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Introduction: DNA and Protein Sequences
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Introduction: Biological Sequence Design

= The goal of biological sequence design is to find new sequences x which optimize
some oracle, typically an experimentally-measured functional property f(x).

= The current gold standard for biomolecular design is directed evolution, which
was recently recognized with a Nobel prize (Arnold, 1998) which is a form of
randomized local search.

= Wet-lab experiments are slow and expensive.
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Introduction: Directed Evolution
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Introduction: Directed Evolution Guided by Machine Learning
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Dyna PPO
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Method: TRPO and PPO

TRPO

PPO
with Adaptive KL Penalty Coefficient

maximize ]Et[ mo(as | 5t) flt]

0
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maximize [E;
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Compute d = Et[KL[WQOId(' | 5¢), mo(- | s¢)]]

— If d < dyarg /1.5, B+ B/2
— If d > diarg X 1.5, B B X 2

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
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Method: Dyna-0

Dyna-Q(s)
Repeat
Select and execute a, observe s’ and r
Update transition: wy < wy — ar(T(s,a) —s')V,,.T(s, a)
Update reward: wg < wg — ag(R(s,a) — 1)V, R(s,a)
§—r+ y max Q(s',a’) — Q(s,a)
Update Q: wy « wy — anWWQQ(S, a)
Repeat a few times:
sample s, a arbitrarily
d « R(s,a) + y max Q(T(§,a),a") —Q(s,a)
Update Q: wy « wg — anWWQQ(S*, a)
s« s'
Return Q
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Method: Problem Formulation

= Let f(x) be the function that we want to optimize.

« x € VT asequence of length T over a vocabulary V such as DNA

nucleotides (|V| = 4) or amino acids (|V| = 20).

= Assume N experimental rounds and that B sequences can be

measured per round.

= Let D, = {(x, f(x))}Dbe the data acquired in round n with
|Dn| = B.
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Method: State and Action Formulation

= The state and action space and reward and transition function for RL model are
defined as follow:

= a; is the token which has been chosen at timestep t, and a; € V.
» The state s, = ag, ... ,a,_, corresponds to the t last tokens (S = U;=; 7V?%)

= The transition function p(s; + 1|s;) = sa; is deterministic and corresponds to
appending a; to s;.

= The reward r(s;, a;) is zero except at the last step T, where it corresponds to the
functional measurement f(sr_4)
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Method: Automatic Model Tuning and Selection

= Consider a set of candidate models consist of nearest neighbor regression,
Bayesian ridge regression, random forests, gradient boosting trees, Gaussian
processes, and ensemble of deep neural networks.

= Automatically, tune their hyper-parameters by cross-validation.
= Evaluate models accuracy by the R2 score and cross-validation.
= Select the models which have a R2 score below a pre-specified threshold (t).

= Stop model-based training as soon the the model uncertainty increases by a
certain threshold.
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ethod: Dyna PPO

Algorithm 1: DyNA PPO

Input: Number of model-based trainin

forn=1,2,..Ndo

Train policy 7y on D,,
Fit candidate models ' € S on |J!

o el (Nl B

11 if S’ # () then

1

_, D; and compute their score by cross-validation
10: Select the subset of models S’ C S with a score > 7

Input: Number of experiment rounds NN

g rounds M

Input: Set of candidate models S = {f}
Input: Minimum model score 7 for model-based training
Input: Policy 7y with initial parameters 6

Collect samples D,, = {z, f(x)} using policy 7y

12 form =1,2,..Mdo

1% Sample a batch of sequences x from 7y and observe the reward f” (x) = |3—1,| p sres t "(x)
14: Update g on {z, f"(z)}

155 end for

16: end if

17: end for
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Method: Diversity-Promoting Reward Function

In order to encourage the model to generate diverse sequences, the reward function

was defined as

rr = f(x) —A.dens(x)

where dens(x) € N7 is the weighted number of sequences that have been proposed
in previous rounds with a distance of less than e away from x, where the weight

decays linearly with the distance.

They used the edit distance as distance metric and tuned the distance radius e.
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Expriments

They compared the performance of Dyna PPO to different existing methods in three
in-silico optimization problems that were designed to simulate the behaviour of real
wet-lab experiments, which were cost prohibitive for a comprehensive
methodological evaluation.

Optimization performance was quantified by the cumulative maximum reward f(x)
for sequences proposed up to a given round, and the area under the cumulative
maximum reward curve was used to summarize one optimization trajectory as a
single number.
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\Experlments Optimization of Protein Contact Ising Models

Given a protein, they sought to find the amino acid sequence that minimizes the energy of the Ising model
parameterized by its structure.
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Figure 1: Comparison of methods on optimizing the energy of protein contact Ising models. Left: the cu-
mulative maximum reward depending on the number of rounds for one selected protein target (1A3N). Right:
the mean cumulative maximum relative to Random for alternative protein targets. Since f(z) can be well-
approximated by a model trained on few examples, model-based training (DyNA PPO) results in a clear im-
provement over model-free training (PPO).
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Experiments: Optimization of Protein Contact Ising Models
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Figure 2: Analysis of the performance of DyNA PPO on the Ising model. Left: Performance of DyNA
PPO depending on the number of inner policy optimization rounds using the surrogate model. Using 0 rounds
corresponds to PPO training. Since the surrogate model is sufficiently accurate, it 1s useful to perform many
inner loop optimization rounds before querying f(x) again. Right: the R? of the surrogate model. Since it is

always above the threshold for model-based training (0.5; dashed line), it is always used for training.
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Experiments: Optimization of Transcription Factor Binding Sites

Designing length-8 DNA sequences (search space = 48).

DyNA PPO | PPO | BO-GP | DbAs | RegEvol | FBGAN | Random
Cumulative maximum 6.4 5.8 5.0 37 3 2.2 1.3
Fraction optima found 6.8 5.6 5.4 3.5 353 2 1.0
Mean hamming distance | 5.6 5.4 4.0 2:D 1.0 25 7.0

Table 1: Mean rank of methods across transcription factor binding targets. Mean rank of
methods across all 41 hold-out transcription factor targets. Ranks were computed within each target
using the average of metrics across optimization rounds, and then averaged across target. The higher
the rank the better. 7 is the maximum rank. DyNA PPO outperforms the other methods on both
optimization of f(x) and its ability to identify multiple well-separated local optima.
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Experiments: The Effect of Exploration Bonus

Entropy regularization
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Figure 5: Comparison of the proposed exploration bonus vs. entropy regularization on the transcription
factor task. Left: performance with exploration bonus as a function of the density penalty A (Section 2.4).
Right: performance of entropy regularization as a function of the regularization strength. The top row shows
that PPO finds about 80% of local optima with a relatively mild density penalty of A = 0.1, whereas only about
45% local optima are found when using entropy regularization. The bottom row shows that varying the density
penalty enables to control the sequence diversity quantified by the mean pairwise hamming distance between

sequences.
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Conclusion: Contributions

In summary, the contributions of this paper are as follows:

= They provided a model-based RL algorithm, DyNA PPO, and demonstrated its
effectiveness in performing sample efficient batched black-box function
optimization.

= They used an automatic model tuning and selection in order to have a reliable
reward function.

= They propose a visitation-based exploration bonus and showed that it is more
effective than entropy-regularization in identifying multiple local optima.
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Conclusion: Future Extensions

The authors suggested that the large-batch, low-round optimization setting
described here may well be of general interest, and that model-based RL may be
applicable in other scientific and economic domains.
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