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INTRODUCTION
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Multi-Agent Benefits
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§ Learn faster and better with experience sharing through communication

§ Exploitation with a decentralized structure of the task in parallel

§ Inherently robust in case of failures of one or more agents

§ Scalability



Multi-Agent Challenges
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§ Curse of dimensionality

§ A good objectives in general stochastic game is challenging

§ Poor Stability

§ Exploration-exploitation Trade-off



BACKGROUND
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Multi-Agent Objectives
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Cooperative Competitive
Mixed (General sum)



Multi-Agent Information Structure
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RL Frameworks
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Timeline of Related Works
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Learning Communication in Cooperative Agents
(Tan, 1993; Fischer et al., 2004) 

Optimal Play in Competitive
(Littman, 1994)
Markov Games as a Framework for MARL
(Littman, 1994)

Actor-Attention Critic MARL
(Ours, 2019)

Deep MARL
(Tampuu et al., 2017; Gupta et al., 2017),

Attention is All You Need !!!
(Vaswani et al., 2017)

Attention in Fully Centralized MARL
(Choi et al., 2017)

Attention-based Actor Critic
(Jiang & Lu, 2018)



PROPOSED METHOD
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Proposed Solution – Actor Attention Critic
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Environment
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Multi-agent Markov Game Framework (Notation)
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• A set of states: 𝑆
• A set of agents: {1, … , 𝑁}
• Action sets for each of N agents: 𝐴!, … , 𝐴"
• Replay buffer: s, a, r, 𝑠′ ∼ 𝐷

• State Transition Function: 𝑇: 𝑆×𝐴!×⋯×𝐴" → 𝑃(𝑆)
• Reward Function: 𝑅#: 𝑆×𝐴!×⋯×𝐴" → ℝ

• Partially Observable Variant:
• 𝑜# : observation of agent 𝑖
• 𝜋#: 𝑂#→ 𝑃 𝐴#
• Objective: 𝐽# 𝜋# = 𝔼$/∼&/,…,$0∼&0 | *∼+ [∑,-.

/ 𝛾,𝑟#,(𝑠,, 𝑎!,, … 𝑎",)]



Actor-Critic
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Policy Gradient

Actor-Critic

Soft Actor-Critic (entropy) Exponential Moving Average of Past Q

Replay Buffer

Temperature

Advantage 
Function



Attention Module
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Environment
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Learning with Attentive Critics
- Shared Central Critics (minimize a joint regression loss function):

- ℒ0 𝜓 = ∑#-!" 𝔼 1,$,2,1> ∼3 𝑄#
4 𝑜, 𝑎 − 𝑦#

5

- 𝑦# = 𝑟# + 𝛾𝔼$6∼&?(16) 𝑄#
94 𝑜6, 𝑎6 − 𝛼 log 𝜋:@ 𝑎#

6 𝑜#6)

- Individual Policies (actor):

- ∇:@J 𝜋: = 𝔼1∼3,$∼& ∇:@ log 𝜋:@ 𝑎# 𝑜#) −𝛼 log 𝜋:@ 𝑎# 𝑜#) + 𝐴# 𝑜, 𝑎

- Baseline: b 𝑜, 𝑎\# = 𝔼$@∼&@(1@) 𝑄#
4 𝑜, 𝑎#, 𝑎\# = ∑$@>∈=@ 𝜋 𝑎#6 𝑜#) 𝑄# 𝑜, 𝑎#6, 𝑎\#

- Advantage: 𝐴# 𝑜, 𝑎 = 𝑄#
4 𝑜, 𝑎 − 𝑏 𝑜, 𝑎\#
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PSEUDO-CODE
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Algorithm
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Algorithm (Simplified)

Actor-Attention Critic for Multi-agent RL PAGE  20



RESULTS
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Comparison
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Setup
- 12 parallel rollouts

- 100 steps per episode

- 1024 mini batch size

- Adam, 𝜂 = 0.001

- Discount, 𝛾 = 0.99

- Update rate, 𝜏 = 0.005

- Hidden dimension, 128

- ReLU

- 4 Attention Heads
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Setup
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Empirical Results
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Empirical Results
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Key Highlights
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Key Highlights
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CONCLUSION
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Key Points
- A centralized learning and decentralized execution

- Training decentralized policies with Attention Mechanism in the Central Critics

- The key idea is to utilize attention in order to select relevant information for estimating critics.

- Performance of the proposed approach was evaluated with respect to:

- the number of agents, 

- different configurations of rewards, 

- and the span of relevant observational information. 

- Empirical results are promising

- Reduced input space

- Adaptability in a highly complicated and dynamic environment 

- General purpose MARL algorithm with adaptive capability on (cooperative, competitive, and mixed environments)
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Future Extensions
- Improve the scalability by sharing policies among agents, and performing 

attention on sub-groups of agent

- A more complicated environments with agents organized in clusters and sub-
societies or even with overlapped or multiple interests
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Thanks for watching !


