DECISION TRANSFORMER: REINFORCEMENT
LEARNING VIA SEQUENCE MODELING

Youssef Fathi,
CS 885: Reinforcement Learning
Winter 2022

Presented to: Prof. Pascal Poupart

% WATERLOO | facuLrvor

Decision Transformer

2908®



Outline

= Introduction
= Background
= Methodology
= Evaluation

= Discussion

= Conclusion

UNIVERSITY OF
%@ FACULTY OF
Decision Transformer PAGE 2 @ WATERLOO | matHemaTICS



Decision Transformer

INTRODUCTION

PAGE 3

2908®



Introduction
®.  ©

Supervised RL | . | | | |
Model-Free °® o0 causal transformer i W

i R S E— R
Offline RL

®u®u @ ® ©. ®.
Sequence Modelling N i

O

UNIVERSITY OF
%@ FACULTY OF
Decision Transformer PAGE 4 @ WATERLOO | matHemaTICS



Decision Transformer

BACKGROUND

PAGE 5

2908®



Background: Markov Decision Process (MDP)

Model-based Model-free
States: S. States: S.
Actions: A. Actions: A.
Transition Model: P(s;|s;_1,a;_1) Transition Moedel: P(s|s—a—)
Reward Model: R(s;, a;) Reward Meoedel: R(s,ap)
Discount Factor: 0 <y <1 Discount Factor: 0 <y <1
Horizon: h Horizon: h
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Background: Online Reinforcement Learning (RL)

Target: Maximize expected sum of discounted rewards.

E[R] = ZV" "

Method: Using temporal difference in bellman backups to Actions Rewards States
estimate optimal value function [1,2]. (@) (r) (s)

Qi(si a) = Qi—l(si a) + C((T'l' + Y Qi—l(S,iT[(S,)) — Qi—l(si Cl))

Environment

Challenges:
» High cost/risk of interaction with environment
* Credit assignment problem due to discounting in
bellman backups.

T = (S, ag,70) = (51,a1,11) = (53,a,12) — ..
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Background: Credit Assignment Problem (Key-to-Door Env. [27])
Vi

Phase 1 Phase 2 Phase 3

Problem: Assigning delayed rewards to their originating actions.

Possible Solution: State association [16,17,18,19]
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Background: Offline (Batch) Reinforcement Learning

Objective: Learning from a fixed dataset without further interactions with the environment.

Pre-generated

Popular Examples: DDPG [4].

Main Challenge: Distribution Shift (Extrapolation Error) [6].
Qi(s,a) = Qi—1(s,a) + a(r +y Qi—1(s',m(s")) — Qi—1(s,a))

n(s") = argmax, Q(s’, a)

n(s") chooses rarely visited (s’, a’)

Solutions Proposed:
= Constrain policy action space [6,7]
= Incorporate value pessimism [6,8]
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Background: Supervised RL

Imitation Learning: imitating the behaviour observed in existing

trajectories.

= Behavioural Cloning (Basic Version) : using supervised losses to map existing

states to actions with no regards to rewards. [11]

f(S) = aq, (S, Cl)G {(51; al)) (52; al)r ey (STU an)}

T

« Impossible to generalize to new scenarios.

« Requires large amount of optimal (expert)
actions in the trajectories

« Assumes state-action pairs are i.i.d.

Decision Transformer PAGE 10

Expert trajectory

Learned Policy
—
e S
No data on /
how to recover ("-.‘.I

Source: http://web.stanford.edu/class/cs234/slides/lecturey.pdf
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*
Background: Supervised RL

Upside-Down RL [12]: trains agents to follow commands such as “obtain so much total reward in so
much time.”

: Variants
/ Q-value function Behavior Function \
. _ Kumar et.al Ghosh et al. Paster et al.
Observation Observation [13] [1 4] [1 5]
Value o Fully Offline « State * Online RL
(expected n Action RL Conditioning « LSTM with
/ return) « Reward State
Action 44 Command / Conditioning Conditioning
(desired return,

k desired horizon) /

Supervised Objective

B = argming Z L(B(atl,stl,dr, dh); at,)

t1,t2€T
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Background: Attention

“The cat drank the milk because it was hungry.”

“The cat drank the milk because it was sweet.”

The The The The

cat cat cat
drank drank drank drank
the the the the

milk milk milk

because because because because
it it it it

was was was was
hungry hungry sweet sweet

Credit: https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd 460452
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Background: Attention

Vg Vy V3 Uy

L]

0000 — attention value = 2 a;v;

T |

a, G Qa3 Q

DR [ e etge

S1 S, S3 84

N [ q"k;
I s; = similarity(k;, q) = 1 qTk;/Nd  (disthe

T , dimensionality
i ki ko ks ky kq VEVkl of k)

Credit: STAT94o0, Prof. Ali Ghodsi, University of Waterloo
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Background: Sequence Modeling with Transformers

Decision Transformer

Output
Probabilities

r
Add & Norm B

Feed
Forward

Add & Norm

Scaled Dot-Product Attention Multi-Head Attention

( )\
_ .
Add & Norm Mult-Hoad Concat
Feed Attention
Forward ) Nx . L
— | Scaled Dot-Product JA h
N Add & Norm Attention N
X
~—{(Add & Norm ) e — ] 1l 1l
Multi-Head Multi-Head e - -
Attention Attention [ Linear]J[ Linear],][ Linear]_]
) i J ¥ ¥ ¥
— J —,
Positional & ¢ Positional
Encoding Encoding Y K Q
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Credit: https://data-science-blog.com/blog/2021/04/07/multi-head-attention-mechanism/
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Background: Transformers

Original [20] GPT [21]
n i
n . i
z; = Z softmax ({< q ko >}j,=1) V] z; = Z softmax ({< qi, kjr >}j,=1) ;)
j=1 J=1
“The cat drank the milk because it was hungry.” “The cat drank the milk because it was hungry.”
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Methodology: Decision Transformer [28] Overview

Upside-down RL [13]

Model-Free RL @"'1 @t

| 1 | ] 1 |

pyiiine RL ¢ oo causal transformer ¢ o
Sequence Modelling —— i —— ;

using GPT

Implicit Credit t-1 @t_l @t_l t @t @t
Assignment

No Distribution Shift @ 21 i g
No expert @

demonstrations

Match or Exceed S.0O.A. @
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B
Methodology: Input Setup

T = (7"0, S0,A0,71,S51,A1, -+ - ', ST, ClT)
T =— (Ro,So, ao,Rl,Sl, Aq) eer es ,RT, ST, aT)

R T
Rt — E Tt,
t' =t

Rewards-to-go
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*
Methodology: Training Pipeline

S E— O linear decoder

[ |

| | B N " B | ® " BB emb.+timeenc.
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Methodology: Inference Pipeline

] ] ) linear decoder

| |

fE B EE § §rEE s &Y e emb. +time enc.
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Methodology: Psuedo-Code

Algorithm 1 Decision Transformer Pseudocode (for continuous actions)

R, s, a, t: returns-to-go, states, actions, or timesteps
transformer: transformer with causal masking (GPT)
embed_s, embed_a, embed_R: linear embedding layers
embed_t: learned episode positional embedding

pred_a: linear action prediction layer

HHHHH

# main model
def DecisionTransformer (R, s, a, t):
# compute embeddings for tokens
pos_embedding = embed_t(t) # per-timestep (note: not per-token)
s_embedding = embed_s(s) + pos_embedding
a_embedding embed_a(a) + pos_embedding
R_embedding embed_R(R) + pos_embedding

# interleave tokens as (R_1, s_1, a_1, ..., R_K, s_K)
input_embeds = stack(R_embedding, s_embedding, a_embedding)

# use transformer to get hidden states
hidden_states = transformer(input_embeds=input_embeds)

# select hidden states for action prediction tokens
a_hidden = unstack(hidden_states).actions

# predict action
return pred_a(a_hidden)

# training loop

for (R, s, a, t) in dataloader: # dims: (batch_size, K, dim)
a_preds = DecisionTransformer (R, s, a, t)
loss = mean((a_preds - a)x**2) # L2 loss for continuous actions

optimizer.zero_grad(); loss.backward(); optimizer.step()

Decision Transformer

# evaluation loop

target_return = 1 # for instance, expert-level return
R, s, a, t, done = [target_return], [env.reset()], [], [1], False
while not done: # autoregressive generation/sampling
# sample next action
action = DecisionTransformer(R, s, a, t)[-1] # for cts actions
new_s, r, done, _ = env.step(action)
# append new tokens to sequence
R =R + [R[-1] - r] # decrement returns-to-go with reward
s, a, t = s + [new_s], a + [action], t + [len(R)]
R, s, a, t = R[-K:], ... # only keep context length of K

UNIVERSITY OF
%@ FACULTY OF
PAGE 21 @ WATERLOO | matHemaTICS



EXPERIMENTS & RESULTS

Decision Transformer



Experiments: Atari Benchmark

« CQL [22] e Breakout  Visual

« REM [23] e Qbert Inputs

« QE-DQN  Pong . Long—term
[24] (K=50) credit

« BC (New)  Seaquest assignment

Decision Transformer PAGE 23
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Experiments: D4RL [3] Benchmark

Baselines Games Dataset
Settings

« CQL [22] « HalfCheetah e« Medium
« BEAR [25] « Hopper e Medium-
« BRAC [26] . Walker Replay

« AWR [5]  Reacher « Medium-
« BC (New) (New) Expert

FACULTY OF
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Results: Atari Benchmark

Game DT (Ours) CQL QR-DQN REM BC
Breakout 267.5 +97.5 211.1 17.1 8.9 138.9£61.7
Qbert 154+11.4 104.2 0.0 0.0 17.3 £ 14.7
Pong 106.1 =8.1 111.9 18.0 0.5 85.2 4+ 20.0
Seaquest 2.5+04 1.7 0.4 0.7 2.14+0.3
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Results: D4RL [3] Benchmark

Dataset Environment DT (Ours) CQL BEAR BRAC-v AWR BC
Medium-Expert  HalfCheetah 86.8+ 1.3 62.4 53.4 41.9 52.7  959.9
Medium-Expert ~ Hopper 1076 1.8 111.0 96.3 0.8 27.1  79.6
Medium-Expert ~ Walker 108.1 = 0.2 98.7 40.1 81.6 53.8  36.6
Medium-Expert  Reacher 89.1+1.3 30.6 - - - 73.3
Medium HalfCheetah 42.6 = 0.1 44.4 41.7 46.3 37.4  43.1
Medium Hopper 67.6 1.0 58.0 52.1 31.1 35.9  63.9
Medium Walker 74.0+14 79.2 59.1 81.1 174 77.3
Medium Reacher 51.24+34 26.0 - - - 489
Medium-Replay  HalfCheetah 36.6 = 0.8 46.2 38.6 47.7 40.3 4.3
Medium-Replay  Hopper 82.7+7.0 48.6 33.7 0.6 28.4  27.6
Medium-Replay = Walker 66.6 = 3.0 26.7 19.2 0.9 15.5  36.9
Medium-Replay  Reacher 18.0+24 19.0 - - - 5.4

Average (Without Reacher) 74.7 63.9 48.2 36.9 34.3 46.4
Average (All Settings) 69.2 54.2 - - - 477
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01: Does Decision Transformer perform behavior cloning on a
subset of the data?

gm—

Dataset Environment DT (Ours) 10%BC 25%BC 40%BC 100%BC CQL
Medium HalfCheetah 42.6 £0.1 42.9 43.0 43.1 43.1 444
Medium Hopper 67.6 1.0 65.9 65.2 65.3 63.9  58.0
I Medium Walker 74.0x£14 78.8 80.9 78.8 77.3  79.2
arge  _J  Medium Reacher 51.2 + 3.4 51.0 48.9 58.2 58.4  26.0
Dataset :
Medium-Replay  HalfCheetah 36.6 = 0.8 40.8 40.9 41.1 4.3 46.2
Medium-Replay  Hopper 827+£70 70.6 58.6 31.0 27.6  48.6
Medium-Replay = Walker 66.6 = 3.0 70.4 67.8 67.2 36.9  26.7
Medium-Replay  Reacher 18.0£2.4 33.1 16.2 10.7 5.4  19.0
- Average 56.1 56.7 59.7 49.4 39.5 435
Game DT (Ours) 10%BC 25%BC 40%BC 100%BC
Small _ Breakout 267.5+97.5 28.5+8.2 73.5+6.4 108.24+67.5 138.94+61.7
Dataset Qbert 15.44+11.4 6.6+1.7 16.0£13.8 11.84+5.8 17.3+14.7
Pong 106.1 + 8.1 2.5+0.2 13.3+2.7 72.7+13.3 85.2 +20.0
Seaquest 25+04 1.1+0.2 1.1+0.2 1.6+0.4 2.1+0.3
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02: How well does Decision Transformer model the distribution of
returns?

Breakout Qbert Pong Seaquest
© 300 100 - 150 _-’ 3 -
c e g
o 50 -~ ,/
e 0 /C.’/’V\ANW 24 1 / /,
- ”
& 0 0oL~ 0ol -~ Y ad
0 100 200 300 0O 20 40 60 80 100 0 50 100 150 0 1 2 3
HalfCheetah Hopper Walker Reacher
(O} -’
LC) 40 . 100
g ~
-
5 20 -~ 50
N
a o -7 0
0 10 20 30 40 50 0 25 50 75 100 0 25 50 75 100 0 5 10 15 20 25
Target Return (Normalized) Target Return (Normalized) Target Return (Normalized) Target Return (Normalized)
- Decision Transformer = Oracle Best Trajectory in Dataset
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*
03: What is the benefit of using a longer context length?

Game DT (Ours) DT with no context (K = 1)

Breakout 267.5+97.5 73.9 £ 10
Qbert 15.1+11.4 13.6 =11.3
Pong 106.1 = 8.1 2.5 0.2
Seaquest 25104 0.6 = 0.1

Better Improved
. Trainin
L grmi Dynami(%s
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04: Does Decision Transformer perform effective long-term credit

assignment?

Vs

=) - =)
o
-
Phase 1 Phase 2 Phase 3

Dataset DT (Ours) CQL BC %BC Random

1K Random Trajectories 71.8% 13.1% 14%  69.9% 3.1%

10K Random Trajectories 94.6% 13.3% 1.6% 95.1% 3.1%
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05: Can transformers be accurate critics in sparse reward settings?

Experiment rewgrlfgj‘}fgtion No initial
Detalils: tokens returns-to-go

-
o

not pick up key

i i o g |

> | ; | 1
o : pick up key and reach door : | I
ot | |
5 0.8 i pick up key and not reach door | 0.8 | i
g | | 20 |
o | | % | |
oY 0.6 1 I G 1 I
- I I 2 0.6 I |
S | | - : |
3 : : = | |
=04 ; ' o 0.4 I i
5 : : £ : :
O | I <L I i
e | 1 | |
o 0.2 I i 0.2 I I
jul | 1 | I
o 1 1 i I
| : : :

0.0 | ] 0.0 J ¥

key room distractor room door room pick up key reach door
Episode time Episode time
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06: Does Decision Transformer perform well in sparse reward
settings?

Final

Experiment No“fﬁlvg te Cumulative
Details: trajectory rewagi gt the
Delayed (Sparse) Agnostic Original (Dense)
Dataset Environment DT (Ours) CQL | BC 9%BC | DT (Ours) CQL
Medium-Expert = Hopper 107.3 £ 3.5 9.0 | 59.9 102.6 107.6  111.0
Medium Hopper 60.7 £ 4.5 5.2 | 63.9 65.9 67.6 58.0
Medium-Replay = Hopper 78.5 3.7 2.0 | 27.6 70.6 82.7 48.6
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Extra Observations

No regularization or value pessimism needed

Implicit representation of the value function

Can act as a strong model for behaviour generation
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Conclusion

N\
‘ Effective model-free supervised offline RL algorithm using sequence modelling.

\

No reliance on any of the traditional RL concepts.

|
Solves credit assignment and distribution shift problems seen in other RL
algorithms.

/
‘ Match or surpass offline model-based RL state-of-the-art methods.

/
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B
Future Work

Use larger transformer models

Conditioning on return distributions instead of discrete returns

Understand the errors made by transformers for risks in real-world settings..
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Limitations

Dependency on Context Length
A A B LB LB LYW A

Computational Time
A L LB L

Prior Knowledge on rewards
A LW A

Loss of theoretical guarantees
A LB LB 2SS L A2l 2w
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