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Robust Control
§ The field of robust control has been able to provide rigorous guarantees on when 

controllers will succeed or fail in controlling a system of interest.

§ If the uncertainties in the underlying dynamics can be bounded in specific ways, 
these techniques can produce controllers that are provably robust even under 
worst-case conditions. 

§ However, as the resulting policies tend to be simple (i.e., often linear).

§ In contrast, deep reinforcement learning models are able to capture complex, 
nonlinear  model.

§ However, due to a lack of robustness guarantees, these techniques have still found 
limited application in safety-critical domains.
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Combining Robust Control and Deep RL
§ This paper proposes a method for combining the guarantees of robust control with 

the flexibility of deep reinforcement learning.

§ We consider the setting of nonlinear, time-varying systems with unknown 
dynamics, but the uncertainty on these dynamics can be bounded

§ Building upon specifications provided by traditional robust control methods in 
these settings, we construct a new class of nonlinear policies that are 
parameterized by neural networks, but that are nonetheless provably robust 

§ We project the outputs of a nominal (deep neural network-based) controller onto 
a space of stabilizing actions characterized by the robust control specifications 

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK 
POLICIES [1] PAGE  4



Addressing the lack of safety and stability in RL 
§ Combine control-theoretic ideas, predominantly robust control, with the 

nonlinear control policy benefits of RL. 

§ Safe RL
§ Learning control policies while maintaining some notion of safety during or after learning. 

§ Typically, these methods attempt to restrict the RL algorithm to a safe region of the state space 
by making strong assumptions about the smoothness of the underlying dynamics.

§ This framework is in theory more general than our approach, which requires using stringent 
uncertainty bounds 
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BACKGROUND
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Linear Matrix Inequalities
§ In convex optimization, a linear matrix inequality (LMI) is an expression of the 

following form:

𝐿𝑀𝐼 𝑥 ≔ 𝐴! + (
"#!

$

𝑥"𝐴" ≥ 0

§ Robust control is concerned with the design of feedback controllers with 
guaranteed performance under worst-case conditions.

§ Many classes of robust control problems in both the time and frequency domains 
can be formulated using linear matrix inequalities (LMIs).

§ Providing stability guarantees often requires the use of simple (linear) controllers, 
which greatly limits average-case performance 
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Linear Differential Inclusions
§ Our aim is to control nonlinear (continuous-time) dynamical systems of the form

𝑥̇ 𝑡 ∈ 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢(𝑡)+ 𝐺 𝑡 𝑤 𝑡

§ This class of models is referred to as linear differential inclusions (LDIs) 

§ Despite the name: Can characterize nonlinear systems

§ Within this class of models, it is often possible to construct robust control 
specifications certifying system stability 
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u(t): Control input

w(t): Captures both external disturbance
and any modeling discrepancies

x(t): State at time t



Robust Control Specifications 
Our system: 𝑥̇ 𝑡 ∈ 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢(𝑡)+ 𝐺 𝑡 𝑤 𝑡

§ In the continuous-time, infinite-horizon settings, the goal is often to construct a 
time-invariant control policy u t = 𝜋 𝑥(𝑡)

§ Alongside constructing some certification that guarantees stability.

§ For many systems, this certification is in the form of a PD Lyapunov function.
𝑉: ℝ% → ℝ,V 0 = 0, V x > 0 for all x ≠ 0

𝑉̇ 𝑥 𝑡 ≤ −𝛼V(x(t)), for some 𝛼 > 0
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Safety Guarantees
§ 𝑉: ℝ! → ℝ, V 0 = 0, V x > 0 for all x ≠ 0

§ 𝑉̇ 𝑥 𝑡 ≤ −𝛼V(x(t)), for some 𝛼 > 0

§ 𝑉̇ 𝑥 𝑡 ≤ 0

§ 𝑉̇ 𝑥 𝑡 ≤ −𝛼V(x(t)), for some 𝛼 > 0
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Robust Control Specifications 
Our system: 𝑥̇ 𝑡 ∈ 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢(𝑡)+ 𝐺 𝑡 𝑤 𝑡

Lyapunov function: 𝑉: ℝ% → ℝ,V 0 = 0, V x > 0 for all x ≠ 0

𝑉̇ 𝑥 𝑡 ≤ −𝛼V(x(t)), for some 𝛼 > 0

§ For certain classes of bounded dynamical systems, it is possible to construct safety 
guarantees using semidefinite programming
§ time-invariant linear control policies 𝑢 𝑡 = 𝐾𝑥(𝑡)

§ and quadratic Lyapunov functions 𝑉 𝑥 = 𝑥!𝑃𝑥

§ For instance, consider the class of norm-bounded LDIs (NLDIs) 
𝑥̇ = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)+ 𝐺𝑤 𝑡 , 𝑤 𝑡 & ≤ 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡) &
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Robust Control Specifications 
Our system: 𝑥̇ = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)+ 𝐺𝑤 𝑡 , 𝑤 𝑡 & ≤ 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡) &

Safety Specifications: 𝑉: ℝ% → ℝ,V 0 = 0, V x > 0 for all x ≠ 0

𝑉̇ 𝑥 𝑡 ≤ −𝛼V(x(t)), for some 𝛼 > 0

§ For these systems, it is possible to specify a set of stabilizing policies via a set of 
linear matrix inequalities

§ For matrices S and Y satisfying the above inequality, 𝐾 = 𝑌𝑆'( and 𝑃 = 𝑆'( are 
then a stabilizing linear controller gain and Lyapunov matrix, respectively.
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Control Objectives
§ To make comparisons with existing methods, we 

consider the infinite-horizon “linear-quadratic 
regulator” (LQR) cost:

)
!

"
𝑥 𝑡 #𝑄𝑥 𝑡 + 𝑢 𝑡 #𝑅𝑢 𝑡 𝑑𝑡

§ If the control policy is assumed to be time-invariant 
and linear as described above (i.e., 𝑢(𝑡) = 𝐾𝑥(𝑡)), 
minimizing the LQR cost subject to stability 
constraints can be cast as an SDP and solved using 
off-the-shelf numerical solvers.
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Differentiable Convex Optimization Layers [2]

§ We can view deep learning as an instance of differentiable programming

§ Compositions of atomic functions

§ Each atomic function is differentiable

§ We can differentiate through the whole program using the chain rule

§ We want to add a convex optimization program as an atom to a deep learning 
model

§ More information:
§ Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter, J. Z. (2019). Differentiable 

convex optimization layers. Advances in neural information processing systems, 32.
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ENFORCING ROBUST CONTROL GUARANTEES 
WITHIN NEURAL NETWORKS 
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Projecting the Output of a Neural Network to a Safe Set
§ Given a dynamical system of the form 𝑥̇ 𝑡 ∈ 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢(𝑡)+ 𝐺 𝑡 𝑤 𝑡

§ And a quadratic function 𝑉 𝑥 = 𝑥5𝑃𝑥, let 𝒞(𝑥) denote a set of actions that, for a 
fixed state x, are guaranteed to satisfy the exponential stability condition

§ We construct a robust nonlinear policy class that projects the output of some 
neural network onto this set 
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Optimizing the Neural Network
§ We construct a robust nonlinear policy class that projects the output of some 

neural network onto this set

§ Given some performance objective ℓ (e.g., LQR cost)

§ Goal: Find parameters θ such that 
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Example: Norm-Bounded Linear Differential Inclusions (NLDI) 
§ Our System: 𝑥̇ = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)+ 𝐺𝑤 𝑡 , 𝑤 𝑡 & ≤ 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡) &

§ To apply our framework to the NLDI setting, we first compute a quadratic 
Lyapunov function 𝑉 𝑥 = 𝑥5𝑃𝑥 by optimizing the LQR cost

Q
!

6
𝑥 𝑡 5𝑄𝑥 𝑡 + 𝑢 𝑡 5𝑅𝑢 𝑡 𝑑𝑡

§ We then use the resultant Lyapunov function to compute the system-specific 
“safe” set 𝒞 𝑥 .

§ We then create a fast, custom differentiable solver to project onto this set. 
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Example: Norm-Bounded Linear Differential Inclusions 

§ The system-specific “safe” set 𝒞 𝑥 :

§ Note that the projection 𝒫𝒞!"#$(8) represents a projection onto a second-order cone 
constraint.

§ This projection does not necessarily have a closed form

§ We implement it using a differentiable optimization solver
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The Second-Order Cone Projection

§ The system-specific “safe” set 𝒞 𝑥 :

§ More Generally, if we consider a set like this:

§ Given an input 𝑦, we seek to compute 𝒫𝒞 𝑦 by solving the problem:
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EXPERIMENTS
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Experiments: Dynamic Settings

§ On five NLDI settings: two synthetic NLDI domains, the cart-pole task, a 
quadrotor domain, and a microgrid domain. 
§ 𝑥̇ = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)+ 𝐺𝑤 𝑡 , 𝑤 𝑡 " ≤ 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡) "

§ Generating matrices A, B, G, C and D i.i.d. from normal distributions, and producing the 
disturbance w(t) using a randomly-initialized neural network

§ For each setting, we choose a time discretization based on the speed at which the 
system evolves, and run each episode for 200 steps over this discretization 

§ In all cases except the microgrid setting, we use a randomly generated LQR 
objective 

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK 
POLICIES [1] PAGE  22



Experiments: Dynamic Settings

§ On five NLDI settings: two synthetic NLDI domains, the cart-pole task, a 
quadrotor domain, and a microgrid domain. 
§ In the cart-pole task, the goal is to balance an inverted pendulum resting on top of a cart by 

exerting horizontal forces on the cart. We linearize this system as an NLDI and add a small 
additional randomized disturbance satisfying the NLDI bounds

§ Episodes are run for 10 seconds at a discretization of 0.05 seconds. 
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Experiments: Dynamic Settings

§ On five NLDI settings: two synthetic NLDI domains, the cart-pole task, a 
quadrotor domain, and a microgrid domain. 
§ Planar quadrotor. In this setting, our goal is to stabilize a quadcopter in the two-dimensional 

plane by controlling the amount of force provided by the quadcopter’s right and left thrusters. 
We linearize this system as an NLDI with D = 0 and add a small disturbance as in the cart-pole 
setting. 

§ Episodes are run for 4 seconds at a discretization of 0.02 seconds.
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Experiments: Dynamic Settings

§ On five NLDI settings: two synthetic NLDI domains, the cart-pole task, a 
quadrotor domain, and a microgrid domain. 
§ Microgrid. In this final setting, we aim to stabilize a microgrid by controlling a storage device 

and a solar inverter.

§ Episodes are run for 4 seconds at a discretization of 0.02 seconds.
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Experimental Setup
§ 7𝜋" 𝑥 = 𝐾𝑥 + ;𝜋" 𝑥

§ We then optimize our robust policy class                                         using two different 
methods: Robust MBP and Robust PPO
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Experimental Setup
§ 7𝜋" 𝑥 = 𝐾𝑥 + ;𝜋" 𝑥

§ We then optimize our robust policy class                                         using two different 
methods: Robust MBP and Robust PPO

§ Baselines:
§ Robust LQR: Robust (linear) controller obtained by minimizing the LQR cost

§ Robust MPC: A robust model-predictive control algorithm based on state-dependent LMIs

§ RARL: The robust adversarial reinforcement learning algorithm

§ LQR: A standard non-robust (linear) LQR controller

§ MBP and PPO

§ Two dynamics: Original and Adversarial
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Results
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Results
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