Real-time Bidding by Reinforcement Learning in Display Advertising

3/2/22

Shuhui Zhu, Cheriton School of Computer Science

[1] Cai, Han, et al. "Real-time bidding by reinforcement learning in display advertising." Proceedings of the Tenth ACM International Conference on Web Search and Data Mining. 2017.

CONTENT

- Introduction
- Problem and Formulation
- Dynamic Programming Solution
- Handling Scale Issues
- Experimental Results
- Conclusions

INTRODUCTION

What is real-time bidding and how does it work?

Background: How does real-time bidding work?

Decide within 200 ms!

Background: How does real-time bidding work?

- DSP: Demand-side platform.
 - Allows an advertiser to buy ad space and manage their ads. (e.g. Google Ads)
- ADX: Ad exchange.
 - Digital marketplace that enables advertisers and publishers to buy and sell advertising space, often through real-time auctions.
- User: Costumer who visits the website
- Advertiser: Bidding agent who bid for the ad space

Background: How does real-time bidding work?

7. tracking click/conversion

[2] Liu, Mengjuan, et al. "Bid Optimization using Maximum Entropy Reinforcement Learning." arXiv preprint arXiv:2110.05032 (2021).

PROBLEM AND FORMULATION

What is the problem and how to build up our solution?

Problem description

- **Goal**: From the agent side, the goal is to decide an optimal bidding price that can maximize the total clicks or revenue corresponding to the ad.
- **Problem**: RTB market is highly dynamic and static bid optimization may not work well.
- **Solution**: In this paper, consider bidding as a sequential decision and formulate it as a reinforcement learning to bid (RLB) problem.

Markov Decision Process

- Environment: the whole market and Internet users
- Bidding Agent: advertiser

Reinforcement Learning Setup

- This paper proposes a model-based solution for real-time bidding strategy.
 - Solve the value function
 - Extract the optimal policy
- **Initialization**: Agent is initialized with a total budget *B* and total number of auctions *T* for each episode.
- **State**: state s is composed of $s = (t, b, x_t)$
 - Remaining auction number $t \in \{0, ..., T\}$
 - Unspent budget $b \in \{0, ..., B\}$
 - Feature vector x_t
- Action: bidding price
- **Reward**: predicted click-through rate (pCTR)

Formulation of RTB

- At each timestep, for current state $s = (t, b, x_t)$, the agent receives an auction x, and determines its bid price a.
 - When bidding price $a \ge market$ price δ , the agent wins the auction and pays δ , remaining budget changes to b- δ , the expected reward is measured by pCTR network $\theta(x)$.
 - When bidding price a < market price δ , the agent loses the auction, remaining budget remains b, the expected reward is zero.
- Repeat until the end of episode, i.e. t = o

Notations

Notation	Description
$oldsymbol{x}$	The feature vector that represents a bid request.
$oldsymbol{X}$	The whole feature vector space.
$p_x(\boldsymbol{x})$	The probability density function of \boldsymbol{x} .
$ heta(m{x})$	The predicted CTR (pCTR) if winning the auction of \boldsymbol{x} .
$m(\delta, \boldsymbol{x})$	The p.d.f. of market price δ given \boldsymbol{x} .
$m(\delta)$	The p.d.f. of market price δ .
$V(t,b,oldsymbol{x})$	The expected total reward with starting state (t, b, \boldsymbol{x}) ,
	taking the optimal policy.
V(t,b)	The expected total reward with starting state (t, b) ,
	taking the optimal policy.
$a(t,b,oldsymbol{x})$	The optimal action in state (t, b, \boldsymbol{x}) .

Functionals

Transition probabilities and reward function:

$$\mu\Big(a,(t,b,\boldsymbol{x}_t),(t-1,b-\delta,\boldsymbol{x}_{t-1})\Big) = p_x(\boldsymbol{x}_{t-1})m(\delta,\boldsymbol{x}_t),$$

$$\mu\Big(a,(t,b,\boldsymbol{x}_t),(t-1,b,\boldsymbol{x}_{t-1})\Big) = p_x(\boldsymbol{x}_{t-1})\sum_{\delta=a+1}^{\infty} m(\delta,\boldsymbol{x}_t),$$

$$r\left(a, (t, b, \boldsymbol{x}_t), (t - 1, b - \delta, \boldsymbol{x}_{t-1})\right) = \theta(\boldsymbol{x}_t),$$

$$r\left(a, (t, b, \boldsymbol{x}_t), (t - 1, b, \boldsymbol{x}_{t-1})\right) = 0,$$

$$(1)$$

Value function and optimal policy

• The optimization is based on the value function, i.e the expected sum of rewards upon starting in state s and obeying policy π . It satisfies the Bellman equation with discount factor $\gamma = 1$.

$$V^{\pi}(s) = \sum_{s' \in S} \mu(\pi(s), s, s') \Big(r(\pi(s), s, s') + V^{\pi}(s') \Big)$$

The optimal policy is computed as:

$$\pi^*(s) = \underset{a \in \mathbf{A}_s}{\operatorname{argmax}} \left\{ \sum_{s' \in \mathbf{S}} \mu(a, s, s') \left(r(a, s, s') + V^*(s') \right) \right\}$$

DYNAMIC PROGRAMMING SOLUTION

How to solve this model?

Plugging the transition function and reward function into Bellman equation:

$$V(t,b,\boldsymbol{x}) = \max_{0 \le a \le b} \left\{ \sum_{\delta=0}^{a} \int_{\boldsymbol{X}} m(\delta,\boldsymbol{x}) p_{\boldsymbol{x}}(\boldsymbol{x}_{t-1}) \cdot \left(\theta(\boldsymbol{x}) + V(t-1,b-\delta,\boldsymbol{x}_{t-1}) \right) d\boldsymbol{x}_{t-1} + \sum_{\delta=a+1}^{\infty} \int_{\boldsymbol{X}} m(\delta,\boldsymbol{x}) p_{\boldsymbol{x}}(\boldsymbol{x}_{t-1}) V(t-1,b,\boldsymbol{x}_{t-1}) d\boldsymbol{x}_{t-1} \right\}$$

$$= \max_{0 \le a \le b} \left\{ \sum_{\delta=0}^{a} m(\delta,\boldsymbol{x}) \left(\theta(\boldsymbol{x}) + V(t-1,b-\delta) \right) + \sum_{\delta=a+1}^{\infty} m(\delta,\boldsymbol{x}) V(t-1,b) \right\}, \tag{4}$$

$$a(t, b, \boldsymbol{x}) = \underset{0 \le a \le b}{\operatorname{argmax}} \Big\{ \sum_{\delta=0}^{a} m(\delta, \boldsymbol{x}) \Big(\theta(\boldsymbol{x}) + V(t-1, b-\delta) \Big) + \sum_{\delta=a+1}^{\infty} m(\delta, \boldsymbol{x}) V(t-1, b) \Big\},$$
 (5)

Win auction, $a \ge \delta$

Lose auction, a $< \delta$

 Consider situations where we do not observe feature vector x, and the value function V(t,b) is derived by marginalizing out x:

$$V(t,b) = \int_{\mathbf{X}} p_{x}(\mathbf{x}) \max_{0 \leq a \leq b} \left\{ \sum_{\delta=0}^{a} m(\delta, \mathbf{x}) \left(\theta(\mathbf{x}) + V(t-1, b-\delta) \right) + \sum_{\delta=a+1}^{\infty} m(\delta, \mathbf{x}) V(t-1, b) \right\} d\mathbf{x}$$

$$= \max_{0 \leq a \leq b} \left\{ \sum_{\delta=0}^{a} \int_{\mathbf{X}} p_{x}(\mathbf{x}) m(\delta, \mathbf{x}) \theta(\mathbf{x}) d\mathbf{x} + \sum_{\delta=0}^{a} V(t-1, b-\delta) \cdot \int_{\mathbf{X}} p_{x}(\mathbf{x}) m(\delta, \mathbf{x}) d\mathbf{x} + V(t-1, b) \sum_{\delta=a+1}^{\infty} \int_{\mathbf{X}} p_{x}(\mathbf{x}) m(\delta, \mathbf{x}) d\mathbf{x} \right\}$$

$$= \max_{0 \leq a \leq b} \left\{ \sum_{\delta=0}^{a} \int_{\mathbf{X}} p_{x}(\mathbf{x}) m(\delta, \mathbf{x}) \theta(\mathbf{x}) d\mathbf{x} + \sum_{\delta=a+1}^{\infty} m(\delta) V(t-1, b-\delta) + V(t-1, b) \sum_{\delta=a+1}^{\infty} m(\delta) \right\}.$$

$$(6)$$

• To simplify the value function, consider an approximation $m(\delta, x) \approx m(\delta)$, then we have:

$$\int_{\mathbf{X}} p_x(\mathbf{x}) m(\delta, \mathbf{x}) \theta(\mathbf{x}) d\mathbf{x} \approx m(\delta) \int_{\mathbf{X}} p_x(\mathbf{x}) \theta(\mathbf{x}) d\mathbf{x}
= m(\delta) \theta_{\text{avg}},$$
(7)

• Plug equation (7) to value function:

$$V(t,b) \approx \max_{0 \le a \le b} \left\{ \sum_{\delta=0}^{a} m(\delta)\theta_{\text{avg}} + \sum_{\delta=0}^{a} m(\delta)V(t-1,b-\delta) + \sum_{\delta=a+1}^{\infty} m(\delta)V(t-1,b) \right\}.$$
(8)

Extract the optimal policy from the value function:

$$a(t,b,\boldsymbol{x}) = \underset{0 \leq a \leq b}{\operatorname{argmax}} \Big\{ \sum_{\delta=0}^{a} m(\delta,\boldsymbol{x}) \Big(\theta(\boldsymbol{x}) + V(t-1,b-\delta) \Big) - \underset{0 \leq a \leq b}{\sum} m(\delta,\boldsymbol{x}) V(t-1,b) \Big\}$$
 monotonically increases w.r.t. b, thus monotonically decreases w.r.t. δ

$$= \underset{0 \leq a \leq b}{\operatorname{argmax}} \Big\{ \sum_{\delta=0}^{a} m(\delta,\boldsymbol{x}) \Big(\theta(\boldsymbol{x}) + V(t-1,b-\delta) - V(t-1,b) \Big) \Big\}$$

$$\equiv \underset{0 \leq a \leq b}{\operatorname{argmax}} \Big\{ \sum_{\delta=0}^{a} m(\delta,\boldsymbol{x}) g(\delta) \Big\},$$
 (9)
$$= \underset{0 \leq a \leq b}{\operatorname{argmax}} \Big\{ \sum_{\delta=0}^{a} m(\delta,\boldsymbol{x}) g(\delta) \Big\},$$
 monotonically decreases w.r.t. δ

$$a(t, b, \mathbf{x}) = \begin{cases} b & \text{if } g(b) \ge 0 \\ A & g(A) \ge 0 \text{ and } g(A+1) < 0 & \text{if } g(b) < 0 \end{cases}$$
 (10)

Algorithm and pseudocode

```
Algorithm 1 Reinforcement Learning to Bid
Input: p.d.f. of market price m(\delta), average CTR \theta_{\text{avg}}, episode
    length T, budget B
Output: value function V(t,b)
1: initialize V(0,b) = 0
2: for t = 1, 2, \dots, T - 1 do
3: for b = 0, 1, \dots, B do
          enumerate a_{t,b} from 0 to min(\delta_{\max}, b) and set V(t,b) via
          Eq. (8)
5:
       end for
6: end for
Input: CTR estimator \theta(\boldsymbol{x}), value function V(t,b), current state
    (t_c, b_c, \boldsymbol{x}_c)
Output: optimal bid price a_c in current state
1: calculate the pCTR for the current bid request: \theta_c = \theta(\boldsymbol{x}_c)
2: for \delta = 0, 1, \dots, \min(\delta_{\max}, b_c) do
       if \theta_c + V(t_c - 1, b_c - \delta) - V(t_c - 1, b_c) \ge 0 then
         a_c \leftarrow \delta
       end if
6: end for
```


HANDLING LARGE-SCALE ISSUES

How to handle the real-world large-scale problem?

Large-Scale Problem

- In the algorithm, we update the value function V(t,b) by two nested loops
 - Time complexity O(TB)
 - Space complexity O(TB)
- Problem: For large-scale T and B, the algorithm can not be applied
- Solution:
 - Use parameterized models (Neural Networks) to fit the value function on small data scale, i.e., $\{0, ..., T_0\} \times \{0, ..., B_0\}$ where $T_0 < T$ and $B_0 < B$.
 - Map the unseen states to acquainted states.
 - Implicit segmentation model (RLB-NN-Seg)
 - Explicit state mapping model (RLB-NN-MapD or RLB-NN-MapA)

Large-Scale Problem

• In equation (9), we expect the prediction error of $\theta(x) + V(t - 1,b-\delta) - V(t-1,b)$ in the training data to be low in comparison to the average pCTR $\theta_{\{avg\}}$.

$$a(t, b, \mathbf{x}) = \underset{0 \le a \le b}{\operatorname{argmax}} \left\{ \sum_{\delta=0}^{a} m(\delta, \mathbf{x}) \Big(\theta(\mathbf{x}) + V(t-1, b-\delta) \Big) - \sum_{\delta=0}^{a} m(\delta, \mathbf{x}) V(t-1, b) \right\}$$

$$= \underset{0 \le a \le b}{\operatorname{argmax}} \left\{ \sum_{\delta=0}^{a} m(\delta, \mathbf{x}) \Big(\theta(\mathbf{x}) + V(t-1, b-\delta) - V(t-1, b) \Big) \right\}$$

$$\equiv \underset{0 \le a \le b}{\operatorname{argmax}} \left\{ \sum_{\delta=0}^{a} m(\delta, \mathbf{x}) g(\delta) \right\}, \tag{9}$$

• Introduce a new function D(t,b) and use it to replace the role of V(t,b):

$$D(t,b) = V(t,b+1) - V(t,b)$$

$$V(t-1,b-\delta) - V(t-1,b) = -\sum_{\delta'=1}^{\delta} D(t-1,b-\delta').$$

Take fully connected neural network as a non-linear approximator for D(t,b).

Segmentation Model:

• Divide the large episode into several small episodes with length T_0 . Within each large episode we allocate the remaining budget to the remaining small episodes.

State Mapping Models:

- RLB-NN-MapD: For unseen states $t > T_0$ and $b > B_0$, there should be some points $\{(t', b')\}$ where $t' \le T_0$ and $b' \le B_0$ such that D(t', b') = D(t, b). This model is to combine NNs with the mapping of D(t,b).
- RLB-NN-MapA: Similarly, a(t, b, x) decreases w.r.t. t and increases w.r.t. b, which is consistent with intuitions. This model is to combine NNs with the mapping of a(t, b, x).

- Therefore, consider a simple case that b/t represents the budget condition, we can map the unseen states to acquainted states via two linear mapping forms:
 - (i) map a(t, b, x) where $t > T_0$ to $a(T_0, \frac{b}{t} \times T_0, x)$.
 - (ii) map D(t, b) where $t > T_0$ to D($T_0, \frac{b}{t} \times T_0$).
 - Intuition: From the view of practical bidding, when the remaining number of auctions are large and the budget situation is similar, given the same bid request, the agent should give a similar bid price

- Derivations of the simple linear mapping method:
 - Denote Dev(t, T_0 , b) = $\left| D(t, b) D(T_0, \frac{b}{t} \times T_0) \right|$, the deviations are low enough

EXPERIMENTAL RESULTS

How is the model performance over datasets?

Experiment Setup

- Evaluation metrics:
 - Number of acquired clicks
 - Win rate
 - Cost per mille impressions (CPM)
 - Effective cost per click (eCPC)
- Budget constraints:
 - $B = CPM_{train} \times 10^{-3} \times T \times c_0$, where c_0 acts as the budget constraints parameter
 - Run the evaluation with $c_0 = 1/32, 1/16, 1/8, 1/4, 1/2$
- Episode length
 - For the large-scale evaluation, we set the episode length T as 100,000
 - For the small-scale evaluation, we set the episode length T as 1,000
 - Also run a set of evaluations with episode length T = 200,400,600,800,1000

Illustration of other methods

- SS-MDP: Considering the bid landscape but ignoring the feature vector of bid request when giving the bid price. Although we regard this model as the state-of-the-art, it is proposed to work on keyword-level bidding in sponsored search, which makes it not fine-grained enough to compare with RTB display advertising strategies.
- Mcpc: gives its bidding strategy as $a_{\{Mcpc\}(t,b,x)} = CPC \times \theta(x)$, which matches some advertisers' requirement of maximum CPC (cost per click).
 - Does not adjust its strategy when the budget condition changes
- Lin: Linear bidding strategy w.r.t. the pCTR: $a_{\{Lin\}}(t,b,x) = b_0 \frac{\theta(x)}{\theta_{\{avg\}}}$ where b_0 is the basic bid price and is tuned using the training data [18]. This is the most widely used model in industry.

Small-Scale Evaluations

- In the comparison on total clicks, RLB performs the best under every budget condition.
 - Verifying the effectiveness of the derived algorithm for optimizing attained clicks
- In the comparison on win rate, RLB can generate a higher number of clicks with comparable CPM and eCPC against Lin.
 - RLB effectively spends the budget according to the market situation, which is unaware of by Lin

Small-Scale Evaluations

• Compared to Lin, RLB can attain more clicks with similar eCPC.

Small-Scale Evaluations

Table 2: Click improvement of RLB over Lin for each campaign under $T=10^3$ and different budget conditions.

iPinYou	1/32	1/16	1/8	1/4	1/2
1458	4.66%	3.96%	3.25%	0.21%	1.02%
2259	114.29%	35.29%	9.09%	32.56%	22.22%
2261	25.00%	6.25%	-3.70%	6.82%	0.00%
2821	20.00%	11.86%	27.27%	29.36%	12.97%
2997	23.81%	54.55%	85.26%	13.04%	3.18%
3358	2.42%	3.30%	0.87%	3.02%	0.40%
3386	8.47%	22.47%	13.24%	14.57%	13.40%
3427	7.58%	10.04%	12.28%	6.88%	5.34%
3476	-4.68%	-3.79%	2.50%	5.43%	0.72%
Average	22.39%	15.99%	16.67%	12.43%	6.58%
YOYI	3.89%	2.26%	7.41%	3.48%	1.71%

Table 3: Detailed AUC and clicks $(T = 10^3 \text{ and } c_0 = 1/16)$.

iPinYou	AUC of $\theta(\boldsymbol{x})$	SS-MDP	MCPC	Lin	RLB
1458	97.73%	42	405	455	473
2259	67.90%	13	11	17	23
2261	62.16%	16	12	16	17
2821	62.95%	49	38	59	66
2997	60.44%	116	82	77	119
3358	97.58%	15	144	212	219
3386	77.96%	24	56	89	109
3427	97.41%	20	178	279	307
3476	95.84%	38	103	211	203
Average	80.00%	37	114	157	170
YOYI	87.79%	120	196	265	271

Large-Scale Evaluations

Table 4: Approximation performance of the neural network.

	iPinYou	YOYI
RMSE (×10 ⁻⁶)	0.998	1.263
RMSE / $\theta_{\rm avg}~(\times 10^{-4})$	9.404	11.954

Figure 9: Overall performance on iPinYou under $T=10^5$ and different budget conditions.

Online Deployment and A/B Test

Figure 10: Online A/B testing results.

Figure 11: Total clicks and cost increase over episodes.

CONCLUSIONS

What are the conclusions?

Conclusions

➤ This paper proposed a model-based reinforcement learning model (RLB) for learning the bidding strategy in RTB display advertising so that the campaign budget can be <u>dynamically allocated</u> across all the available impressions on the basis of both the immediate and future rewards.

➤ The scalability problem from the large real-world auction volume and campaign budget is well handled by state value approximation using neural networks.

> Empirical study demonstrated the superior performance and high efficiency of RLB compared to state-of-the-art methods.

Future Work

- Future steps claimed by the authors:
 - Investigate **model-free approaches** such as Q-learning and policy gradient methods to unify utility estimation, bid landscape forecasting and bid optimization into a single optimization framework and handle the highly dynamic environment
 - Compare RLB solutions with the explicit budget pacing techniques

- Discussion on future extensions:
 - Continuous budget and bidding price
 - Non-stationary environments
 - Non-myoptic strategy

Some related work - recommended readings

Continuous bidding price strategy using Soft Actor-Critic algorithm

[2] Liu, Mengjuan, et al. "Bid Optimization using Maximum Entropy Reinforcement Learning." arXiv preprint arXiv:2110.05032 (2021).

The long-term effect of impressions

[3] Hausknecht, Matthew, and Peter Stone. "Deep recurrent q-learning for partially observable mdps." 2015 aaai fall symposium series. 2015.

Non-stationary environments

[4] Li, Zhuoshu, et al. "Faster Policy Adaptation in Environments with Exogeneity: A State Augmentation Approach." AAMAS. 2018.

LIN – the most widely used bidding strategy in industry

[5] Perlich, Claudia, et al. "Bid optimizing and inventory scoring in targeted online advertising." Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. 2012.

