of .
) The predicted CTR (pCTR) if winning the auction of .

m(d,x) | The p.d.f. of market price § given .

m(d) The p.d.f. of market price é.
V(t,b,x) | The expected total reward with starting state (¢, b, x),
taking the optimal policy.
V(t,b) | The expected total reward with starting state (¢, b),
taking the optimal policy.
a(t,b,x) | The optimal action in state (t,b,x).
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Functionals

= Transition probabilities and reward function:

M(a, (t,b,®¢), (¢ — 1,0 =6, wt—l)) = pz(Tt—1)m(9, @),

(@, (6 b,@0), (¢ = 1,b,@4-1) ) = pa(®s-1) Z m(6, ),

0(x:),

r(a, (6,0, @), (t—1,b—§,@e1)) =
r(a, (&b, @), (t = 1,b,@-1)) =0 (1)
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Value function and optimal policy

= The optimization is based on the value function, i.e the expected sum of rewards
upon starting in state s and obeying policy 7. It satisfies the Bellman equation with
discount factor y = 1.

Vi) =3 u(w(s),s,s')(r(w(s),s,s') +v7f(s'))

s’'eS

= The optimal policy is computed as:

7w (s) = argmax { Z u(a, s, s’) (r(a, s,8)+V* (s’)) }

a€As s’'eS
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DYNAMIC PROGRAMMING
SOLUTION

How to solve this model?
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How to solve the optimal policy?

= Plugging the transition function and reward function into Bellman equation:

V(t,b,x) = [max,
_a_

(e<w>

{ (Sz:;)/x m(0, T)pz (@t —1) -

FV({E—1,b— 82 1))dazt mn

d=a-+1

/ m(, @)pe(@e—1)V(t — 1,b,20 1) dwy 1 )

= Imax
0<a<b

oo

{ Zm(‘S’ ) (9(90) +V(Et—1,b— 5)) +
6=0

S m,2)V(t - 1,b)}, (4)

d=a+1

a(t,b,x) = argmax{ Z m(9, x) (0(:1:) +V(t—-1,b— 5))

0<a<b

6=0
oo

3 ms,@)V(t - l,b)}, (5)

0=a-+1
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How to solve the optimal policy?

= Consider situations where we do not observe feature vector x, and the value
function V(t,b) is derived by marginalizing out x:

V(t,b):/Xpm(ac o {Z (6,2) (0) + V(e —1,6—0))

0<a<d

o o]

+ 3 m((S,w)V(t—l,b)}dw

d=a-+1

= max { Z/ pa()m (8, )0(x) da + Z V(t—1,b—96) -

0<a<b

/ pe(2)m(S, @) de + V (t — 1,b) Z / pe()m (8, x) da:}

d=a+1
:o?c?%‘b{g /X po(2)m (5, )0 () da + (6)

a (o o]

S m@V(E-1,b-8)+V(E—-1,0b) > m(5)}.

6=0 d=a-+1
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How to solve the optimal policy?

= To simplify the value function, consider an approximation m(§, x) = m(§), then
we have:

/pr(a:)m(& x)0(x) dwzm(é)/xpx(w)O(w) dx
= m(0)0aveg , (7)

= Plug equation (7) to value function:

~ av _ 17 _
V(t,b) Orgngécb { (sz_:om(5)9 g+ (Sz_:om((S)V(t b—9) +

oo

S mE)V(t - 1,5)}. (8)

0=a-+1
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How to solve the optimal policy?

= Extract the optimal policy from the value function:

a(t,b, ) = argmax{ Zm(é m)( () + V(¢ — 1,b—6))—

0<a<b

monotonically increases w.r.t. b, thus
Z m(d, )V (t — 1, b)} monotonically decreases w.r.t. 6

— argmax{ Z m(6, x) (9(:1:) HV(E-1,b—-6)-V(t-1, b))}

0<a<b

= argmax{ Z m(6, x g(5) g (9)

0<a<b
monotonically decreases w.r.t. 6

b it g(b) >0
2 b = {A g(A)>0and g(A+1)<0 ifg(b) <0’ (10)
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Algorithm and pseudocode

Algorithm 1 Reinforcement Learning to Bid

Input: p.d.f. of market price m(é§), average CTR 0.y, episode
length T', budget B

Output: value function V' (¢, b)

1: initialize V(0,b) = 0

2: fort=1,2,---,T—1do

3 for b=0,1,---,B do

4: enumerate a; p from 0 to min(dmax, b) and set V' (¢,b) via

Eq. (8)

5: end for

6: end for

Input: CTR estimator 8(x), value function V' (¢, b), current state
(te,be, )

Output: optimal bid price a. in current state
1: calculate the pCTR for the current bid request: 6. = 0(x.)

2: for 6 =0,1, - ,min(émax, bc) do

3 if 0c +V(tc —1,bc —8) — V(tc — 1,bc) > 0 then
4. Qe — O

5 end if

6: end for
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HANDLING LARGE-SCALE
ISSUES

How to handle the real-world large-scale problem?
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Large-Scale Problem

= In the algorithm, we update the value function V(t,b) by two nested loops
= Time complexity O(TB)
= Space complexity O(TB)

= Problem: For large-scale T and B, the algorithm can not be applied

= Solution:

= Use parameterized models (Neural Networks) to fit the value function on small data scale, i.e.,
{0, ..., Tp}x{0, ..., By} where T, < T and B, < B.

= Map the unseen states to acquainted states.
= Implicit — segmentation model (RLB-NN-Seg)
= Explicit — state mapping model (RLB-NN-MapD or RLB-NN-MapA)

AGE 25 %’ WATERLOO



Large-Scale Problem

= In equation (9), we expect the prediction error of 8(x) + V (t — 1,b—06)-V(t—1,b) in the training data
to be low in comparison to the average pCTR 64,43

a(t,b,x) = aggznggc{ g)m(é, x) (9(:1:) +V(Et-1,b— 5))—

a

3 m(s, @)V (t - 1,b)}

6=0

= ag*gmjg({ i m(6, x) (9(.'13) +Vit-1,b-6)-V(t-1, b)) }
A 6=0

0<a<b

= argmax { 52;0 m(4, w)g(5)}, (9)
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-
Solution to Large-Scale Problem -- State Mapping Models

= Introduce a new function D(t,b) and use it to replace the role of V(t,b):
D(t,b) = V(t,b+1)—V(¢,b)

1)
Vit—1,b—6) —V(t—1,b)=— > D(t—1,b-10).
6’'=1

= Take fully connected neural network as a non-linear approximator for D(t,b).

8 T T T 40
. — D(100, b) . 30p
T ° |-~ paooob) || F a0f
S b -~ D@500,b) || = 10l
X " ; ‘ ‘ X 2
~ I - . ~ 0
—~ Qs —~
5, \ i g T IR > 10k ]
S o - 1 & ol - - D(t, 20000) |
- D(t, 30000)
9 i | L ] —————1
5 10 15 20 0 1 2 3 4 5
b (x10%) t (x10%)
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-
Solution to Large-Scale Problem -- State Mapping Models

= Segmentation Model:

= Divide the large episode into several small episodes with length T,. Within each large episode we allocate the remaining
budget to the remaining small episodes.

= State Mapping Models:

= RLB-NN-MapD: For unseen states t > T, and b > B, there should be some points {(t,b")} where t’ < Ty and b’ < B,
such that D(t’,b") = D(t, b). This model is to combine NNs with the mapping of D(t,b).

= RLB-NN-MapaA: Similarly, a(t, b, x) decreases w.r.t. t and increases w.r.t. b, which is consistent with intuitions. This
model is to combine NNs with the mapping of a(t, b, x) .
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Solution to Large-Scale Problem -- State Mapping Models

= Therefore, consider a simple case that b/t represents the budget condition, we can map the unseen states to
acquainted states via two linear mapping forms:

= (i) map a(t, b, x) wheret > Tyto a(TO,g XTp, X).

= (i1) map D(t, b) wheret > T, to D(To,g XTp).

= Intuition: From the view of practical bidding, when the remaining number of auctions are large and the budget
situation is similar, given the same bid request, the agent should give a similar bid price

g(8) on campaign 2821 g(4) on campaign 2821
5 under t = 2500 and b = 10000 5 under t = 5000 and b = 20000

9(6) (x107%)
9() (x107)

i P | =
— 0(z) = 50404, a =15
—8 .
0(x) = Ogpgy a = 30
mad 0(z) = 20404, a = 61
=12 1 1 1 =12 1 1 l
0 50 100 150 200 250 300 0 50 100 150 200 250 300
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Solution to Large-Scale Problem -- State Mapping Models

= Derivations of the simple linear mapping method:

= Denote Dev(t, Ty, b) = |D(t, b) — D(TO,%XTO)

, the deviations are low enough
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EXPERIMENTAL RESULTS

How is the model performance over datasets?
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Experiment Setup

= Evaluation metrics:
= Number of acquired clicks
= Win rate
= Cost per mille impressions (CPM)
= Effective cost per click (eCPC)
= Budget constraints:
» B = CPM;4;,X1073X T X c,, where ¢, acts as the budget constraints parameter
= Run the evaluation with ¢, = 1/32, 1/16, 1/8, 1/4, 1/2
= Episode length
= For the large-scale evaluation, we set the episode length T as 100,000
= For the small-scale evaluation, we set the episode length T as 1,000

= Also run a set of evaluations with episode length T = 200,400,600,800,1000
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lllustration of other methods

SS-MDP: Considering the bid landscape but ignoring the feature vector of bid request when giving the bid
price. Although we regard this model as the state-of-the-art, it is proposed to work on keyword-level bidding
in sponsored search, which makes it not fine-grained enough to compare with RTB display advertising
strategies.

Mcpe: gives its bidding strategy as agycpcyepx) = CPC X 6(x), which matches some advertisers’ requirement
of maximum CPC (cost per click).

= Does not adjust its strategy when the budget condition changes

0(x)

Otavg)
using the training data [18]. This is the most widely used model in industry.

Lin: Linear bidding strategy w.r.t. the pCTR: agin} (tpx) = Po where b, is the basic bid price and is tuned
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Small-Scale Evaluations

Total Clicks
Improvement over Lin
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= Inthe comparison on total clicks, RLB performs the
best under every budget condition.

= Verifying the effectiveness of the derived algorithm for
optimizing attained clicks

= In the comparison on win rate, RLB can generate a
higher number of clicks with comparable CPM and
eCPC against Lin.

= RLB effectively spends the budget according to the
market situation, which is unaware of by Lin
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Small-Scale Evaluations
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Small-Scale Evaluations

Table 2: Click improvement of RLB over Lin for Table 3: Detailed AUC and clicks (T = 10° and co =

each campaign under 7 = 10° and different budget 1/16).
conditions. iPinYou | AUC of 6(z) | SS-MDP Mcpc LN | RLB
1458 97.73% 42 405 455 || 473
iPinYou 1/32 1/16 1/8 1/4 1/2 2259 67.90% 13 11 17 || 23
1458 4.66%  3.96%  3.25% 0.21%  1.02% 2261 62.16% 16 12 16 17
2259 | 114.29% 35.29%  9.09% 32.56% 22.22% 2821 62.95% 49 38 59 66
2261 25.00%  6.25% -3.70%  6.82%  0.00% 2997 60.44% 116 82 77 || 119
2821 20.00% 11.86% 27.27% 29.36% 12.97% 3358 97.58% 15 144 212 | 219
2997 23.81% 54.55% 85.26% 13.04%  3.18% 3386 77.96% 24 56 89 | 109
3358 242%  3.30% 0.8™%  3.02%  0.40% 3427 97.41% 20 178 279 || 307
3386 8.47% 22.47% 13.24% 14.57% 13.40% 3476 95.84% 38 103 211 203
3427 7.58% 10.04% 12.28%  6.88%  5.34%
. 114 1 1
3476 _4.68% -3.79% = 2.50%  5.43%  0.72% DAVEERES 50.007% il oif § Ll
Average | 22.39% 15.99% 16.67% 12.43%  6.58% YOYI | 87.79% 120 196 265 | 271
YOYI | 3.89% 2.26% 7.41% 3.48% 1.71%
w UNIVERSITY OF
PAGE 33 @ WATERLOO



Large-Scale Evaluations

Table 4: Approximation performance of the neural

network.
iPinYou | YOYI

RMSE (x107°) 0.998 1.263
RMSE / favg (x1074) | 9.404 | 11.954
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- -80% 1 | T T T | | I T T
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Budget Parameter ¢, Budget Parameter ¢,

Figure 9: Overall performance on iPinYou under
T = 10° and different budget conditions.
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Online Deployment and A/B Test
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Figure 11: Total clicks and cost increase over
Figure 10: Online A /B testing results. episodes.
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CONCLUSIONS

What are the conclusions?
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Conclusions

» This paper proposed a model-based reinforcement learning model (RLB) for learning the bidding
strategy in RTB display advertising so that the campaign budget can be dynamically allocated
across all the available impressions on the basis of both the immediate and future rewards.

» The scalability problem from the large real-world auction volume and campaign budget is well
handled by state value approximation using neural networks.

» Empirical study demonstrated the superior performance and high efficiency of RLB compared to
state-of-the-art methods.
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N
Future Work

= Future steps claimed by the authors:

= Investigate model-free approaches such as Q-learning and policy gradient methods to unify
utility estimation, bid landscape forecasting and bid optimization into a single optimization

framework and handle the highly dynamic environment

= Compare RLB solutions with the explicit budget pacing techniques

= Discussion on future extensions:
= Continuous budget and bidding price
= Non-stationary environments

= Non-myoptic strategy

AGE 38 %’ WATERLOO



Some related work - recommended readings

Continuous bidding price strategy using Soft Actor-Critic algorithm

[2] Liu, Mengjuan, et al. "Bid Optimization using Maximum Entropy Reinforcement Learning." arXiv preprint
arXiv:2110.05032 (2021).

The long-term effect of impressions

[3] Hausknecht, Matthew, and Peter Stone. "Deep recurrent g-learning for partially observable mdps." 2015 aaai
fall symposium series. 2015.

Non-stationary environments

[4] Li, Zhuoshu, et al. "Faster Policy Adaptation in Environments with Exogeneity: A State Augmentation
Approach." AAMAS. 2018.

LIN — the most widely used bidding strategy in industry

[5] Perlich, Claudia, et al. "Bid optimizing and inventory scoring in targeted online advertising." Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery and data mining. 2012.

AGE 35 %’ WATERLOO



