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Introduction

* Topic: representation learning for multi-task reinforcement
learning(RL) in partially observable environments

* Problem tackled: Current approaches to multi-task RL in partially
observable environments require high levels of accuracy which is
difficult to achieve

* Solution Proposed: Predicting future latent observations to improve
RL performance



Vocabulary

* Reinforcement Learning(RL): Agent takes in observations take actions
to maximize its reward

* Multi-task RL: RL where the agent must complete many tasks at the
same time. Example: autonomous driving
* Task 1: detect pedestrians
* Task 2: detect other vehicles
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Background: Vocabulary

* Representation Learning: when a system learns the underlying
features of raw data required for classifiers, predictors or other
algorithms. Related: auto-encoder

 Latent features: not directly observable features of raw data

Original image Reconstructed image

Latent features

sky
encoder buildings decoder
water

Figure 1. Autoencoder architecture



Background: Vocabulary

* Partially observable environment: where the agent cannot observe
its full state information

. Bootstrapping: Updating an estimate with the value of another

estimate. )(s,a) = Q(s,a)+a |r —|—ﬁ5111d3<.:Q (s',a") — Q(s,a))
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Background: Motivation

* Deep RL in complex multi-task
and partially observable
environments is an ongoing area
of research.

* Traditional RL: reward is the
learning signal

* RL with Representation learning:
observations are the learning
signal
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Background: Motivation

* Current approach:
Representation learning with RL
focuses on predicting future
observations

* Problem: requires high level of
accuracy; difficult in complex
environments

* New Approach: predict future
latent observations




Solution: Prediction of
Bootstrapped Latents



Background: Simple Example
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Background: Simple Example
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Content: Predictions of Bootstrapped Latents:

PBL
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Content: Predictions of Bootstrapped Latents:
PBL in more detail

B;: agent state/compressed full history
B; i: compressed partial history
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‘ Figure 1. Recurrent architecture for compressing partial histories.

' Networks used for processing observations and actions have been

omitted, and dashed lines connect histories and partial histories 15



Content: Predictions of Bootstrapped Latents:
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Content: Predictions of Bootstrapped Latents:
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Content: Training PseudoCode

Bootstrap Latent-Predictive Representations

Algorithm 1 Training Step Pseudocode for PBL

Require: Minibatch of trajectories B = {Ofﬂ' : Agﬂ : Rfi}}, RNN £, RNN h¢, MLPs g, ¢', f, future prediction horizon £,

RLLoss (reinforcement learning lnss]

EI‘JCDE[E: observation 4’“ : f(O' )

Let B\ = 0and B{") = he(B{" 3 o, A% )= B and B) = hy(BY)_,AY, )
FDI"W:J_I'{J.(HE }) = < Ej:l g ( ) S’rqurcuiu Ilt{Z: }||2

Hmm:(z}‘}} = ||g’[Z,m} — Stqurzuimnt( )12

Take gradient step of min |T£| > iy (Furweird(ﬂfﬂ) + H.trvur:-;{:(z,fl}} + HL-LD:-;:-;[B,EL) : H:{,ﬂ))

Belcause gradients are stopped on the target, algorithm does not collapse to trivial
solution
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Content: Related Work

 Deep MDP + CRAR [2] [3]:
* Algorithm learns transition model in latent space
* Depends on a reward function(Deep MDP)
e Depends on entropy maximization (CRAR)

e Grill et al 2020 [4]:

 Self-supervised image representation learning



Content: Related Work

 Pixel Control [5]:
* Q-learning
e Current state-of-the-art for DMLab 30

e Simcore DRAW [6]:

* VAE based representation learning for single-task RL

e Contrastive Predictive Coding (CPC) [7]:
* Predict future latent representations using auto-regressive models



Content: Advantages and Disadvantages

* Advantages:

* 7 is a latent embedding that can combine different observation modalities:
images and text for example

* PBL can encode dynamical and structural dependencies between tasks

* Disadvantage:
* Complicated architecture that requires two additional networks
e Often difficult to understand what the algorithm is learning

* Predicting every future latent from one time step ahead to the horizon is
computationally expensive

e Subsampling can improve computation time with a minimal loss to performance



Empirical Evaluation



Empirical Evaluation
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Figure 3. Mean capped human normalized score for compared
methods.

Results of PBL and other representation learning methods in DMLabs-30 environments
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Empirical Evaluation
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Empirical Evaluation
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Figure 5. PBL Performance Across Forward Prediction Horizon,
compared to pixel control and random projection.
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Empirical Evaluation
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Figure 7. Median human normalized score for compared methods
on Atari57.



Empirical Evaluation: Glass Box
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Figure 8. 3D room example: Agent’s first-person view (left) and
top-down grid-view indicating the object position (right).

0 0.5e8 le8 1.5e8

Frames

Figure 9. Object position prediction loss for random projection vs
PBL. Light lines denote different independent runs.
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Conclusion

* Contribution: Present a novel method for training latent embeddings
for representation learning.

* Take home message: by learning meaningful future latent
observations RL agents can improve performance



Conclusion: Future Work

* Authors Present:
* Evaluating pebble in other machine learning domains
* Transfer learning

e Other Ideas:

* Implementing PBL with real-world partially observable and multi-task
environments (autonomous driving)

* Evaluating pebble’s raw performance (not human normalized score)
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