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Introduction

§ Problem: The previous works on multi-agent reinforcement learning either 
does not scale well with big number of agents, or only learns in a 
centralized fashion with the assumption that all the agents are identical and 
have the same policy, which are impractical

§ This paper introduces a new method to tackle the multi-agent 
reinforcement learning problem in a decentralized way, i.e. each agent can 
learn to cooperate or compete with other agents individually, without the 
global information



Background: Multi-Agent Reinforcement Learning

§ Background: How can 
multiple agents interact with 
the environment and one 
another to complete tasks. 
More specifically, how can 
they cooperate with each 
other to complete a common 
task, or compete with each 
other to complete their own 
task, or a mix of the two. 



Background: Multi-Agent Reinforcement Learning
§ Problem: The previous multi-agent RL 

algorithms are hard to scale up. They 
require the knowledge of all agents’ 
states and actions, if the number of 
agents is too big, the problem becomes 
intractable.



Background: Mean Field Game

§ Solution: Mean-Field Game (MFG) – Approximate the effects of all other agents 
in the environment into one agent, which captures the essential aspects of the 
system, and thus makes the multi-agent problem a two-agent problem. 

§ Assumptions
1) Each agent has access to accurate global information, but not the local 

information 
2) All agents in the environment are identical and indistinguishable, i.e. all 

agents share the same state/action spaces and reward function, and have 
the same objectives (motivates centralized training methods)

3) All agents maintain interactions with others only through the mean field



Previous Work: Mean Field Reinforcement Learning

§ Mean Field Reinforcement Learning (Yang et al, 2018) extends Q-Learning into 
mean field game by using the empirical mean action to update the Q-function

§ Additional Assumptions: 
1) Assumes each agent’s sphere of 

influence is restricted by certain 
neighborhoods

2) Use the previous mean field to 
update the current action to avoid 
the “chicken and egg” problem 
(next slide)



§ Mean Field Reinforcement Learning (Yang et al, 2018) Algorithm

Previous Work: Mean Field Reinforcement Learning

The value function v is the product 
of the probability of choosing an 
action and the Q-value

Boltzmann Policy

𝝁 is an average of one-hot encoded 
policies of the neighboring agents



This Paper: Decentralized Mean Field Game (DMFG)
§ Assumptions of DMFG

1) Does not assume the agents are indistinguishable and homogeneous
2) Does not assume each agent can access the global mean field of the system, instead each 

agent has full accurate information in its neighborhood only
3) Assumes all agents formulate responses only to the mean field of the system (since each 

agent’s impact on the environment is infinitesimal)
4) Assumes each agent’s sphere of influence is restricted by its neighborhood (in line with Yang 

et al. 2018)

§ Goal (Assume the mean field of the system 𝝁 can be represented by  𝝁𝒋 after finite time, this paper 
uses the mean field of state distribution)



Decentralized Mean Field Equilibrium

• The decentralized mean field equilibrium of an agent j is represented 
as a pair (𝜋∗

#, 𝜇∗
#), 𝜋∗

# is the best response to 𝜇∗
# and 𝜇∗

# is the best 
mean field estimate of agent j when it plays 𝜋∗

#

• How can we make sure such an equilibrium can be achieved under 
the assumptions of decentralized mean field games?



Theoretical Results

• Theorem  1. For any mean field, 𝜇 ∈ M, and an agent j ∈ {1, …, N}, we 
have 

• Π$
# denotes the Markov policies for agent j. Restricting the policies to 

be Markovian will not lose any optimality



Theoretical Results

• Theorem  2. An agent j ∈ {1, …, N} in the DMFG admits (has) a 
decentralized mean field equilibrium (𝜋∗

#, 𝜇∗
#) ∈ Π#x M



Theoretical Results

• Theorem  3. The decentralized mean field operator H is well-defined, 
i.e., this operator maps C x P(S) to itself. 



Theoretical Results

• Theorem  4. Let B represent the space of bounded functions in S. 
Then the mapping H : C x P(S) → C x P(S) is a contraction in the norm 
of B(S)

• Since H is a contraction, an update algorithm (Q-learning) can 
converge to a fixed point representing DMFE



• Theorem  5. Let the Q-updates in Algorithm 1 converge to (𝑄∗
", 𝜇∗

") for an agent j ∈
{1,… , N}. Then, we can construct a policy 𝜋∗

" from 𝑄∗
" using the relation

Then the pair (𝜋∗
" , 𝜇∗

") is a DMFE.

Theoretical Results



Detailed Algorithm

f is a mean field 
network trained 
on observed 
mean action ȗ#

",%, 
eliminate the 
“chicken-and-
egg” problem



Experiment and Results

• Conduct the experiments in 2 phases: Training and Execution, repeat each 
experiment 30 times and report mean and std

• Training: all agents train against other agents playing the same algorithm 
for 2000 games

• Execution: The trained agents then execute the learned policies for 100 
games, where algorithms may compete against each other.

• 3 Baselines: Independent Q-learning (IL), mean field Q-learning (MFQ), 
mean field actor-critic (MFAC), implemented in a decentralized fashion 
with only local information



Experiment and Results

• First experiment: 
Mixed cooperative-
competitive Battle 
game, where 2 teams 
of 25 agents compete 
with each other (the 
environment is not 
zero-sum), DMFG-QL 
performs best while IL 
performs worst.



Experiment and Results

• Second experiment: 
Mixed cooperative-
competitive similar to 
Battle, except each 
team has 15 ranged 
and 10 melee agents. 
MFQ and MFAC are 
removed since both 
require homogeneous 
agents.  DMFG-QL 
performs best.



Experiment and Results
• Third experiment: Fully 

competitive Gather 
environment. 30 agents 
compete against each 
other to capture limited 
food and could resort to 
killing others. DMFG-QL 
performs best by far. 
Actively formulating the 
best individual strategy 
is crucial in competitive 
environments.



Experiment and Results

• Fourth experiment: 
Fully cooperative Tiger-
Deer environment. 
Deers are part of the 
environment and at 
least 2 tigers need to 
attack a deer together 
to gain large rewards. 
DMFG and MFG 
algorithms perform 
similarly.



Experiment and Results

• Fifth experiment: real-
world Ride-pool Matching 
Problem – tries to improve 
the efficiency of vehicles 
satisfying ride request. 
Baselines are 2 previous 
methods using constrained 
optimization and 
centralized DQN. Service 
rate=percentage of 
requests served. 



Potential Drawbacks 

• The neighborhoods of the mean field estimate are artificially defined, 
which may not be optimal in practice

• Sometimes the training becomes difficult if the number of agents is 
too large (since each agent learns its own policy), however in practice 
the training can be decentralized (like experiment five the ride match 
problem)



Conclusion

• This paper relaxed two strong assumptions from the previous work on 
using mean field method in RL, and under the relaxed assumptions it 
introduces the Decentralized Mean Field Game (DMFG) framework,  
where agents do not have global information and are not homogeneous, 
and learn in a decentralized fashion

• Proved the Q-learning based algorithm will find the DMFE

• Addressed the “chicken-and-egg” problem with a mean field network

• Demonstrated the superior performances in various scenarios



Future Work

• Theoretically, extend the theoretical analysis to the function 
approximation setting and analyze the convergence of policy gradient 
algorithm

• Empirically, consider other real-world applications like autonomous 
driving and demand and supply optimization


