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Background: Markov Decision Process (MDP)
Model-based

States: 𝑺.

Actions: 𝑨.

Transition Model: 𝑷 𝒔𝒕 𝒔𝒕"𝟏, 𝒂𝒕"𝟏
Reward Model: 𝐑 𝒔𝒕, 𝒂𝒕

Discount Factor: 𝟎 ≤ 𝜸 ≤ 𝟏

Horizon: 𝒉

Decision Transformer PAGE  6

Model-free

States: 𝑺.

Actions: 𝑨.

Transition Model: 𝑷 𝒔𝒕 𝒔𝒕"𝟏, 𝒂𝒕"𝟏
Reward Model: 𝐑 𝒔𝒕, 𝒂𝒕

Discount Factor: 𝟎 ≤ 𝜸 ≤ 𝟏

Horizon: 𝒉



Background: Online Reinforcement Learning (RL) 
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Agent

Environment

Actions
(a)

Rewards
(r) 

States
(s)

Target: Maximize expected sum of discounted rewards.

𝐸 𝑅 = '
!

𝛾! 𝑟!

Method: Using temporal difference in bellman backups to 
estimate optimal value function [1,2].

𝑄! 𝑠, 𝑎 = 𝑄!"# 𝑠, 𝑎 + 𝛼(𝑟! + 𝛾 𝑄!"# 𝑠$, 𝜋(𝑠$) − 𝑄!"# 𝑠, 𝑎 )

Challenges: 
• High cost/risk of interaction with environment
• Credit assignment problem due to discounting in 

bellman backups.

𝜏 = 𝑠%, 𝑎%, 𝑟% → 𝑠#, 𝑎#, 𝑟# → 𝑠&, 𝑎&, 𝑟& → . .



Background: Credit Assignment Problem (Key-to-Door Env. [27])

Decision Transformer PAGE  8

Phase 1 Phase 2 Phase 3

Problem: Assigning delayed rewards to their originating actions.

Possible Solution: State association [16,17,18,19]



Background: Offline (Batch) Reinforcement Learning 
§ Objective: Learning from a fixed dataset without further interactions with the environment.

§ Popular Examples: DDPG [4].
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𝜏 = 𝑠%, 𝑎%, 𝑟%, 𝑠#, 𝑎#, 𝑟#, …… , 𝑠', 𝑎', 𝑟'

Pre-generated

§ Main Challenge: Distribution Shift (Extrapolation Error) [6].

𝑄! 𝑠, 𝑎 = 𝑄!"# 𝑠, 𝑎 + 𝛼(𝑟! + 𝛾 𝑄!"# 𝑠$, 𝜋(𝑠$) − 𝑄!"# 𝑠, 𝑎 )
𝜋(𝑠$) = 𝑎𝑟𝑔𝑚𝑎𝑥( 𝑄 𝑠$, 𝑎

𝜋(𝑠$) chooses rarely visited (𝑠$, 𝑎′)

§ Solutions Proposed:
§ Constrain policy action space [6,7]
§ Incorporate value pessimism [6,8]



Background: Supervised RL 

Imitation Learning: imitating the behaviour observed in existing 
trajectories.

§ Behavioural Cloning (Basic Version) : using supervised losses to map existing 
states to actions with no regards to rewards. [11]

𝑓 𝑠 = 𝑎, 𝑠, 𝑎 𝜖 𝑠#, 𝑎# , 𝑠&, 𝑎# , … , 𝑠', 𝑎'
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• Impossible to generalize to new scenarios.
• Requires large amount of optimal (expert) 

actions in the trajectories
• Assumes state-action pairs are i.i.d.

Drawbacks

Source: http://web.stanford.edu/class/cs234/slides/lecture7.pdf



Background: Supervised RL 

Upside-Down RL [12]: trains agents to follow commands such as “obtain so much total reward in so 
much time.”
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Variants

Kumar et.al 
[13]

• Fully Offline 
RL

• Reward 
Conditioning

Ghosh et al. 
[14]

• State 
Conditioning

Paster et al. 
[15]

• Online RL
• LSTM with 

State 
Conditioning

𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛) '
*!,*"∈ -

𝐿(𝐵 𝑎*! , 𝑠*! , 𝑑
. , 𝑑/ , 𝑎*")

Supervised Objective



Background: Attention
“The cat drank the milk because it was hungry.”

“The cat drank the milk because it was sweet.”
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Credit: https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452



Background: Attention
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Credit: STAT940, Prof. Ali Ghodsi, University of Waterloo



Background: Sequence Modeling with Transformers
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Credit: https://data-science-blog.com/blog/2021/04/07/multi-head-attention-mechanism/



Background: Transformers
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Original [20] GPT [21]

𝑧! ='
01#

'

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 < 𝑞! , 𝑘0# > 0#1#

' . 𝑣0 𝑧! ='
01#

!

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 < 𝑞! , 𝑘0# > 0#1#

! . 𝑣0

“The cat drank the milk because it was hungry.” “The cat drank the milk because it was hungry.”



METHODOLOGY
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Methodology: Decision Transformer [28] Overview
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Upside-down RL [13]

Model-Free RL

Offline RL

Sequence Modelling 
using GPT
Implicit Credit 
Assignment
No Distribution Shift

No expert 
demonstrations
Match or Exceed S.O.A.



Methodology: Input Setup 
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𝜏 = 𝑟K, 𝑠K, 𝑎K, 𝑟L, 𝑠L, 𝑎L, …… , 𝑟M, 𝑠M, 𝑎M

𝜏 = 4𝑅K, 𝑠K, 𝑎K, 4𝑅L, 𝑠L, 𝑎L, …… , 4𝑅M, 𝑠M, 𝑎M

4𝑅N =6
N!ON

M
𝑟NP

Rewards-to-go



Methodology: Training Pipeline
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Q𝑅% 𝑠% 𝑎% Q𝑅# 𝑠# 𝑎# Q𝑅2 𝑠2 𝑎2…

𝑮𝑷𝑻 𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒓

𝑎% 𝑎# 𝑎2

𝒍𝒊𝒏𝒆𝒂𝒓 𝒅𝒆𝒄𝒐𝒅𝒆𝒓

𝒆𝒎𝒃.+𝒕𝒊𝒎𝒆 𝒆𝒏𝒄.



𝐸𝑛𝑣

𝑠& 𝑟&𝑠# 𝑟#

𝐸𝑛𝑣

Methodology: Inference Pipeline
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Q𝑅3 𝑠%

𝑮𝑷𝑻 𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒓

𝑎%

𝑎%

𝒆𝒎𝒃.+𝒕𝒊𝒎𝒆 𝒆𝒏𝒄.

𝑎#

𝑠#

𝒍𝒊𝒏𝒆𝒂𝒓 𝒅𝒆𝒄𝒐𝒅𝒆𝒓

Q𝑅#

Q𝑅3 − 𝑟#

𝑎# Q𝑅& 𝑠&

Q𝑅# − 𝑟&

𝑎& …

𝑎&

𝐸𝑛𝑣

𝑠4 𝑟4



Methodology: Psuedo-Code
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EXPERIMENTS & RESULTS

Decision Transformer PAGE  22



Experiments: Atari Benchmark
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Baselines

• CQL [22]
• REM [23]
• QE-DQN 

[24]
• BC (New)

Games

• Breakout
• Qbert
• Pong 

(K=50)
• Seaquest

Challenges

• Visual 
Inputs

• Long-term 
credit 
assignment



Experiments: D4RL [3] Benchmark
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Baselines

• CQL [22]
• BEAR [25]
• BRAC [26]
• AWR [5]
• BC (New)

Games

• HalfCheetah
• Hopper
• Walker
• Reacher 

(New)

Dataset 
Settings

• Medium
• Medium-

Replay
• Medium-

Expert



Results: Atari Benchmark
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Results: D4RL [3] Benchmark
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DISCUSSION
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Q1: Does Decision Transformer perform behavior cloning on a 
subset of the data?
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Large
Dataset

Small
Dataset



Q2: How well does Decision Transformer model the distribution of 
returns?
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Q3: What is the benefit of using a longer context length?
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Better 
Learning

Improved 
Training 

Dynamics



Q4: Does Decision Transformer perform effective long-term credit 
assignment?
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Phase 1 Phase 2 Phase 3



Q5: Can transformers be accurate critics in sparse reward settings?
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Experiment 
Details:

Predict 
reward+action

tokens
No initial 

returns-to-go



Q6: Does Decision Transformer perform well in sparse reward 
settings?
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Experiment 
Details:

No rewards 
within 

trajectory

Final 
Cumulative 

reward at the 
end



Extra Observations
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No regularization or value pessimism needed

Implicit representation of the value function

Decision Transformer can benefit sample-efficient online regimes

Can act as a strong model for behaviour generation



CONCLUSION
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Conclusion
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Effective model-free supervised offline RL algorithm using sequence modelling.

No reliance on any of the traditional RL concepts.

Solves credit assignment and distribution shift problems seen in other RL 
algorithms.

Match or surpass offline model-based RL state-of-the-art methods.



Future Work
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Use larger transformer models

Conditioning on return distributions instead of discrete returns

Model the state evolution using the transformer model to be an alternative for 
model-based RL.

Understand the errors made by transformers for risks in real-world settings..



Limitations
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Dependency on Context Length

Computational Time

Prior Knowledge on rewards

Loss of theoretical guarantees
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