BAO: MAKING LEARNED QUERY OPTIMIZATION PRACTICAL

Authored by: Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, Tim Kraska

Presented by: Mattie Nejati

March, 2022

ISSUES WITH PRIOR APPROACHES AND BENEFITS OF BAO

PRIOR APPROACHES

- Long training time
- 2. Inability to adjust to database and workload changes
- 3. Tail catastrophe
- 4. Black-box decisions
- 5. Integration cost

BAO

- 1. Short training time
- 2. Robustness to schema, data, and workload changes
- 3. Improved tail latency
- 4. Interpretability and easier debugging
- 5. Low integration cost

THE BIG IDEA

SELECTING QUERY PLAN

THE PREDICTIVE MODEL

THE PREDICTIVE MODEL (VECTORIZING QUERY PLAN TREES)

THE PREDICTIVE MODEL (TREE CONVOLUTIONAL NEURAL NETWORKS)

THE PREDICTIVE MODEL (PREDICTING THE PERFORMANCE)

BAO, THE BANDIT OPTIMIZER Reward Hint set 1 **Predictions** Hint set 2 Experience User provided Hint set 3 Query plan Parser -External component Bao

EXPERIMENTS

	Size	Queries	WL	Data	Schema
IMDb	7.2 GB	5000	Dynamic	Static	Static
Stack	100 GB	5000	Dynamic	Dynamic	Static
Corp	1 TB	2000	Dynamic	Static ^a	Dynamic

METHODS

IS BAO PRACTICAL?

I. Cost and performance on the cloud 2. Cost and performance on varied hardware 3. Tail latency analysis 4. Training time and convergence 5. Query regression analysis 6. Query optimization analysis 7. Prior learned optimizers

I. COST AND PERFORMANCE ON THE CLOUD

2. COST AND PERFORMANCE ON VARIED HARDWARE

3. TAIL LATENCY ANALYSIS

4. TRAINING TIME AND CONVERGENCE

5. QUERY REGRESSION ANALYSIS

6. QUERY OPTIMIZATION TIME

7. PRIOR LEARNED OPTIMIZERS

01

Do we need Neural Networks? 02

How accurate is BaO's predictive model?

03

How long does training on GPU take?

BAO'S MACHINE LEARNING MODEL

I. DO WE NEED NEURAL NETWORKS?

2. HOW ACCURATE IS BAO'S PREDICTIVE MODEL?

3. HOW LONG DOES TRAINING ON GPU TAKES?

