
Iara Santelices

CS 885

March 9, 2022

1



Outline

• Introduction

• Background

• Proposed Solution

• Empirical Evaluation

• Conclusion

2



Introduction

• Topic: representation learning for multi-task reinforcement 
learning(RL) in partially observable environments

• Problem tackled: Current approaches to multi-task RL in partially 
observable environments require high levels of accuracy which is 
difficult to achieve

• Solution Proposed: Predicting future latent observations to improve 
RL performance
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Vocabulary

• Reinforcement Learning(RL): Agent takes in observations take actions 
to maximize its reward 

• Multi-task RL: RL where the agent must complete many tasks at the 
same time. Example: autonomous driving
• Task 1: detect pedestrians

• Task 2: detect other vehicles

• Task 3: detect signs 

• etc.
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Background: Vocabulary

• Representation Learning: when a system learns the underlying 
features of raw data required for classifiers, predictors or other 
algorithms. Related: auto-encoder

• Latent features: not directly observable features of raw data 
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Background: Vocabulary

• Partially observable environment: where the agent cannot observe 
its full state information

• Bootstrapping: Updating an estimate with the value of another 
estimate. 
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Background: Motivation

• Deep RL in complex multi-task 
and partially observable 
environments is an ongoing area 
of research. 

• Traditional RL: reward is the 
learning signal

• RL with Representation learning: 
observations are the learning 
signal
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Background: Motivation

• Current approach: 
Representation learning with RL 
focuses on predicting future 
observations

• Problem: requires high level of 
accuracy; difficult in complex 
environments

• New Approach: predict future 
latent observations
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Solution: Prediction of 
Bootstrapped Latents
PBL (pebble)
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Background: Simple Example
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Background: Simple Example
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Background: Simple Example
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Background: Simple Example
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Content: Predictions of Bootstrapped Latents: 
PBL
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Content: Predictions of Bootstrapped Latents: 
PBL in more detail
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Content: Predictions of Bootstrapped Latents: 
PBL
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Content: Predictions of Bootstrapped Latents: 
PBL
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Content: Training PseudoCode

Because gradients are stopped on the target, algorithm does not collapse to trivial 
solution
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Content: Related Work

• Deep MDP + CRAR [2] [3]:
• Algorithm learns transition model in latent space

• Depends on a reward function(Deep MDP) 

• Depends on entropy maximization (CRAR)

• Grill et al 2020 [4]:
• Self-supervised image representation learning
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Content: Related Work

• Pixel Control [5]:
• Q-learning

• Current state-of-the-art for DMLab 30

• Simcore DRAW [6]:
• VAE based representation learning for single-task RL

• Contrastive Predictive Coding (CPC) [7]: 
• Predict future latent representations using auto-regressive models

20



Content: Advantages and Disadvantages

• Advantages:
• 𝑍𝑡 is a latent embedding that can combine different observation modalities: 

images and text for example

• PBL can encode dynamical and structural dependencies between tasks

• Disadvantage:
• Complicated architecture that requires two additional networks

• Often difficult to understand what the algorithm is learning

• Predicting every future latent from one time step ahead to the horizon is 
computationally expensive
• Subsampling can improve computation time with a minimal loss to performance
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Empirical Evaluation
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Empirical Evaluation

• Include reference 
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Results of PBL and other representation learning methods in DMLabs-30 environments



Empirical Evaluation

Comparing PBL to pixel control for individual tasks in DML-30
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Empirical Evaluation
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Empirical Evaluation
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Empirical Evaluation: Glass Box
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Conclusion

• Contribution: Present a novel method for training latent embeddings 
for representation learning. 

• Take home message: by learning meaningful future latent 
observations RL agents can improve performance
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Conclusion: Future Work

• Authors Present:
• Evaluating pebble in other machine learning domains

• Transfer learning

• Other Ideas:
• Implementing PBL with real-world partially observable and multi-task 

environments (autonomous driving)

• Evaluating pebble’s raw performance (not human normalized score)
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