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Overview
◆Problem: decision-making for managing patients in ICU (Intensive 
Care Unit) with acute hypotension

◆Challenges: 
◦ Medical environment is partially observable
◦ Model misspecification 
◦ Data limited

◦ Data missing

◆Importance: more effective treatment is badly needed

POMDP

POPCORN

OPE (Off Policy Evaluation)

Generative model

Solutions:



Related work
◆Model-free RL methods assuming full-observability [Komorowski et al., 2018] [Raghu et 
al., 2017] [Prasad et al., 2017] [Ernstet al., 2006] [Martín-Guerrero et al., 2009].

◆POMDP RL methods (two-stage fashion) [Hauskrecht and Fraser, 2000] [Li et al., 2018] 
[Oberst and Sontag, 2019]

◆Decision-aware optimization:
◆Mode-free [Karkus et al., 2017]

◆Model-based [Igl et al., 2018]

1. On-policy setting
2. Features extracted from network



High-level Idea

◆Find a balance between purely maximum likelihood 
estimation (generative model) and purely reward-driven 
(discriminative model) extreme.



Prediction-Constrained POMDPs
◆Objective:

◆Equivalently transformed objective:

◆Optimization method: gradient descent



Log Marginal Likelihood ℒ𝑔𝑒𝑛

◆Computation: EM algorithm for HMM [Rabiner, 1989]

◆Parameter set: 

Estimated separately



Computing the value term 𝑉(𝜋𝜃)
◆Step1: Computing 𝜋𝜃 by PBVI (Point-Based Value Iteration)

◆Step2: Computing 𝑉(𝜋𝜃) by OPE



Computing the value term 𝑉(𝜋𝜃)
◆Step1: Computing 𝜋𝜃 by PBVI (Point-Based Value Iteration)
◆Exact value iteration costs exponential time complexity

◆Approximation by only computing the value for a set of belief points
polynomial time complexity

[Joelle Pineau, et.al., 2003]
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Computing the value term 𝑉(𝜋𝜃)
◆Step1: Computing 𝜋𝜃 by PBVI (Point-Based Value Iteration)

◆Step2: Computing 𝑉(𝜋𝜃) by OPE
◆𝜋𝜃 vs.   𝜋𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟
◆Importance sampling:
◆Lower bias

◆Sample efficient 
under some mild assumption



Empirical evaluation
◆Simulated environments 
◆Synthetic domain

◆Sepsis simulator

◆Real data application: hypotension



Synthetic domain

? ?

problem setting:



Synthetic domain

advantage of 
generative model

finding relevant 
signal dimension

robust to 
misspecified model



Sepsis Simulator
◆Medically-motivated environment with known ground truth

◆Results: 



Real Data Application: Hypotension



Real Data Application: Hypotension

MAP: mean arterial pressure



Future directions

◆Scaling to environments with more complex state structures 

◆Long-term temporal dependencies

◆Investigating semi-supervised settings where not all sequences have rewards

◆Ultimately become integrated into clinical decision support tools
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