#### **Bootstrap Latent-Predictive Representations** for Multitask Reinforcement Learning

Zhaohan Daniel Guo<sup>\*1</sup> Bernardo Avila Pires<sup>\*1</sup> Bilal Piot<sup>1</sup> Jean-Bastien Grill<sup>2</sup> Florent Altché<sup>2</sup> Rémi Munos<sup>2</sup> Mohammad Gheshlaghi Azar<sup>1</sup>

Iara Santelices
CS 885
March 9, 2022



## Outline

- Introduction
- Background
- Proposed Solution
- Empirical Evaluation
- Conclusion



### Introduction

- **Topic:** representation learning for multi-task reinforcement learning(RL) in partially observable environments
- Problem tackled: Current approaches to multi-task RL in partially observable environments require high levels of accuracy which is difficult to achieve
- **Solution Proposed:** Predicting future latent observations to improve RL performance



## Vocabulary

- Reinforcement Learning(RL): Agent takes in observations take actions to maximize its reward
- Multi-task RL: RL where the agent must complete many tasks at the same time. Example: autonomous driving
  - Task 1: detect pedestrians
  - Task 2: detect other vehicles
  - Task 3: detect signs
  - etc.





## Background: Vocabulary

- Representation Learning: when a system learns the underlying features of raw data required for classifiers, predictors or other algorithms. Related: auto-encoder
- Latent features: not directly observable features of raw data

Original image

Latent features

sky
buildings
water

decoder







Figure 1. Autoencoder architecture

## Background: Vocabulary

 Partially observable environment: where the agent cannot observe its full state information

• Bootstrapping: Updating an estimate with the value of another

estimate.

$$Q(s,a) := Q(s,a) + \alpha \left[ r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$









## Background: Motivation

- Deep RL in complex multi-task and partially observable environments is an ongoing area of research.
- Traditional RL: reward is the learning signal
- RL with Representation learning: observations are the learning signal



Mountain car environment



## Background: Motivation

- Current approach:
   Representation learning with RL focuses on predicting future observations
- Problem: requires high level of accuracy; difficult in complex environments
- New Approach: predict future latent observations





# Solution: Prediction of Bootstrapped Latents

PBL (pebble)













## Content: Predictions of Bootstrapped Latents: PBL



**High Level:** 

Input: observation

**Output:** value( $V_t$ ) and action ( $A_t$ )



## Content: Predictions of Bootstrapped Latents: PBL in more detail

 $B_t$ : agent state/compressed full history  $B_{t,k}$ : compressed partial history





Figure 1. Recurrent architecture for compressing partial histories. Networks used for processing observations and actions have been omitted, and dashed lines connect histories and partial histories



## Content: Predictions of Bootstrapped Latents:



## Content: Predictions of Bootstrapped Latents:



## Content: Training PseudoCode

#### **Bootstrap Latent-Predictive Representations**

#### Algorithm 1 Training Step Pseudocode for PBL

**Require:** Minibatch of trajectories  $B = \{O_t^{(i)}, A_t^{(i)}, R_t^{(i)}\}$ , RNN  $h_p$ , RNN  $h_f$ , MLPs g, g', f, future prediction horizon k, RLLoss (reinforcement learning loss)

Encode observation  $Z_t^{(i)} \doteq f(O_t^{(i)})$ 

Let 
$$B_0^{(i)} \doteq \mathbf{0}$$
 and  $B_t^{(i)} \doteq h_{\mathbf{f}}(B_{t-1}^{(i)}, O_t^{(i)}, A_{t-1}^{(i)}) \doteq B_{t,0}^{(i)}$  and  $B_{t,k}^{(i)} \doteq h_{\mathbf{p}}(B_{t,k-1}^{(i)}, A_{t+k-1}^{(i)})$ 

Forward
$$(B_t^{(i)}) \doteq \frac{1}{k} \sum_{j=1}^k \|g(B_{t,j}^{(i)}) - \text{StopGradient}(Z_{t+j}^{(i)})\|_2^2$$

Reverse
$$(Z_t^{(i)}) \doteq \|g'(Z_t^{(i)}) - \text{StopGradient}(B_t^{(i)})\|_2^2$$

Take gradient step of min 
$$\frac{1}{|B|} \sum_{i,t} \left( \text{Forward}(B_t^{(i)}) + \text{Reverse}(Z_t^{(i)}) + \text{RLLoss}(B_t^{(i)}, R_t^{(i)}) \right)$$

Because gradients are stopped on the target, algorithm does not collapse to trivial solution



### Content: Related Work

- Deep MDP + CRAR [2] [3]:
  - Algorithm learns transition model in latent space
  - Depends on a reward function(Deep MDP)
  - Depends on entropy maximization (CRAR)
- Grill et al 2020 [4]:
  - Self-supervised image representation learning



### Content: Related Work

- Pixel Control [5]:
  - Q-learning
  - Current state-of-the-art for DMLab 30
- Simcore DRAW [6]:
  - VAE based representation learning for single-task RL
- Contrastive Predictive Coding (CPC) [7]:
  - Predict future latent representations using auto-regressive models

## Content: Advantages and Disadvantages

#### Advantages:

- $Z_t$  is a latent embedding that can combine different observation modalities: images and text for example
- PBL can encode dynamical and structural dependencies between tasks

#### Disadvantage:

- Complicated architecture that requires two additional networks
  - Often difficult to understand what the algorithm is learning
- Predicting every future latent from one time step ahead to the horizon is computationally expensive
  - Subsampling can improve computation time with a minimal loss to performance









Figure 3. Mean capped human normalized score for compared methods.





Comparing PBL to pixel control for individual tasks in DML-30





Figure 5. PBL Performance Across Forward Prediction Horizon, compared to pixel control and random projection.





Figure 7. Median human normalized score for compared methods on Atari57.



## Empirical Evaluation: Glass Box



Figure 8. 3D room example: Agent's first-person view (left) and top-down grid-view indicating the object position (right).



Figure 9. Object position prediction loss for random projection vs PBL. Light lines denote different independent runs.

### Conclusion

- **Contribution:** Present a novel method for training latent embeddings for representation learning.
- Take home message: by learning meaningful future latent observations RL agents can improve performance



### Conclusion: Future Work

#### Authors Present:

- Evaluating pebble in other machine learning domains
- Transfer learning

#### • Other Ideas:

- Implementing PBL with real-world partially observable and multi-task environments (autonomous driving)
- Evaluating pebble's raw performance (not human normalized score)



## References

- [1] Z. D. Guo et al., "Bootstrap Latent-Predictive Representations for Multitask Reinforcement Learning," 2020.
- [2] C. Gelada, S. Kumar, J. Buckman, O. Nachum, and M. G. Bellemare, "DeepMDP: Learning Continuous Latent Space Models for Representation Learning," 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, pp. 3802–3826, Jun. 2019, doi: 10.48550/arxiv.1906.02736.
- [3] V. François-Lavet, Y. Bengio, D. Precup, and J. Pineau, "Combined Reinforcement Learning via Abstract Representations," *Proc. AAAI Conf. Artif. Intell.*, vol. 33, pp. 3582–3589, Sep. 2018, doi: 10.48550/arxiv.1809.04506.
- [4] J. B. Grill et al., "Bootstrap your own latent: A new approach to self-supervised Learning," Adv. Neural Inf. Process. Syst., vol. 2020-December, Jun. 2020, doi: 10.48550/arxiv.2006.07733.
- [5] M. Jaderberg, V. Mnih, T. Czarnecki, Wojciech Marian Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu, "Reinforcement Learning with Unsupervised Auxiliary Tasks | OpenReview," 2017, Accessed: Mar. 04, 2022. [Online]. Available: https://openreview.net/forum?id=SJ6yPD5xg.
- [6] K. Gregor, D. J. Rezende, F. Besse, Y. Wu, H. Merzic, and A. van den Oord, "Shaping Belief States with Generative Environment Models for RL," in *Proceedings of the 33rd International Conference on Neural Information Processing Systems*, Red Hook, NY, USA: Curran Associates Inc., 2019.
- [7] A. van den Oord DeepMind, Y. Li DeepMind, and O. Vinyals DeepMind, "Representation Learning with Contrastive Predictive Coding," Jul. 2018, doi: 10.48550/arxiv.1807.03748.

