Actor-Attention-Critic for Multi-Agent Reinforcement Learning

Jack (Jianxiang) Xu

Feb 26, 2022

[1] S. Iqbal and F. Sha, "Actor-Attention-Critic for Multi-Agent Reinforcement Learning," Sep. 2018, Accessed: Feb. 16, 2022. [Online]. Available: https://openreview.net/forum?id=HJx7l309Fm

INTRODUCTION

Multi-Agent Benefits

- Learn faster and better with experience sharing through communication
- Exploitation with a decentralized structure of the task in parallel
- Inherently robust in case of failures of one or more agents
- Scalability

Multi-Agent Challenges

- Curse of dimensionality
- A good objectives in general stochastic game is challenging
- Poor Stability
- Exploration-exploitation Trade-off

BACKGROUND

Multi-Agent Objectives

Cooperative

Mixed (General sum)

Competitive

Multi-Agent Information Structure

RL Frameworks

(a) Markov decision process

(b) Markov game

(c) Extensive-form game

Timeline of Related Works

Attention is All You Need!!! Learning Communication in Cooperative Agents (Vaswani et al., 2017) (Tan, 1993; Fischer et al., 2004) Attention in Fully Centralized MARL (Choi et al., 2017) Actor-Attention Critic MARL **Optimal Play in Competitive** (Ours, 2019) (Littman, 1994) Markov Games as a Framework for MARL (Littman, 1994) Deep MARL (Tampuu et al., 2017; Gupta et al., 2017), Attention-based Actor Critic (Jiang & Lu, 2018)

PROPOSED METHOD

Proposed Solution - Actor Attention Critic

Multi-Agent Objectives

Multi-Agent Information Structure

Multi-agent Markov Game Framework (Notation)

- A set of states: S
- A set of agents: {1, ..., *N*}
- Action sets for each of N agents: $\{A_1, ..., A_N\}$
- Replay buffer: $(s, a, r, s') \sim D$
- State Transition Function: $T: S \times A_1 \times \cdots \times A_N \to P(S)$
- Reward Function: $R_i: S \times A_1 \times \cdots \times A_N \to \mathbb{R}$
- Partially Observable Variant:
 - o_i : observation of agent i
 - $\pi_i : O_i \to P(A_i)$
 - Objective: $J_i(\pi_i) = \mathbb{E}_{a_1 \sim \pi_1, \dots, a_N \sim \pi_N \mid s \sim T} \left[\sum_{t=0}^{\infty} \gamma^t r_{it}(s_t, a_{1t}, \dots a_{Nt}) \right]$

(b) Markov game

Actor-Critic

Policy Gradient

Actor-Critic

$$\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} \log(\pi_{\theta}(a_t|s_t)) \sum_{t'=t}^{\infty} \gamma^{t'-t} r_{t'}(s_{t'}, a_{t'})$$

$$Q_{\psi}(s_t, a_t) = \mathbb{E}\left[\sum_{t'=t}^{\infty} \gamma^{t'-t} r_{t'}(s_{t'}, a_{t'})\right]$$

$$\mathcal{L}_Q(\psi) = \mathbb{E}_{(s,a,r,s')\sim D}^{ ext{Replay Buffer}} \left[(Q_{\psi}(s,a) - y)^2
ight]$$

where
$$y = r(s, a) + \gamma \mathbb{E}_{a' \sim \pi(s')} \left[Q_{\bar{\psi}}(s', a') \right]$$

Soft Actor-Critic (entropy)

Exponential Moving Average of Past Q

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{s \sim D, a \sim \pi} [\nabla_{\theta} \log(\pi_{\theta}(a|s))(-\alpha \log(\pi_{\theta}(a|s)) + Q_{\psi}(s, a) - b(s))]$$

$$y = r(s, a) + \gamma \mathbb{E}_{a' \sim \pi(s')} [Q_{\bar{\psi}}(s', a') - \alpha \log(\pi_{\bar{\theta}}(a'|s'))] \xrightarrow{\text{Advantage Function}}$$

Temperature

Attention Module

Learning with Attentive Critics

- Shared Central Critics (minimize a joint regression loss function):

-
$$\mathcal{L}_{Q}(\psi) = \sum_{i=1}^{N} \mathbb{E}_{(o,a,r,o')\sim D} \left[\left(Q_{i}^{\psi}(o,a) - y_{i} \right)^{2} \right]$$

$$-y_i = r_i + \gamma \mathbb{E}_{a' \sim \pi_{\theta}(o')} \left[Q_i^{\overline{\psi}}(o', a') - \alpha \log \left(\pi_{\overline{\theta_i}}(a_i' | o_i') \right) \right]$$

- Individual Policies (actor):

$$- \nabla_{\theta_i} J(\pi_{\theta}) = \mathbb{E}_{o \sim D, a \sim \pi} \left[\nabla_{\theta_i} \log \left(\pi_{\theta_i}(a_i | o_i) \right) \left(-\alpha \log \left(\pi_{\theta_i}(a_i | o_i) \right) + A_i(o, a) \right) \right]$$

- Baseline:
$$b(o, a_{\setminus i}) = \mathbb{E}_{a_i \sim \pi_i(o_i)} \left[Q_i^{\psi} \left(o, \left(a_i, a_{\setminus i} \right) \right) \right] = \sum_{a_i' \in A_i} \pi(a_i' | o_i) \ Q_i \left(o, \left(a_i', a_{\setminus i} \right) \right)$$

- Advantage:
$$A_i(o, a) = Q_i^{\psi}(o, a) - b(o, a_{\setminus i})$$

PSEUDO-CODE

Algorithm

Algorithm 1.1: Seudo implementation of Actor-Attention-Critic

AAC()

Initialize E parallel environments with N agents

Initialize replay buffer D

Loop forever (for each episode k = 1, ...)

Reset E environments, and initialize $o_{i,0}^e$ for each agent i

Loop through each episode (for each time step n = 1,...)

Select $a_{i,n}^e \sim \pi_i(\cdot|o_i^e)$ for each agent i in each environment e

Execute $a_{i,n}^e$ to all parallel environments, and observe $o_{i,n+1}^e, r_{i,n}^e$, $\forall i \in N$

Store transitions for all environments in D

Every C steps, do

Update critic N_c times:

Sample Mini-batch from buffer, $(o_{1...N}^B, a_{1...N}^B, r_{1...N}^B, o_{1...N}^{\prime B}) \in B \sim D$

Compute $Q_i^{\Psi}(o_{1...N}^B, a_{1...N}^B), \forall i \in 1,...,N$ (in parallel)

Compute $a_i^{\prime B} \sim \pi_i^{\bar{\theta}}(o_i^{\prime B}), \forall i \in 1, ..., N$

Compute $Q_i^{\Psi}(o_{1...N}^{\prime B}, a_{1...N}^{\prime B}), \forall i \in 1,...,N$ (in parallel)

Update critic with Adam: $\nabla \mathcal{L}_O(\psi)$

Update policy N_p times:

Sample
$$(o_{1...N}) \sim D$$

Compute
$$a_i^{\prime B} \sim \pi_i^{\bar{\theta}}(o_i^{\prime B}), \forall i \in 1, \dots, N$$

Compute $Q_i^{\bar{\psi}}(o_{1...N}^{\prime B}, a_{1...N}^{\prime B}), \forall i \in 1,...,N$ (in parallel)

Update individual policies with Adam: $\nabla_{\theta_i} J(\pi_{\theta})$

Update target parameters:

$$\bar{\phi} \leftarrow \tau \bar{\phi} + (1 - \tau) \phi, \, \bar{\theta} \leftarrow \tau \bar{\theta} + (1 - \tau) \theta$$

Algorithm (Simplified)

```
Algorithm 1.1: Seudo implementation of Actor-Attention-Critic
AAC()
   Initialize E parallel environments with N agents
   Initialize replay buffer D
   Loop forever (for each episode k = 1, ...)
      Reset E environments, and initialize o_{i,0}^e for each agent i
      Loop through each episode (for each time step n = 1,...)
          Select a_{i,n}^e \sim \pi_i(\cdot|o_i^e) for each agent i in each environment e
          Execute a_{i,n}^e to all parallel environments, and observe o_{i,n+1}^e, r_{i,n}^e, \forall i \in N
          Store transitions for all environments in D
                Sample Mini-batch from buffer, (o_{1...N}^B, a_{1...N}^B, r_{1...N}^B, o_{1...N}^{\prime B}) \in B \sim D
                Compute Q_i^{\psi}(o_{1...N}^B, a_{1...N}^B), \forall i \in 1,...,N (in parallel)
                Compute a_i^{\prime B} \sim \pi_i^{\bar{\theta}}(o_i^{\prime B}), \forall i \in 1, ..., N
                Compute Q_i^{\bar{\psi}}(o_{1...N}^{\prime B}, a_{1...N}^{\prime B}), \forall i \in 1,...,N (in parallel)
                Update critic with Adam: \nabla \mathcal{L}_O(\psi)
                Update individual policies with Adam: \nabla_{\theta_i} J(\pi_{\theta})
```

RESULTS

Comparison

Table 1. Comparison of various methods for multi-agent RL

	Pasa Algorithm	How to incorporate	Number	Multi-task	Multi-Agent
	Base Algorithm	other agents	of Critics	Learning of Critics	Advantage
MAAC (ours)	SAC^{\dagger}	Attention	N	✓	✓
MAAC (Uniform) (ours)	SAC	Uniform Atttention	N	√	√
COMA*	Actor-Critic (On-Policy)	Global State + Action Concatenation	1		✓
$MADDPG^{\dagger}$	DDPG**	Observation and Action Concatenation	N		
COMA+SAC	SAC	Global State + Action Concatenation	1		✓
MADDPG+SAC	SAC	Observation and Action Concatenation	N		✓

Heading Explanation How to incorporate other agents: method by which the centralized critic(s) incorporates observations and/or actions from other agents (MADDPG: concatenating all information together. COMA: a global state instead of concatenating observations; however, when the global state is not available, all observations must be included.) Number of Critics: number of separate networks used for predicting Q_i for all N agents. Multi-task Learning of Critics: all agents' estimates of Q_i share information in intermediate layers, benefiting from multi-task learning. Multi-Agent Advantage: cf. Sec 3.2 for details.

Citations: *(Foerster et al., 2018), †(Lowe et al., 2017), ‡(Haarnoja et al., 2018), **(Lillicrap et al., 2016)

Setup

- 12 parallel rollouts
- 100 steps per episode
- 1024 mini batch size
- Adam, $\eta = 0.001$
- Discount, $\gamma = 0.99$
- Update rate, $\tau = 0.005$
- Hidden dimension, 128
- ReLU
- 4 Attention Heads

Setup

(a) Cooperative Treasure Collection. The small grey agents are "hunters" who collect the colored treasure, and deposit them with the correctly colored large "bank" agents.

(b) Rover-Tower. Each grey "Tower" is paired with a "Rover" and a destination (color of rover corresponds to its destination). Their goal is to communicate with the "Rover" such that it moves toward the destination.

Empirical Results

Figure 3. (Left) Average Rewards on Cooperative Treasure Collection. (Right) Average Rewards on Rover-Tower. Our model (MAAC) is competitive in both environments. Error bars are a 95% confidence interval across 6 runs.

Empirical Results

Table 3. MAAC improvement over MADDPG+SAC in CTC

# Agents	4	8	12
% Improvement	17	98	208

Figure 4. Scalability in the Rover-Tower task. Note that the performance of MAAC does not deteriorate as agents are added.

Key Highlights

Figure 6. Attention "entropy" for each head over the course of training for the four rovers in the Rover-Tower environment

Head 3

10000

Figure 8. Attention weights when subjected to different Tower pairings for Rover 1 in Rover-Tower environment

— Head 3

Uniform Weights

10000

30000

Key Highlights

Figure 7. Attention "entropy" for each head over the course of training for two collectors in the Treasure Collection Environment

CONCLUSION

Key Points

- A centralized learning and decentralized execution
- Training decentralized policies with Attention Mechanism in the Central Critics
- The key idea is to utilize attention in order to select relevant information for estimating critics.
- Performance of the proposed approach was evaluated with respect to:
 - the number of agents,
 - different configurations of rewards,
 - and the span of relevant observational information.
- Empirical results are promising
- Reduced input space
- Adaptability in a highly complicated and dynamic environment
- General purpose MARL algorithm with adaptive capability on (cooperative, competitive, and mixed environments)

Future Extensions

- Improve the scalability by sharing policies among agents, and performing attention on sub-groups of agent
- A more complicated environments with agents organized in clusters and subsocieties or even with overlapped or multiple interests

Thanks for watching!

