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Robust Control

= The field of robust control has been able to provide rigorous guarantees on when
controllers will succeed or fail in controlling a system of interest.

= If the uncertainties in the underlying dynamics can be bounded in specific ways,
these techniques can produce controllers that are provably robust even under
worst-case conditions.

= However, as the resulting policies tend to be simple (i.e., often linear).

= In contrast, deep reinforcement learning models are able to capture complex,
nonlinear model.

= However, due to a lack of robustness guarantees, these techniques have still found
limited application in safety-critical domains.
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R
Combining Robust Control and Deep RL

= This paper proposes a method for combining the guarantees of robust control with
the flexibility of deep reinforcement learning.

= We consider the setting of nonlinear, time-varying systems with unknown
dynamics, but the uncertainty on these dynamics can be bounded

= Building upon specifications provided by traditional robust control methods in
these settings, we construct a new class of nonlinear policies that are
parameterized by neural networks, but that are nonetheless provably robust

= We project the outputs of a nominal (deep neural network-based) controller onto
a space of stabilizing actions characterized by the robust control specifications
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*
Addressing the lack of safety and stability in RL

= Combine control-theoretic ideas, predominantly robust control, with the

nonlinear control policy benefits of RL.

= Safe RL

= Learning control policies while maintaining some notion of safety during or after learning.

= Typically, these methods attempt to restrict the RL algorithm to a safe region of the state space
by making strong assumptions about the smoothness of the underlying dynamics.

= This framework is in theory more general than our approach, which requires using stringent
uncertainty bounds
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Linear Matrix Inequalities

= In convex optimization, a linear matrix inequality (LMI) is an expression of the
following form:

m
LMI(x) == Ay + Exi/li >0
i=0

= Robust control is concerned with the design of feedback controllers with
guaranteed performance under worst-case conditions.

= Many classes of robust control problems in both the time and frequency domains
can be formulated using linear matrix inequalities (LMIs).

= Providing stability guarantees often requires the use of simple (linear) controllers,
which greatly limits average-case performance
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Linear Differential Inclusions

Our aim is to control nonlinear (continuous-time) dynamical systems of the form
x(t) € A(t)x(t) + B(t)u(t)+ G(t)w(t)

-
x(t): State at time t 1 w(t): Captures both external disturbance
and any modeling discrepancies
u(t): Control input

This class of models is referred to as linear differential inclusions (LDIs)

Despite the name: Can characterize nonlinear systems

Within this class of models, it is often possible to construct robust control
specifications certifying system stability
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Robust Control Specifications

Our system: x(t) € A(t)x(t) + B()u(t)+ G(t)w(t)

= In the continuous-time, infinite-horizon settings, the goal is often to construct a
time-invariant control policy u(t) = m(x(t))

= Alongside constructing some certification that guarantees stability.

= For many systems, this certification is in the form of a PD Lyapunov function.
V: R >R V(0)=0V(Ex) >0forallx# 0

V(x(t)) < —aV(x(t)), for some a > 0
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Safety Guarantees VA

V: RS> R,V(0) =0,V(x) >0forallx # 0

V(x(t)) < —aV(x(t)), for some a > 0

[ >
X2
X This figure is extracted from: math24.net(3!
1
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Robust Control Specifications

Our system: x(t) € A(t)x(t) + B(t)u(t)+ G(t)w(t)
Lyapunov function: I/: R* - R, V(0) = 0,V(x) > 0 forall x # 0
V(x(t)) < —aV(x(t)), for some a > 0

= For certain classes of bounded dynamical systems, it is possible to construct safety
guarantees using semidefinite programming

= time-invariant linear control policies u(t) = Kx(t)
« and quadratic Lyapunov functions V(x) = x” Px

= For instance, consider the class of norm-bounded LDIs (NLDIs)
x = Ax(t) + Bu(t)+ Gw(t), lw@®)ll; < [[Cx(t) + Du(t)ll;
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Robust Control Specifications

Our system: x = Ax(t) + Bu(t)+ Gw(t), [[w(t)|l, < [|Cx(t) + Du(t)||,
Safety Specifications: VV: R®* - R,V(0) =0,V(x) > 0forallx # 0
V(x(t)) < —aV(x(t)), for some a > 0
= For these systems, it is possible to specify a set of stabilizing policies via a set of
linear matrix inequalities
AS + SAT + uGGT + BY +YTBT +aS SCT +YTDT
CS+ DY —ul

» For matrices S and Y satisfying the above inequality, K = YS™tand P = S~ are
then a stabilizing linear controller gain and Lyapunov matrix, respectively.

<0, §>0, u>0,
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R
Control Objectives

= To make comparisons with existing methods, we
consider the infinite-horizon “linear-quadratic
regulator” (LQR) cost:

J Oo(x(t)TQx(t) +u(t)TRu(t)) dt
0

= If the control policy is assumed to be time-invariant
and linear as described above (i.e., u(t) = Kx(t)),
minimizing the LQR cost subject to stability
constraints can be cast as an SDP and solved using gl = )
off-the-shelf numerical solvers. —==i_ sl & Photo credit: @bfucedigita
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Differentiable Convex Optimization Layers [2]

= We can view deep learning as an instance of differentiable programming
= Compositions of atomic functions

= Each atomic function is differentiable

= We can differentiate through the whole program using the chain rule

= We want to add a convex optimization program as an atom to a deep learning
model

= More information:

= Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter, J. Z. (2019). Differentiable
convex optimization layers. Advances in neural information processing systems, 32.
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Projecting the Output of a Neural Network to a Safe Set

= Given a dynamical system of the form x(t) € A(t)x(t) + B(t)u(t)+ G(t)w(t)

« And a quadratic function V (x) = x” Px, let C(x) denote a set of actions that, for a
fixed state x, are guaranteed to satisfy the exponential stability condition

Clz) ={ueR | V(z) < —aV(z) Vie Alt)z+ B(t)u+ G(t)w}

= We construct a robust nonlinear policy class that projects the output of some
neural network onto this set

To (:E) — ch(w) (’ﬁ'g (:B))
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Optimizing the Neural Network

= We construct a robust nonlinear policy class that projects the output of some
neural network onto this set

o (:E) — Pc(x) (’ﬁ'g (CE))
= Given some performance objective ¢ (e.g., LQR cost)
= Goal: Find parameters 0 such that

mini@mize /000 b(x, mo(x))dt s.t. x € A(t)x + B(t)mo(x) + G(t)w.
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Example: Norm-Bounded Linear Differential Inclusions (NLDI)

= Our System: x = Ax(t) + Bu(t)+ Gw(t), |l[w(®)]|l, < ||Cx(t) + Du(t)]|,

= To apply our framework to the NLDI setting, we first compute a quadratic
Lyapunov function V(x) = x’ Px by optimizing the LQR cost

j Oo(x(t)TQx(t) +u(t)TRu(t)) dt
0

= We then use the resultant Lyapunov function to compute the system-specific
“safe” set C(x).

—zTPB zT(2PA + aP)x }

C z):=<u€R||[|Czxz+ Dull, < U —
weoi(2) { il l2 < verpa, 2||GT Pz|2

= We then create a fast, custom differentiable solver to project onto this set.
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Example: Norm-Bounded Linear Differential Inclusions

The system-specific “safe” set C(x):

—z'PB T(2PA + oP
Cuni(0) i= {u € B [[Co+ Dl < P4+ aP)s )

|GTPall;” ~  2[[GTPal2
Note that the projection P¢, (x) represents a projection onto a second-order cone
constraint. o (:B) — PC(.’B) (7AT9 (CU) ) ‘

This projection does not necessarily have a closed form

We implement it using a differentiable optimization solver

FA(E cF) |

UNIVERSITY OF
ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK PAGE 19 PN WATERLOO | " sics

POLICIES [1] D




The Second-Order Cone Projection

= The system-specific “safe” set C(x):

—z'PB T(2PA + oP
Cuni(0) i= {u € B [[Co+ Dl < P4+ aP)s )

|GTPall;" ~ 2[GTPall;
7T9(£U) = PC(a:) (7?‘9(33))
= More Generally, if we consider a set like this:

C={zecR"|||Az +b||s < 'z +d}

= Given an input y, we seek to compute Pr(y) by solving the problem:
1 )
minimize 7|z — |z
subject to || Az + b||s < 'z +d.
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Experiments: Dynamic Settings

= On five NLDI settings: two synthetic NLDI domains, the cart-pole task, a
quadrotor domain, and a microgrid domain.

= x = Ax(t) + Bu(t)+ Gw (), [w(®)llz < [|Cx(t) + Du(t)ll

= Generating matrices A, B, G, C and D i.i.d. from normal distributions, and producing the
disturbance w(t) using a randomly-initialized neural network

= For each setting, we choose a time discretization based on the speed at which the
system evolves, and run each episode for 200 steps over this discretization

= In all cases except the microgrid setting, we use a randomly generated LQR

objective
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Experiments: Dynamic Settings

= On five NLDI settings: two synthetic NLDI domains, the cart-pole task, a
quadrotor domain, and a microgrid domain.

= In the cart-pole task, the goal is to balance an inverted pendulum resting on top of a cart by
exerting horizontal forces on the cart. We linearize this system as an NLDI and add a small
additional randomized disturbance satisfying the NLDI bounds

= Episodes are run for 10 seconds at a discretization of 0.05 seconds.
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Experiments: Dynamic Settings

= On five NLDI settings: two synthetic NLDI domains, the cart-pole task, a
quadrotor domain, and a microgrid domain.

= Planar quadrotor. In this setting, our goal is to stabilize a quadcopter in the two-dimensional
plane by controlling the amount of force provided by the quadcopter’s right and left thrusters.
We linearize this system as an NLDI with D = 0 and add a small disturbance as in the cart-pole
setting.

= Episodes are run for 4 seconds at a discretization of 0.02 seconds.
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Experiments: Dynamic Settings

= On five NLDI settings: two synthetic NLDI domains, the cart-pole task, a
quadrotor domain, and a microgrid domain.

= Microgrid. In this final setting, we aim to stabilize a microgrid by controlling a storage device
and a solar inverter.

= Episodes are run for 4 seconds at a discretization of 0.02 seconds.
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Experimental Setup

= Tg(x) = Kx + 7ig(x)

= We then optimize our robust policy class 7o(z) = Pec(z)(To(2))- using two different
methods: Robust MBP and Robust PPO
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Experimental Setup

= Tg(x) = Kx + 7ig(x)

= We then optimize our robust policy class 79(z) = Pe(s)(7a(x)). using two different
methods: Robust MBP and Robust PPO

» Baselines:

= Robust LQR: Robust (linear) controller obtained by minimizing the LQR cost

Robust MPC: A robust model-predictive control algorithm based on state-dependent LMIs

RARL: The robust adversarial reinforcement learning algorithm

LQR: A standard non-robust (linear) LQR controller
MBP and PPO

= Two dynamics: Original and Adversarial
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Results
Environment LQR MBP PPO ngl;ft Rl\‘i"l’,‘gt RARL %&’ggﬁt 1},‘;}’(‘)‘?
Generic NLDI O 373 16 21 253 253 27 69 33
(D =0) A unstable 1009 873 unstable 1111 2321
Generic NLDI O 278 15 82 199 199 147 69 80
(D # 0) A unstable 1900 1667 unstable 1855 1669
Cart-pole O 36.3 3.6 7.2 10.2 10.2 8.3 9.7 8.4
A — unstable — 172.1 42.2 47.8 41.2 50.0 16.3
Quadrotor O 54 2.5 7.7 13.8 13.8 12.2 11.0 8.3
A | unstable 5457 137.6 64.8 unstable’ 63.1 25.7 26.5
Microgrid O 4.59 0.60 0.61 0.73 0.73 0.67 0.61 0.61
A unstable 0.99 0.92 2.17 7.68 8.91
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Results
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