
ENFORCING ROBUST CONTROL
GUARANTEES WITHIN NEURAL NETWORK
POLICIES

A Paper By: Donti et al. [1]

Presentation By: Pouya Kananian,
Department of Electrical and Computer Engineering

Course: CS 885 - Instructor: Prof. Pascal Poupart

3/11/22

Photo credit: @bruce.digital

INTRODUCTION

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 2

Robust Control
§ The field of robust control has been able to provide rigorous guarantees on when

controllers will succeed or fail in controlling a system of interest.

§ If the uncertainties in the underlying dynamics can be bounded in specific ways,
these techniques can produce controllers that are provably robust even under
worst-case conditions.

§ However, as the resulting policies tend to be simple (i.e., often linear).

§ In contrast, deep reinforcement learning models are able to capture complex,
nonlinear model.

§ However, due to a lack of robustness guarantees, these techniques have still found
limited application in safety-critical domains.

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 3

Combining Robust Control and Deep RL
§ This paper proposes a method for combining the guarantees of robust control with

the flexibility of deep reinforcement learning.

§ We consider the setting of nonlinear, time-varying systems with unknown
dynamics, but the uncertainty on these dynamics can be bounded

§ Building upon specifications provided by traditional robust control methods in
these settings, we construct a new class of nonlinear policies that are
parameterized by neural networks, but that are nonetheless provably robust

§ We project the outputs of a nominal (deep neural network-based) controller onto
a space of stabilizing actions characterized by the robust control specifications

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 4

Addressing the lack of safety and stability in RL
§ Combine control-theoretic ideas, predominantly robust control, with the

nonlinear control policy benefits of RL.

§ Safe RL
§ Learning control policies while maintaining some notion of safety during or after learning.

§ Typically, these methods attempt to restrict the RL algorithm to a safe region of the state space
by making strong assumptions about the smoothness of the underlying dynamics.

§ This framework is in theory more general than our approach, which requires using stringent
uncertainty bounds

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 5

BACKGROUND

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES PAGE 6

Linear Matrix Inequalities
§ In convex optimization, a linear matrix inequality (LMI) is an expression of the

following form:

𝐿𝑀𝐼 𝑥 ≔ 𝐴! + (
"#!

$

𝑥"𝐴" ≥ 0

§ Robust control is concerned with the design of feedback controllers with
guaranteed performance under worst-case conditions.

§ Many classes of robust control problems in both the time and frequency domains
can be formulated using linear matrix inequalities (LMIs).

§ Providing stability guarantees often requires the use of simple (linear) controllers,
which greatly limits average-case performance

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES PAGE 7

Linear Differential Inclusions
§ Our aim is to control nonlinear (continuous-time) dynamical systems of the form

�̇� 𝑡 ∈ 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢(𝑡)+ 𝐺 𝑡 𝑤 𝑡

§ This class of models is referred to as linear differential inclusions (LDIs)

§ Despite the name: Can characterize nonlinear systems

§ Within this class of models, it is often possible to construct robust control
specifications certifying system stability

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 8

u(t): Control input

w(t): Captures both external disturbance
and any modeling discrepancies

x(t): State at time t

Robust Control Specifications
Our system: �̇� 𝑡 ∈ 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢(𝑡)+ 𝐺 𝑡 𝑤 𝑡

§ In the continuous-time, infinite-horizon settings, the goal is often to construct a
time-invariant control policy u t = 𝜋 𝑥(𝑡)

§ Alongside constructing some certification that guarantees stability.

§ For many systems, this certification is in the form of a PD Lyapunov function.
𝑉: ℝ% → ℝ,V 0 = 0, V x > 0 for all x ≠ 0

�̇� 𝑥 𝑡 ≤ −𝛼V(x(t)), for some 𝛼 > 0

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 9

Safety Guarantees
§ 𝑉: ℝ! → ℝ, V 0 = 0, V x > 0 for all x ≠ 0

§ �̇� 𝑥 𝑡 ≤ −𝛼V(x(t)), for some 𝛼 > 0

§ �̇� 𝑥 𝑡 ≤ 0

§ �̇� 𝑥 𝑡 ≤ −𝛼V(x(t)), for some 𝛼 > 0

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 10

This figure is extracted from: math24.net[3]

Robust Control Specifications
Our system: �̇� 𝑡 ∈ 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢(𝑡)+ 𝐺 𝑡 𝑤 𝑡

Lyapunov function: 𝑉: ℝ% → ℝ,V 0 = 0, V x > 0 for all x ≠ 0

�̇� 𝑥 𝑡 ≤ −𝛼V(x(t)), for some 𝛼 > 0

§ For certain classes of bounded dynamical systems, it is possible to construct safety
guarantees using semidefinite programming
§ time-invariant linear control policies 𝑢 𝑡 = 𝐾𝑥(𝑡)

§ and quadratic Lyapunov functions 𝑉 𝑥 = 𝑥!𝑃𝑥

§ For instance, consider the class of norm-bounded LDIs (NLDIs)
�̇� = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)+ 𝐺𝑤 𝑡 , 𝑤 𝑡 & ≤ 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡) &

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 11

Robust Control Specifications
Our system: �̇� = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)+ 𝐺𝑤 𝑡 , 𝑤 𝑡 & ≤ 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡) &

Safety Specifications: 𝑉: ℝ% → ℝ,V 0 = 0, V x > 0 for all x ≠ 0

�̇� 𝑥 𝑡 ≤ −𝛼V(x(t)), for some 𝛼 > 0

§ For these systems, it is possible to specify a set of stabilizing policies via a set of
linear matrix inequalities

§ For matrices S and Y satisfying the above inequality, 𝐾 = 𝑌𝑆'(and 𝑃 = 𝑆'(are
then a stabilizing linear controller gain and Lyapunov matrix, respectively.

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 12

Control Objectives
§ To make comparisons with existing methods, we

consider the infinite-horizon “linear-quadratic
regulator” (LQR) cost:

)
!

"
𝑥 𝑡 #𝑄𝑥 𝑡 + 𝑢 𝑡 #𝑅𝑢 𝑡 𝑑𝑡

§ If the control policy is assumed to be time-invariant
and linear as described above (i.e., 𝑢(𝑡) = 𝐾𝑥(𝑡)),
minimizing the LQR cost subject to stability
constraints can be cast as an SDP and solved using
off-the-shelf numerical solvers.

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 13

Photo credit: @bruce.digital

Differentiable Convex Optimization Layers [2]

§ We can view deep learning as an instance of differentiable programming

§ Compositions of atomic functions

§ Each atomic function is differentiable

§ We can differentiate through the whole program using the chain rule

§ We want to add a convex optimization program as an atom to a deep learning
model

§ More information:
§ Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter, J. Z. (2019). Differentiable

convex optimization layers. Advances in neural information processing systems, 32.

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 14

ENFORCING ROBUST CONTROL GUARANTEES
WITHIN NEURAL NETWORKS

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 15

Projecting the Output of a Neural Network to a Safe Set
§ Given a dynamical system of the form �̇� 𝑡 ∈ 𝐴 𝑡 𝑥 𝑡 + 𝐵 𝑡 𝑢(𝑡)+ 𝐺 𝑡 𝑤 𝑡

§ And a quadratic function 𝑉 𝑥 = 𝑥5𝑃𝑥, let 𝒞(𝑥) denote a set of actions that, for a
fixed state x, are guaranteed to satisfy the exponential stability condition

§ We construct a robust nonlinear policy class that projects the output of some
neural network onto this set

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 16

Optimizing the Neural Network
§ We construct a robust nonlinear policy class that projects the output of some

neural network onto this set

§ Given some performance objective ℓ (e.g., LQR cost)

§ Goal: Find parameters θ such that

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 17

Example: Norm-Bounded Linear Differential Inclusions (NLDI)
§ Our System: �̇� = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)+ 𝐺𝑤 𝑡 , 𝑤 𝑡 & ≤ 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡) &

§ To apply our framework to the NLDI setting, we first compute a quadratic
Lyapunov function 𝑉 𝑥 = 𝑥5𝑃𝑥 by optimizing the LQR cost

Q
!

6
𝑥 𝑡 5𝑄𝑥 𝑡 + 𝑢 𝑡 5𝑅𝑢 𝑡 𝑑𝑡

§ We then use the resultant Lyapunov function to compute the system-specific
“safe” set 𝒞 𝑥 .

§ We then create a fast, custom differentiable solver to project onto this set.

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 18

Example: Norm-Bounded Linear Differential Inclusions

§ The system-specific “safe” set 𝒞 𝑥 :

§ Note that the projection 𝒫𝒞!"#$(8) represents a projection onto a second-order cone
constraint.

§ This projection does not necessarily have a closed form

§ We implement it using a differentiable optimization solver

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 19

The Second-Order Cone Projection

§ The system-specific “safe” set 𝒞 𝑥 :

§ More Generally, if we consider a set like this:

§ Given an input 𝑦, we seek to compute 𝒫𝒞 𝑦 by solving the problem:

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 20

EXPERIMENTS

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES PAGE 21

Experiments: Dynamic Settings

§ On five NLDI settings: two synthetic NLDI domains, the cart-pole task, a
quadrotor domain, and a microgrid domain.
§ �̇� = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)+ 𝐺𝑤 𝑡 , 𝑤 𝑡 " ≤ 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡) "

§ Generating matrices A, B, G, C and D i.i.d. from normal distributions, and producing the
disturbance w(t) using a randomly-initialized neural network

§ For each setting, we choose a time discretization based on the speed at which the
system evolves, and run each episode for 200 steps over this discretization

§ In all cases except the microgrid setting, we use a randomly generated LQR
objective

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 22

Experiments: Dynamic Settings

§ On five NLDI settings: two synthetic NLDI domains, the cart-pole task, a
quadrotor domain, and a microgrid domain.
§ In the cart-pole task, the goal is to balance an inverted pendulum resting on top of a cart by

exerting horizontal forces on the cart. We linearize this system as an NLDI and add a small
additional randomized disturbance satisfying the NLDI bounds

§ Episodes are run for 10 seconds at a discretization of 0.05 seconds.

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 23

Experiments: Dynamic Settings

§ On five NLDI settings: two synthetic NLDI domains, the cart-pole task, a
quadrotor domain, and a microgrid domain.
§ Planar quadrotor. In this setting, our goal is to stabilize a quadcopter in the two-dimensional

plane by controlling the amount of force provided by the quadcopter’s right and left thrusters.
We linearize this system as an NLDI with D = 0 and add a small disturbance as in the cart-pole
setting.

§ Episodes are run for 4 seconds at a discretization of 0.02 seconds.

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 24

Experiments: Dynamic Settings

§ On five NLDI settings: two synthetic NLDI domains, the cart-pole task, a
quadrotor domain, and a microgrid domain.
§ Microgrid. In this final setting, we aim to stabilize a microgrid by controlling a storage device

and a solar inverter.

§ Episodes are run for 4 seconds at a discretization of 0.02 seconds.

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 25

Experimental Setup
§ 7𝜋" 𝑥 = 𝐾𝑥 + ;𝜋" 𝑥

§ We then optimize our robust policy class using two different
methods: Robust MBP and Robust PPO

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 26

Experimental Setup
§ 7𝜋" 𝑥 = 𝐾𝑥 + ;𝜋" 𝑥

§ We then optimize our robust policy class using two different
methods: Robust MBP and Robust PPO

§ Baselines:
§ Robust LQR: Robust (linear) controller obtained by minimizing the LQR cost

§ Robust MPC: A robust model-predictive control algorithm based on state-dependent LMIs

§ RARL: The robust adversarial reinforcement learning algorithm

§ LQR: A standard non-robust (linear) LQR controller

§ MBP and PPO

§ Two dynamics: Original and Adversarial

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 27

Results

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK POLICIES [1] PAGE 28

Results

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 29

References
§ Donti, P. L., Roderick, M., Fazlyab, M., & Kolter, J. Z. (2020,

September). Enforcing robust control guarantees within neural network policies.
In International Conference on Learning Representations.

§ Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., & Kolter, J. Z. (2019).
Differentiable convex optimization layers. Advances in neural information
processing systems, 32.

§ The following websites:
§ https://math24.net/method-lyapunov-functions.html

§ https://en.wikipedia.org/wiki/Linear_matrix_inequality

ENFORCING ROBUST CONTROL GUARANTEES WITHIN NEURAL NETWORK
POLICIES [1] PAGE 30

https://arxiv.org/pdf/2011.08105
https://math24.net/method-lyapunov-functions.html
https://en.wikipedia.org/wiki/Linear_matrix_inequality

