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Introduction



What is Hedging?

Hedging is a strategy used by investors to mitigate the risk
associated with investing



Investment

Terminology




Example:

Long Put

You might buy a put
option for $25 with a
strike price of $5 per share




Options/derivatives
can also be used
directly for
Investing

Options

This also carries
some risk

Derivatives can be
used to hedge
previous derivatives




Delta Hedging

® Measured as the ratio between the change in the
price of the option and the change in the price of
the underlying asset:

® Put options have delta between-1and o

® Call options have delta between o and 1

® The typical strategy is to reach a “delta neutral”
position



Rebalancing

Because the delta of an option changes over
time, a trader’s position must be rebalanced

With no transaction costs, continuous
rebalancing is optimal

With transaction costs, even periodic delta
hedging is not optimal

Optimal strategy depends on past holdings and
future states



Reinforcement Learning



Reinforcement Learning Formulation

® Reinforcement learning algorithms attempt to solve an MDP by finding an
optimal policy that maximizes the expected value of discounted rewards:

® Where:

® Tisthe horizon date
® R, isthe cash flow received at time t

® yisthediscount rate



Monte Carlo

| Temporal Difference
Reinforcement

Learning
Techniques

Q-Learning
Policy Update
Deep Q-Learning

Deterministic Policy Gradient



Application to Hedging



 Trading costs are proportional to volume being bought/sold
e Rebalance position every At periods

App||cat|on e Horizon is nAt
to Hedging
e The holding of the asset at the previous period

e The current asset price
e The time to maturity



Reward Formulation:
Accounting P&L

® Where:

® §;isthe asset price at the beginning of period i
® Hj;isthe holding between time i and i+a1
® kisthe proportion of trading cost

® V;is the value of the option at beginning of period i



Reward Formulation:
Cash Flows

® Where:

® §;isthe asset price at the beginning of period i
® H;isthe holding between timeiand i+1

® kisthe proportion of trading cost



Approach

Objective function:

{ Y(t) = E(C) + C\/E(Ctz) — E(C})? J

C; is the cost of hedging (negative returns)
and we seek to minimize this objective
function

Deep Deterministic Policy Gradient
algorithm is used with replay buffer



The greedy action, a, minimizes F:

{ F(St, @) = Q1(S, @) + ¢4/ Q2 (Se, @) — Q1(S¢, @)? J

Approach

Two Q-Functions are used:
(1 estimates the expected cost

Q- estimates the expected square of the cost



® Loss function for Q4, parameterized by w,

® Loss function for Q,, parameterized by w,

Approach

® Policy update:

A N



Experiments




Geometric Brownian Motion

® Assume that the price of the underlying asset, S, follows
a geometric Brownian motion:

{ dS = uSdt + oSdz }

® Where:

® uisthe stock’s mean return
® o isthe stock’s constant volatility

® dzisaWiener process



Results

Delta Hedging RL Optimal Hedging Y (0)

Rebal Freq | Mean Cost | S.D. Cost | Mean Cost | S.D. Cost | improvement
weekly 69% 50% 60% 54% 1.7%
3 days 78% 42% 62% 48% 4.7%
2 days 88% 39% 73% 41% 8.5%
daily 108% 38% 74% 42% 16.6%
Delta Hedging RL Optimal Hedging Y (0)

Rebal Freq | Mean Cost | S.D. Cost | Mean Cost | S.D. Cost | improvement
weekly 55% 31% 44% 38% 0.2%
3 days 63% 28% 46% 32% 10.9%
2 days 72% 27% 50% 29% 16.6%
daily 91% 29% 53% 28% 29.0%

Mean stock return is 5%

Volatility is 20%

C=1.5

k=1%




Stochastic Volatility

® Assume that the price of the underlying asset, S, follows a
geometric Brownian motion, but with stochastic volatility:

[ dS = uSdt + oSdz, ]

[ do = vadzz]

® Where:

® dz; and dz, are Weiner processes with constant
correlation p

® visthe volatility of the volatility




Results

Bartlett Delta | Practitioner Delta | RL Optimal | Y'(0) improv. | Y (0) improv.
Rebal Freq | Mean | S.D. | Mean S.D. Mean | S.D. | vs. Bartlett vs. Delta
weekly 69% | 51% | 69% 50% 56% | 57% 2.6% 1.8%
3 days 8% | 44% | 78% 43% 61% | 51% 4.5% 3.5%
2 days 8% | 41% | 88% 40% 62% | 52% 6.9% 6.0%
daily 108% | 39% | 108% 38% 1% | 45% 16.7% 15.9%
Bartlett Delta | Practitioner Delta | RL Optimal | Y (0) improv. | Y'(0) improv.
Rebal Freq | Mean | S.D. | Mean D) Mean | S.D. | vs. Bartlett vs. Delta
weekly 55% | 36% | 55% 35% 42% | 43% 2.5% 0.5%
3 days 64% | 33% | 64% 32% 48% | 39% 7.3% 5.3%
2 days 2% | 33% | 72% 31% 54% | 34% 13.7% 11.9%
daily 91% | 35% | 91% 33% 46% | 38% 27.9% 26.4%

® Mean stock return is 5%

‘p=-04

®v=0.6

® Volatility is 20%, aq is 20%




Conclusions



Successfully applied reinforcement learning to
learn an optimal hedging strategy

Accounting P&L formulation works better
than cash flow formulation

Successes

Combining simple option pricing model with
complex asset pricing model yields best results



Estimation of Volatility

® Proposed solution accurately estimates the standard
deviation of the cost of hedging

® Demonstrates how standard RL algorithms can be used
to estimate first and second non-central moments of the
cost distribution for hedging



Extensions

® Allow transaction costs to be stochastic

® Estimate optimal strategy for more exotic
options

® Use mixture model to generalize across a set
of asset price processes




Thanks for
Watching!




