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Introduction

@ DQN learns to play as well as a professional gamer does (Mnih et al.,
2015)

o Limitation: Deep neural networks are “black boxes”

o Deep RL (DRL) agents are promising, but we do not know what
strategies they adopt

@ Interpreting DRL models enhances trust and complies with regulations

o “A right to explanation” established by the EU's General Data
Protection Regulation

o We want to explain, or interpret:
e How important is each input feature?
o How does it actually influence the agent’s decisions?

o What and how much did an agent learn from each input?
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Introduction

@ Previous works focused on visualization of the pointwise importance of
low-level input features

@ However, we want to reveal a global causal relationship between
targets and high-dimensional inputs

@ Let’s build transparent trees which “mimic” the DRL model, but:

o Numerous splits keep us from understanding the “accurate” decision
rules

e Any constraints on the tree complexity leads to the limited performance
e Following the Information Bottleneck principle, we learn:
o The compressed and hidden features which best represent the raw inputs

e The simplest mimic tree based on such features from the representation
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What is “Interpretability”?

Definition by Murdoch et al. (2019)

“The extraction of relevant knowledge from a machine learning model,
concerning relationships either contained in data or learned by the model."

@ We may desire the following characteristics for interpretations:
@ Predictive Accuracy: Did our model learn a good approximation?

@ Descriptive Accuracy: Does interpretations “truthfully” represent the
actual relationship learned by the model?

© Relevancy: Does the interpretation provide insight into a chosen
domain problem?

@ Simplicity: Can we easily understand it?
© Consistency: Do different models produce similar predictions and

interpretations given the same data?
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Types and Scopes of Interpretation (Alharin et al., 20

@ Interpretation can be either post-hoc, intrinsic, or both:

@ Post-Hoc: Explain the learned rules given the original model
architecture

@ Intrinsic: Replace the original model with a transparent alternative
@ As a result of interpretation, we can explain either of:

© Local, or prediction-level decisions of the model at a specific input

@ Its global, or dataset-level strategy in taking actions

@ There are various means of delivering interpretations: Graphs, Saliency
Maps, Natural Language, Mathematical Expressions, etc.
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Previous Works on DRL Interpretations

@ Visualization based on the high-dimensional input state

DOWNLEFT DOWNLEFIFIRE  RIGHT
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Masked State-Action Pairs An Unsuccessful Agent
(Shi et al., 2020) (Greydanus et al., 2018)

@ Attention distributions are not identifiable for local samples

@ The interpretations are pointwise, so cannot identify the underlying
causality
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Previous Works on DRL Interpretations

@ Mimic Learning

@ A simple model can learn the complex functions as accurately as deep
models (Ba and Caruana, 2014)

o Liu et al. (2018) and Sun et al. (2020) approximated the Q functions
using linear trees = Too complex interpretations

@ Boz (2002) entertained pruning given the constraint of tree complexity
= Too limited performance
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The Information Bottleneck (IB; Tishby et al., 1999)

We want the mimic learner to preserve both of:
o Information about targets (Descriptive Accuracy / Fidelity)

o Conciseness of the input data (Simplicity)

An lIssue: It may not learn the raw inputs X := (S, A, R)

o Solution: Learn a latent representation Z = {Z,}5_, first, and build a
mimic model ¢ upon Z

@ Another Issue: The marginal distribution p(X), and therefore the
posterior p(Z|X) are both intractable in practice

@ Solution: Do variational approximation!
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“Represent And Mimic” (RAMi) Framework

o RAMi separately interprets:
e Input features with their interpretable latent representations
o Decision rules with a transparent mimic tree
@ The knowledge of a DRL model is distilled to a mimic tree, which will
learn post-hoc interpretations
e We want to mimic action advantages defined as y = Q(s, a) — V/(s)

@ The mimic learner lets us understand when an action outperform
others by y

By Theorem, we maximize the lower bound of the following function:

Evidence Lower Bound + Minimum Description Length 4 Entropy Regularizer
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|dentifiable Multi-Object Network (IMONet)

Our IMONet adopts the following two frameworks:
© Variational Auto-Encoders (VAE; Kingma and Welling, 2014)
1. Approximate: q(Z|X) = p(Z|X) 2. Encode: X — q(Z|X)

3. Sample & Decode: Z._ 4z|x) — pd(X|Z) = 4. Reconstruct: X

@ In IMONet, we assume Z3,- -, Zp independent i.e.,
p(Z) = ngl p(Zq)
= Each Z, is disentangled and identifiable
—> We can model causal relations between Z and Y
@ A good approximation of p(Z|X) minimizes Dy [q(z|xn)||po(2)]

= It then maximizes the Evidence Lower Bound and fidelity!
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|dentifiable Multi-Object Network (IMONet)

@ Multi-Object Network (MONet; Burgess et al., 2019)
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Schematic of MONet

1. Decompose:
s=(s1,...,Sk)|(m1,...,mg)

2. Encode-Sample-Decode* :
Conditional VAE on sx|my, a, r,
employing a factored prior

p(Z|A,R) =TI5_1 p(Z4|A,R)

3. Reconstruct: my - 3

*See also Sohn et al. (2015)
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Monte Carlo Regression Tree Search (MCRTYS)

@ MCRTS minimizes the IB-Mimimum Description Length

o Extract z;, which collects the vectors of

MCRTS Searn T Nimc Tro D-dimensional latent features from K
o vew objects for the ith instance
o e Construct (z, aj, ri; y;) as inputs and
o #-uwn  store them at the root node
G @ Partition the instances in a parent by a
split f to two cells in children
@ Record the number of visits and the
MCRTS constructs a search tree; estimate of Q at f
An edge refers to a split in the = MCRTS therefore learns a compact
selected mimic tree distribution p(®|Z), where ¢ € ¢
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Monte Carlo Regression Tree Search (MCRTYS)

© Search: Run M plays from a starting node

@ At each mth play and /th layer, select the split f; ,, that maximize the
upper confidence bound:

UCB = argmax; [Q L1, ) + c/log(m — 1)/ {NVim_1(J), )+1}]
@ Augment the previous estimate more for a less visited node
@ Control the exploration with a constant ¢
@ Evaluate: Evaluate the selected leaf node J with reward rM¢
© Expand: Expand the leaf with children
@ Update: QMC = (QMS, + rMC) / (NVm — 1+ 1)

© Move: Select the split with the highest NV}, and set the starting node
to the connected child
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Experiment: Environments

ﬁm
-

Flappy Bird Space Invaders Assault

&

o Flappy Bird: 0.1 reward per step, +1: Pass, -1: Interference

o The pillars, or states are randomly generated

@ Space Invaders and Assault: +1 per kill
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Experiment: Implementation

@ Train a DRL agent for each environment

o Flappy Bird: DQN (Chen, 2015)
e Space Invaders and Assault: A3C (Mnih et al., 2016)

@ Collect the N = 50,000 pairs of ((sn, an, rn) , ¥n)

o An e-greedy Policy with e = 0.01
e Train-Validation-Test Split: 80-10-10

© Train the tree-based baseline mimic methods with the raw input data

o MCRTS, CART (Breiman, 1984; Timofeev, 2004), VIPER (Bastani,
Pu, and Solar-Lezama, 2018), M5 (Quinlan et al., 1992), Linear Model
Trees (LMT; Liu et al., 2018; Sun et al., 2020)

@ Compare their performance based on the latent representation learned
by IMONet
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Experiment: Latent Traversals

@ Get a random sample of size 1000

@ Average all the latent features of the sampled images generated by
IMONet

© Traverse each latent feature Zj 4, having other KD — 1 values fixed

@ Observe the variations of generated images

Background  Pillars Bird

Latent Traversals
in(Z31) max(Zs 1)

min(Z;z) max(Zz,z)

Figure 1: Visualized IMONet Outputs in a Flappy Bird Experiment
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Results

Flappy Bird Space Invaders Assault

Method VR VR-PL Leaf VR-PL Leaf VR VR-PL Leaf

Cart 8.51E-2 8.43E-5 1007 7.02E-5 705 4779E-2  7.46E-5 642

VIPER 8.57E-2  1.88E-4 453 8.80E-5 525 5.28E-2  8.09E-5 653
M5-RT 9.59E-2 8.37E-5 1144 2.92E-5 1558 437E-2  273E-5 1605
M5-MT 9.56E-2 1.55E-4  612%¢ 1.23E-5  1303“+ | 3.42E-2 254E-5 1351"t
GM-LMT 8.99E-2 2.99E-4 303"t 8.32E-5 249" 5.55E-2 1.83E-4 307"+
VR-LMT 8.46E-2 5.36E-4 157"+ 1.61E-4  166™+ | 5.80E-2 1.98E-4 291 "+

T T T VAE+CART ~ [ 7.25E2” T344E-4° " 2127 | 7.86E-5 507 5.15E2" " 1.T6E-4 448
VAE+VIPER 7.63E2 532E-4 143 9.89E-5 417 457E-2  1.29E-4 356

VAE+GM-LMT 6.35E-2  3.51E-4 180"+

VAE+VR-LMT 795E-2  5.12E-4 154"+
VAE+MCRTS 7.83E-2  1.27E-3 61

"7 IMONet+CART | 8.23E-2" "4.02E-4 ~ ~ 204" |

IMONet+VIPER 8.50E-2  4.48E-4 191

IMONet+GM-LMT | 7.87E-2  3.74E-4 212"+

IMONet+VR-LMT | 821E-2 7.16E-4 115"+
IMONet+MCRTS 8.53E-2 1.37E-3 62

Figure 2: Regression Performance

@ VR, VR-PL: Variance Reduction, — per Leaf
@ RT, MT, GM: Regression-Tree, Model-Tree, Gaussian Mixture
@ w,: Each leaf node has an extra linear model

@ MCRTS trained with the raw data is intractable
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@ The combination of IMONet and MCRTS presents a promising
performance with significantly fewer leaves

@ The object representation learned by IMONet outperformed others
thanks to identifiability

@ MCRTS considers the tree's performance at a global level, and can
maintain the simple mimic tree's fidelity

@ Some trees built from raw inputs may outperform in terms of other
metrics such as RMSE, but their size is far larger than our model
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Figure 3: Leaf-by-Leaf Regression Performance based on the latent features from IMONet

@ If we constrain the number of leaves, MCTRS dominates

@ MCRTS looks ahead to the future cumulative rewards instead of local
influence

@ The selected split is well-explored, and therefore more efficient than a
greedy one with extra linear regressors at leaf nodes
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Figure 4: Mean Correlation Coefficients (MCC) for Different Variational Encoders

@ MCC measures the latent features from one model differs enough than
those from the other

e Conditioning variables (action, reward) and an object network together
further improve the identifiability of latent features
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Interpretability of the IMONet+MCRTS Mimic Tree

944017

Figure 5: Mimic Tree. f;: the /th split; Solid / Dash Lines: Path / Causality

o Causal Relation: When the bird goes “down” and it is closer to the
upper pillar i.e., Z31 > 0.12, the advantage is maximized

@ Counterfactual: If the bird is far enough from the upper pillar i.e.,
Z31 = 0, the advantage decreases
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Concluding Remarks

@ The IB principle led to the development of the framework which jointly
optimizes the fidelity and the simplicity of the mimic tree

@ Utilizing the conditional VAE, IMONet converts state features to an
identifiable latent representation which captures the independent
factors of variation for the masked objects

@ MCRTS learns a compact distribution over the collection of mimic
trees, and decrease the complexity of the optimal mimic tree which
minimizes the IB-minimum description length

@ The nature of MCRTS, which conducts multiple simulations for
searching the optimal mimic tree, increases the computational cost

@ The empirical evaluation involved illustrative examples and human
evaluation, because it is generally hard to theoretically justify or
numerically quantify the level of interpretability
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