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Introduction

DQN learns to play as well as a professional gamer does (Mnih et al.,
2015)

Limitation: Deep neural networks are “black boxes”
Deep RL (DRL) agents are promising, but we do not know what
strategies they adopt

Interpreting DRL models enhances trust and complies with regulations
“A right to explanation” established by the EU’s General Data
Protection Regulation

We want to explain, or interpret:
How important is each input feature?

How does it actually influence the agent’s decisions?

What and how much did an agent learn from each input?
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Introduction

Previous works focused on visualization of the pointwise importance of
low-level input features

However, we want to reveal a global causal relationship between
targets and high-dimensional inputs

Let’s build transparent trees which “mimic” the DRL model, but:
Numerous splits keep us from understanding the “accurate” decision
rules

Any constraints on the tree complexity leads to the limited performance

Following the Information Bottleneck principle, we learn:
The compressed and hidden features which best represent the raw inputs

The simplest mimic tree based on such features from the representation
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What is “Interpretability”?

Definition by Murdoch et al. (2019)
“The extraction of relevant knowledge from a machine learning model,
concerning relationships either contained in data or learned by the model."

We may desire the following characteristics for interpretations:
1 Predictive Accuracy: Did our model learn a good approximation?

2 Descriptive Accuracy: Does interpretations “truthfully” represent the
actual relationship learned by the model?

3 Relevancy: Does the interpretation provide insight into a chosen
domain problem?

4 Simplicity: Can we easily understand it?

5 Consistency: Do different models produce similar predictions and
interpretations given the same data?
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Types and Scopes of Interpretation (Alharin et al., 2020)

Interpretation can be either post-hoc, intrinsic, or both:
1 Post-Hoc: Explain the learned rules given the original model

architecture

2 Intrinsic: Replace the original model with a transparent alternative

As a result of interpretation, we can explain either of:
1 Local, or prediction-level decisions of the model at a specific input

2 Its global, or dataset-level strategy in taking actions

There are various means of delivering interpretations: Graphs, Saliency
Maps, Natural Language, Mathematical Expressions, etc.
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Previous Works on DRL Interpretations

1 Visualization based on the high-dimensional input state

Masked State-Action Pairs
(Shi et al., 2020)

An Unsuccessful Agent
(Greydanus et al., 2018)

Attention distributions are not identifiable for local samples

The interpretations are pointwise, so cannot identify the underlying
causality
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Previous Works on DRL Interpretations

2 Mimic Learning

A simple model can learn the complex functions as accurately as deep
models (Ba and Caruana, 2014)

Liu et al. (2018) and Sun et al. (2020) approximated the Q functions
using linear trees ⇒ Too complex interpretations

Boz (2002) entertained pruning given the constraint of tree complexity
⇒ Too limited performance
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The Information Bottleneck (IB; Tishby et al., 1999)

We want the mimic learner to preserve both of:
Information about targets (Descriptive Accuracy / Fidelity)

Conciseness of the input data (Simplicity)

An Issue: It may not learn the raw inputs X := (S,A,R)

Solution: Learn a latent representation Z = {Zd}Dd=1 first, and build a
mimic model φ upon Z

Another Issue: The marginal distribution p(X ), and therefore the
posterior p(Z |X ) are both intractable in practice

Solution: Do variational approximation!
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“Represent And Mimic” (RAMi) Framework

RAMi separately interprets:
Input features with their interpretable latent representations

Decision rules with a transparent mimic tree

The knowledge of a DRL model is distilled to a mimic tree, which will
learn post-hoc interpretations

We want to mimic action advantages defined as y = Q(s, a)− V (s)

The mimic learner lets us understand when an action outperform
others by y

By Theorem, we maximize the lower bound of the following function:

Evidence Lower Bound + Minimum Description Length + Entropy Regularizer
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Identifiable Multi-Object Network (IMONet)

Our IMONet adopts the following two frameworks:
1 Variational Auto-Encoders (VAE; Kingma and Welling, 2014)

1. Approximate: q(Z |X ) ≈ p(Z |X ) 2. Encode: X → q(Z |X )

3. Sample & Decode: Z∼q(Z |X) → pd (X |Z )⇒ 4. Reconstruct: X̃

In IMONet, we assume Z1, · · · ,ZD independent i.e.,
p(Z ) =

∏D
d=1 p(Zd )

=⇒ Each Zd is disentangled and identifiable

=⇒ We can model causal relations between Z and Y

A good approximation of p(Z |X ) minimizes DKL[q(z |xn)||p0(z)]

=⇒ It then maximizes the Evidence Lower Bound and fidelity!
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Identifiable Multi-Object Network (IMONet)

2 Multi-Object Network (MONet; Burgess et al., 2019)

Schematic of MONet

1. Decompose:
s = (s1, . . . , sK )|(m1, . . . ,mK )

2. Encode-Sample-Decode∗:
Conditional VAE on sk |mk , a, r ,
employing a factored prior
p(Z |A,R) =

∏D
d=1 p(Zd |A,R)

3. Reconstruct: m̃k · s̃k

∗See also Sohn et al. (2015)
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Monte Carlo Regression Tree Search (MCRTS)

MCRTS minimizes the IB-Mimimum Description Length

MCRTS constructs a search tree;
An edge refers to a split in the

selected mimic tree

Extract zi , which collects the vectors of
D-dimensional latent features from K
objects for the ith instance
Construct 〈zi , ai , ri ; yi〉 as inputs and
store them at the root node
Partition the instances in a parent by a
split f to two cells in children
Record the number of visits and the
estimate of Q at f
⇒ MCRTS therefore learns a compact
distribution p(Φ|Z ), where φ ∈ Φ
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Monte Carlo Regression Tree Search (MCRTS)

1 Search: Run M plays from a starting node

At each mth play and lth layer, select the split fl ,m that maximize the
upper confidence bound:

UCB = argmaxf

[
QMC

m−1(Jl , f ) + c
√

log(m − 1)/ {NVm−1(Jl , f ) + 1}
]

Augment the previous estimate more for a less visited node

Control the exploration with a constant c
2 Evaluate: Evaluate the selected leaf node J with reward rMC

3 Expand: Expand the leaf with children

4 Update: QMC
m =

(
QMC

m−1 + rMC
)
/ (NV m − 1 + 1)

5 Move: Select the split with the highest NVM and set the starting node
to the connected child
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Experiment: Environments

Flappy Bird Space Invaders Assault

Flappy Bird: 0.1 reward per step, +1: Pass, -1: Interference
The pillars, or states are randomly generated

Space Invaders and Assault: +1 per kill
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Experiment: Implementation

1 Train a DRL agent for each environment
Flappy Bird: DQN (Chen, 2015)
Space Invaders and Assault: A3C (Mnih et al., 2016)

2 Collect the N = 50, 000 pairs of (〈sn, an, rn〉 , yn)
An ε-greedy Policy with ε = 0.01
Train-Validation-Test Split: 80-10-10

3 Train the tree-based baseline mimic methods with the raw input data
MCRTS, CART (Breiman, 1984; Timofeev, 2004), VIPER (Bastani,
Pu, and Solar-Lezama, 2018), M5 (Quinlan et al., 1992), Linear Model
Trees (LMT; Liu et al., 2018; Sun et al., 2020)

4 Compare their performance based on the latent representation learned
by IMONet
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Experiment: Latent Traversals

1 Get a random sample of size 1000
2 Average all the latent features of the sampled images generated by

IMONet
3 Traverse each latent feature Zk,d , having other KD − 1 values fixed
4 Observe the variations of generated images

Figure 1: Visualized IMONet Outputs in a Flappy Bird Experiment
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Results

Figure 2: Regression Performance

VR, VR-PL: Variance Reduction, – per Leaf

RT, MT, GM: Regression-Tree, Model-Tree, Gaussian Mixture

w+: Each leaf node has an extra linear model

MCRTS trained with the raw data is intractable
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Results

The combination of IMONet and MCRTS presents a promising
performance with significantly fewer leaves

The object representation learned by IMONet outperformed others
thanks to identifiability

MCRTS considers the tree’s performance at a global level, and can
maintain the simple mimic tree’s fidelity

Some trees built from raw inputs may outperform in terms of other
metrics such as RMSE, but their size is far larger than our model
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Results

Figure 3: Leaf-by-Leaf Regression Performance based on the latent features from IMONet

If we constrain the number of leaves, MCTRS dominates

MCRTS looks ahead to the future cumulative rewards instead of local
influence

The selected split is well-explored, and therefore more efficient than a
greedy one with extra linear regressors at leaf nodes
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Results

Figure 4: Mean Correlation Coefficients (MCC) for Different Variational Encoders

MCC measures the latent features from one model differs enough than
those from the other

Conditioning variables (action, reward) and an object network together
further improve the identifiability of latent features
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Interpretability of the IMONet+MCRTS Mimic Tree

Figure 5: Mimic Tree. fl : the lth split; Solid / Dash Lines: Path / Causality

Causal Relation: When the bird goes “down” and it is closer to the
upper pillar i.e., Z3,1 ≥ 0.12, the advantage is maximized

Counterfactual: If the bird is far enough from the upper pillar i.e.,
Z3,1 = 0, the advantage decreases
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Concluding Remarks

The IB principle led to the development of the framework which jointly
optimizes the fidelity and the simplicity of the mimic tree

Utilizing the conditional VAE, IMONet converts state features to an
identifiable latent representation which captures the independent
factors of variation for the masked objects

MCRTS learns a compact distribution over the collection of mimic
trees, and decrease the complexity of the optimal mimic tree which
minimizes the IB-minimum description length

The nature of MCRTS, which conducts multiple simulations for
searching the optimal mimic tree, increases the computational cost

The empirical evaluation involved illustrative examples and human
evaluation, because it is generally hard to theoretically justify or
numerically quantify the level of interpretability
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